
energies

Article

A Stochastic Planning Model for Battery Energy Storage
Systems Coupled with Utility-Scale Solar Photovoltaics

Heejung Park

����������
�������

Citation: Park, H. A Stochastic

Planning Model for Battery Energy

Storage Systems Coupled with

Utility-Scale Solar Photovoltaics.

Energies 2021, 14, 1244.

https://doi.org/10.3390/en14051244

Academic Editor: Pavlos Georgilakis

Received: 14 January 2021

Accepted: 15 February 2021

Published: 24 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Energy Engineering, Kyungpook National University, Daegu 41566, Korea; h.park@knu.ac.kr

Abstract: With recent technology advances and price drop, battery energy storage systems (BESSs)
are considered as a promising storage technology in power systems. In this paper, a stochastic
BESS planning model is introduced, which determines optimal capacity and durations of BESSs to
co-locate utility-scale solar photovoltaic (PV) systems in a high-voltage power system under the
uncertainties of renewable resources and electric load. The optimization model minimizing total costs
aims to obtain at least 20% electric energy from renewable sources, while satisfying all the physical
constraints. Furthermore, two-stage stochastic programming is applied to formulate mathematical
optimization problem to find out optimal durations and capacity of BESSs. In scheduling BESSs,
chronology needs to be considered to represent temporal changes of BESS states; therefore, a scenario
generation method to generate random sample paths with 1-h time step is adopted to explicitly
represent uncertainty and temporal changes. The proposed mathematical model is applied to a
modified IEEE 300-bus system that comprises 300 electric buses and 411 transmission lines. Optimal
BESS durations and capacity are compared when different numbers of scenarios are employed to
see the sensitivity to the number of scenarios in the model, and “value of stochastic solution” (VSS)
is calculated to verify the impacts of inclusion of stochastic parameters. The results show that the
building costs and capacity of BESSs increase when the number of scenarios increases from 10 to 30.
By inspecting VSSs, it is observed that an explicit representation of stochastic parameters affects the
optimal value, and the impacts become larger when the larger number of scenarios are applied.

Keywords: power system planning; stochastic optimization; utility-scale energy storage; renewable
energy; solar PV; power system simulation

1. Introduction

Energy storage systems (ESSs) generally have been used as a means for shifting peak
load by supplying electricity during peak load hours with stored energy. Therefore, the
discrepancy between the peak and base loads decreases, and low load levels and electricity
prices are ensured.

Recently, a considerable attention is devoted to the planning and operation of ESSs,
especially for battery energy storage systems (BESSs) that store electric energy in the form of
chemical energy for dealing with the uncertainty and intermittency of increased renewable
resources in the power system, as well as shaving the peak load. As of 2018, global installed
capacity of BESSs is approximately 170 GW and expected to increase further [1]. The rapidly
evolving technology and declining costs of BESSs are the main drivers of the extensive
utilization of BESSs. In this context, well-defined simulation tools for planning capacity of
BESSs in a power system need to be developed to estimate costs and assess effectiveness of
BESS installation. Therefore, mathematical optimization models are studied to obtain optimal
capacity of BESSs to meet specific criteria of given power systems such as environmental
energy policies.

In literature, the BESSs have been mainly used for load leveling in the early stage.
In that context, optimal capacity of BESSs is evaluated with mathematical optimization
model [2].
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From the perspective of promoting generation from renewable sources, BESSs may
provide us with applicable and effective solutions for mitigating the uncertainty associated
with renewable energy sources. Therefore, BESS simulation models for power systems
containing renewable energy sources are being continuously studied. The models in
which BESSs are scheduled in a short-term period are developed to evaluate impacts of
operating BESSs, with generators using renewable energy [3], where security-constrained
unit commitment decision is included in the operating problem. Furthermore, a simulation
model is introduced for evaluating optimal hybrid energy system, including solar PVs,
wind turbines, battery banks, and fuel cells [4], which focuses on seeking an optimal level
of renewable generation capacity and optimal capacity of battery systems.

Capacity planning for grid-connected PV systems using a multi-objective optimization
approach for obtaining a solution to meet multiple criteria has been studied previously
in [5]. A near optimal solution is found heuristically using a generic algorithm.

Another model to simulate optimal capacity of BESSs for a small-scale power system
has been presented in [6], where representative hourly scenarios for wind power and
deterministic load are implemented to determine the size of BESSs. The result was intended
to be utilized for the subsequent network planning or generation capacity planning, so that
a network model is not employed, and power flow is not verified. Talent and Du discussed
a model for optimal capacity of solar PVs and battery in a previous study [7], where the
reduction in the payment amounts of consumers with respect to their electricity bills are
maximized. Furthermore, a case study is conducted with a residential-level electric grid,
which is not fully described in the form of electric buses and distribution lines.

On designing PV systems with BESSs, a model to minimize the total costs for in-
stallations and operations is presented in [8]. Within the lifetime of BESSs, the effect of
BESS installation is investigated when installing, operating, replacing and divesting the
PV systems.

An optimization model is suggested to determine optimal size of the BESSs for a
hybrid power system with wind, solar, and BESSs [9]. A small-scale power system that can
be connected or disconnected to the grid depending on the operation mode is applied for
the simulation.

A stochastic model to optimize the storage systems installed together with PV genera-
tion systems is described in [10]. The optimal capacity of BESSs coupled with residential-
scale PV systems is assessed using a stochastic model for home energy management
systems. Therefore, power grid is not included in the model.

From a different view of mathematical programming, robust optimization can be
implemented for mathematical formulation. Several models for optimal capacity of ESSs
in transmission and distribution systems are found in [11,12]. In selecting a method for
mathematical programming, robust optimization can be an alternative offering a tractable
optimization problem without known probability distributions of uncertain factors. There-
fore, real-world problems that the probability distributions are generally unknown can
be modelled with robust optimization. However, an obtained solution can be “robust”
because typical robust optimization problems are solved with respect to uncertainty sets
that comprise worst-case realizations. On the other hand, stochastic programming is based
on the known probability distributions, and probabilistic characteristics of uncertain param-
eters are explicitly represented. In this paper, a method to consider probability distribution
and autocorrelation is applied for probability modeling of uncertain factors.

The recent growth in utility-scale PV capacity is significant. The U.S. Energy In-
formation Administration (EIA) expected new capacity addition of 13 GW in 2020 and
11 GW in 2021, respectively [13]. However, solar PV generation does not always increase
proportionally in accordance with PV capacity additions, because the availability of solar
power is strictly limited to daytime. Furthermore, the PV generation needs to be curtailed
in some circumstances. With a large amount of PV generation capacity, one solution to
utilize the available PV capacity can be installing BESSs coupled with solar PVs, and that
configuration can be said to be “dispatchable”. In this context, it is important to figure
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out how much capacity of BESSs can effectively improve the utilization of solar PVs and
provide more dispatchable characteristics.

Despite the needs in the investigation of BESS capacity, optimal level of utility-scale
BESSs with PV systems in a power system is not well studied. The optimization models
in literature merely focus on PV systems in a small-scale grid at a residential level, and
BESSs with utility-scale PVs operated in a large-scale grid are not included in those models.
Therefore, in this study, optimal duration and capacity of BESSs coupled with utility-scale
solar PVs required to maintain a certain level of renewable energy generation versus electric
load are examined with a stochastic optimization model.

The general perception of renewable resources from a modeling perspective can be
characterized by intermittency and uncertainty. Any simulation model including renew-
able resources needs to represent the stochasticity of them, and modeling techniques for
uncertainty of renewable resources also need to be applied subsequently. Furthermore,
scheduling problems consider chronology, and the level of temporal information described
is high. Therefore, the optimization models involving scheduling require high computa-
tional efforts and are sometimes intractable when the level of details is excessively high.
The optimization model presented in this paper comprises the aspects of stochastic models
for planning and operation.

The contributions of this paper can be summarized as follows.

• A stochastic utility-scale BESS capacity planning model for solar PV systems consider-
ing uncertainty and chronology is introduced.

• Uncertain factors, solar DNI, wind power availability, electric load, are modeled as
stochastic processes capturing uncertainty and time order of the factors, and the ran-
dom sample paths for scenarios in the stochastic optimization problem are generated
using the stochastic process.

• The presented model is applied to a transmission-level 300-bus power system, and an
optimal solution is obtained.

• The impact of inclusion uncertainty in the BESS capacity planning model is investi-
gated using the idea, “Value of Stochastic Solution” (VSS) [14].

The rest of the paper is organized as follows. In Section 2, a method to generate sample
paths and a mathematical formulation to optimize capacity of BESSs are introduced. The
costs, a power system model applied to the mathematical model, and the assumptions
for simulation are described in the subsequent section. Optimal BESSs capacity obtained
from the presented model and some results analysis are presented in Section 4. Finally,
discussions and conclusions are stated in Sections 5 and 6.

2. Methodology
2.1. Sample Path Generation

The main factors exhibiting natural uncertainty are considered as uncertain parameters
in the simulation model; they are wind power availability, solar irradiance, and electric load
in this study. As an optimization problem involving chronological scheduling is formulated, a
method to generate sample paths needs to be implemented which represents uncertainty and
chronology simultaneously. For that purpose, autoregressive-to-anything (ARTA) process is
applied [15,16] to generate hourly random sample paths using autocorrelations and marginal
distributions of uncertain parameters. Generally, the empirical data of random parameters
are not stationary, so that the procedure for finding an ARTA process is modified to generate
stationary data from the original data set. The procedure is briefly described below, and the
whole procedure with more details can be found in a previous study [17].

The procedure can be summarized as forming a base stationary process {Zt} with
autocorrelations and marginal distributions derived from the corresponding historical
time-series data, generating sample paths Zω

t with initial values Zω
t−1, Zω

t−2, . . . , Zω
t−p, and

transforming Zω
t into the desired sample path ξω

t . The procedure of generating N sample
paths is provided in this section. AR(2) base process with lag 2 is used, and sample paths
for 24 h with a 1-h interval are generated through the following steps.
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1. The desired process {ξt} is not stationary in general; therefore, the intermediate
process {ξt} satisfying ξt = ξt+1 − ξt, t = 1, 2 . . . , T − 1 is defined here, which is
stationary. The autocorrelation structure and marginal distribution of the intermediate
process, ρ = (ρ1, ρ2, . . . , ρp) and F, are known, where ρp = Corr[ξt, ξt+p], and p
indicates lag.

2. With the autocorrelation structure in Step (1), the AR parameters αp and the variance
σ2 are obtained. The ARTA process with p = 2 is implemented throughout the
simulation, therefore, ρ = (ρ1, ρ2) and α1, α2 are obtained.

3. A base AR(2) process Zt = α1Zt−1 + α2Zt−2 + εt is formed, where Zt ∼ N(0, 1) and
εt ∼ N(0, σ2).

4. Generate Zω1
t , t = 0, 1, . . . , 23 for 24 h using the initial values Zω1

−1, Zω1
−2.

5. The intermediate value ξ̄ω1
t can be derived with ξ̄ω1

t = F−1[Φ(Zω1
t )]. Finally, the

desired process ξω1
t is obtained from ξω1

t = ξ̄ω
t−1 + ξω1

t−1.
6. Repeat Steps (1)–(5) for ω2, ω3, . . . , ωN .

2.2. Mathematical Model

In this section, a mathematical formulation of the stochastic BESS capacity planning
problem is presented, where the formulation is done with two-stage stochastic program-
ming [14,18]. Instead of a primitive form of the formulation with stochastic programming,
an approximated, deterministic equivalent problem is provided for a clear presentation of
the cost terms.

min αbxb + ∑
ω∈Ω

pω

[
∑
t∈T

ht

(
∑

g∈G
ogPω

tg + ∑
c∈Gc

or
cRω

tc

+ ∑
b∈B

(obCQω
tb + obDQω

tb)

+β ∑
d∈D

UDω
td + βrURω

t

)
+ γ ·URPSω

]
(1)

subject to

0 ≤ xb ≤ Pmax
b , ∀b ∈ B (2)

∑
b∈B

Λsb · xb ≤ Pmax
b , ∀s ∈ S (3)

Pω
tc + Rω

tc ≤ Pmax
c , ∀ω ∈ Ω, ∀t ∈ T, ∀c ∈ Gc (4)

Pω
ts + ∑

b∈B
Λsb · CQω

tb ≤ Pmax
s (ξω),

∀ω ∈ Ω, ∀t ∈ T, ∀s ∈ Gs (5)

Pω
tw ≤ Pmax

w (ξω
wt), ∀ω ∈ Ω, ∀t ∈ T, ∀w ∈ Gw (6)

∑
g∈G

Λgi · Pω
tg −∑

l∈L
Λli · f ω

tl + ∑
d∈D

Λdi ·UDω
td

+ ∑
b∈B

Λbi · DQω
tb = ∑

d∈D
Λdi · Pmax

d (ξω
dt),

∀ω ∈ Ω, ∀t ∈ T, ∀i ∈ I (7)

Qω
tb = Qω

t−1,b + ηb · CQω
tb − DQω

tb,

∀ω ∈ Ω, ∀t ∈ T, ∀b ∈ B (8)

0 ≤ Qω
tb ≤ xb · eb, ∀ω ∈ Ω, ∀t ∈ T, ∀b ∈ B (9)
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0 ≤ DQω
tb ≤ xb, ∀ω ∈ Ω, ∀t ∈ T, ∀b ∈ B (10)

0 ≤ CQω
tb ≤ xb/ηb, ∀ω ∈ Ω, ∀t ∈ T, ∀b ∈ B (11)

∑
c∈Gc

Rω
tc + URω

t ≥ RS ∑
g∈G

Pω
tg, ∀ω ∈ Ω, ∀t ∈ T (12)

∑
t∈T

(
∑
s∈S

Pω
ts + ∑

w∈W
Pω

tw + ∑
b∈B

DQω
tb

)
+ URPSω

≥ RPS · ∑
t∈T

∑
d∈D

(Pmax
d (ξω

dt)−UDω
td), ∀ω ∈ Ω (13)

− f max
l ≤ f ω

tl ≤ f max
l , ∀ω ∈ Ω, ∀t ∈ T, ∀ f ∈ L (14)

f ω
tl −∑

i∈I
Sli

θω
ti

Xl
= 0, ∀ω ∈ Ω, ∀t ∈ T, ∀l ∈ L (15)

−π

2
≤∑

i∈I
Sliθ

ω
ti ≤

π

2
, ∀ω ∈ Ω, ∀t ∈ T, ∀l ∈ L (16)

0 ≤ UDω
td ≤ Pd(ξ

ω
dt), ∀ω ∈ Ω, ∀t ∈ T, ∀d ∈ D (17)

−π ≤ θω
ti ≤ π, ∀ω ∈ Ω, ∀t ∈ T, ∀i ∈ I (18)

Pω
tg, Rω

tc, URω
t , URPSω, CQω

tb, DQω
tb, Qω

tb ≥ 0. (19)

In a two-stage stochastic programming framework, the building decisions of BESSs
are made under the uncertainty of wind and solar power availability and electric demand.
Subsequently, hourly operating decisions, such as optimal power flow, and charging and
discharging operations of BESSs, are made with respect to realization of the uncertainties.

In (1), the objective function is represented by the sum of cost terms for building BESSs,
operating generators and BESSs, penalty costs for failure of serving electricity demand,
procuring capacity reserve, and meeting RPS requirements. The applied numeric values
for these penalty costs are $30,000/kWh, $1000/kWh, and $300/kWh, respectively, and the
reserve procurement costs are assumed as 1/10 of the operating costs of generators.

Constraints (2) restrict the maximum capacity of BESSs to a given value, which is
set to 100 MW to match the individual capacity of a solar PV farm. Within 100 MW, the
capacity of BESSs can be determined to minimize the total cost. The building decision
variable xb is modeled as a continuous variable so that the exact required capacity can be
obtained. One solar PV farm has three candidate BESSs with different durations: 1 h, 2 h,
and 4 h. The total capacity to be installed is 100 MW. Therefore, the sum of three types of
BESS capacity is 100 MW in (3), where Pmax

b is 100 MW, regardless of the types of BESSs,
b, in this simulation. Conventional generators that can be dispatched according to the
system requirements provide capacity reserve throughout the planning horizon, and the
reserved capacity plus energy cannot exceed their fixed capacity in (4). Because the unit
commitment decision is not included in the optimization model, reserves can be procured
from a generator regardless of whether the generator is dispatched.

The sum of power injection from solar PVs, and storing power into BESSs must be
less than or equal to the solar power availability of the solar farm which is described
in (5), where the solar power availability is estimated with respect to a randomly generated
DNI sample path (ξω) at the given time t (for calculation of the solar power availability,
see [19,20]). The power injection from a wind farm w to the grid, Pω

tw, is limited subject to
the wind power availability based on the constraints (6). When the wind power injection is
less than the wind power availability, there exist wind power curtailments. At each bus, the
sum of injected power generation from any types of generators, power flow through the
transmission lines, and discharged power from the BESS is the same as the served electric
demand, i.e., the electricity demand subtracted by unserved amounts (7).

The total stored energy in a BESS at time t is represented by the sum of energy stored
at time t− 1, and the charging and discharging amounts of energy at time t, where the
round-trip efficiency is multiplied by the amount of charging power in (8), indicating the
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occurrence of losses during the charging operation. To avoid interseasonal storage and to
assign a valid value to Q when t becomes 0, Qω

tb is set to 0 for t = 0, 24, 48, 72, 96.
The stored energy is constrained by the built capacity times the BESS time duration

xb × eb depending on the selected BESS (9). The charging and discharging power at a given
time t are limited in accordance with built capacity of the BESS in MW, and charging and
discharging operation cannot occur simultaneously, due to the operating cost that is evenly
incurred for each action. The corresponding constraints are described in (10) and (11). The
efficiency, ηb, is assumed to be 0.85.

Based on constraints (12), a fixed rate of capacity reserve can be procured with respect
to the amount of power injection and the reserve margin. In this simulation, RS is assumed
to be 15% [21]. The reserve is not a short-term operating reserve, but rather a capacity
margin that is considered from a system planning stage. It is assumed that only the thermal
generators offer reserve capacity.

In (13), the power injections from the wind and solar PV farms and the discharged
power from BESSs are greater than or equal to the RPS requirements on the right hand side,
where the RS is set to 20%. The slack variable, URPSω , is included to avoid the infeasibility
of the constraints.

In (14), the power flow on line l is constrained by the physical capacity limit for the
positive or negative direction of flows. The negative capacity value indicates that the flow
is in the opposite direction with respect to the reference flow direction. The DC power flow
is implemented to perform the calculations of real power flow in (15). The voltage angle
difference between the buses linked with a transmission line is maintained lat ess than 90◦

due to (16), where the given constraints are generally not violated. The unserved demand
must be equal to or less than realized electricity demand at each time t.

The unserved demand cannot exceed the realized load; therefore, the constraints are
added in the formulation in (17). Equation (18) restricts the upper and lower limits of the
variable, θω

ti , and all the decision variables appearing in (19) have non-negative values.

3. Simulation

In this section, the conditions for BESS capacity planning, such as costs and network
model, and generators information are provided, including detailed assumptions. A
widely implemented BESS technology, lithium-ion BESS is selected for the BESS model.
Therefore, the characteristics of the BESS such as costs and efficiency are based on the
lithium-ion BESS.

3.1. Building and Operating Costs

Throughout the simulation, all the costs are evaluated with respect to 2018$ value.
The installation cost of a BESS for the target year 2030 is estimated according to previous
studies [22,23] with the “high” case. The installation cost is observed to reduce by approxi-
mately 21% in 2030 when compared with that in 2018 for “high” case. Furthermore, the
installation cost for a stand-alone BESS is applied to estimate the cost in a conservative
way. Based on the projected installation costs, the annualized building costs for BESSs are
calculated, where the lifetime of the BESS and a discount rate are assumed to be 15 years
and 5%, respectively. The equivalent annual costs (EACs) associated with installation of
BESSs are calculated as follows:

EAC = PR× BC× r
1− 1

(1+r)n

, (20)

where PR and BC indicate the projection rate and over-night building cost, respectively.
The parameters, r and n, represent the discount rate and lifetime of BESSs. The projection
rate considered in this simulation is 0.79 [1], and the operating costs of BESSs are assumed
to be $0.3/MWh for charging and discharging operations, respectively.

The generation costs comprise variable operations and maintenance (VOM) costs and
fuel costs. The heat rates obtained from different generation technologies, fuel costs in 2030,
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and VOM costs are applied in accordance with the report [24]. The calculated costs for
BESS installation and electric energy generation are presented in Table 1. Different types of
BESSs indicate their charging and discharging durations. The BESS (2-h) can store electric
energy up to its rated capacity times 2 h.

Table 1. Installation and operating costs of generators and battery energy storage systems (BESSs).

Technology Type Equivalent Annual Installation Cost Operating Cost
($/kW.year) ($/MWh)

Coal - 28.93
Conv. CT - 45.05
Avd. CT - 52.30
CCGT - 39.03

Nuclear - 9.47
BESS (1-h) 45.74 0.3
BESS (2-h) 69.11 0.3
BESS (4-h) 115.69 0.3

3.2. Power System Model

The mathematical optimization model described in Section 2.2 was applied to a modi-
fied IEEE 300-bus system [25,26] to verify whether the model performs as planned. The
installed capacity of the generating units based on their technology types, and the specified
information of BESSs to be built is also listed in Table 2, where the types of generators are
conventional combustion turbine (Conv. CT), advanced combustion turbine (Adv. CT),
and combined cycle gas turbine (CCGT). The power system used in the simulation has
114 generators, including wind and solar PV farms. The unit capacity of solar PV farm is
rated at 100 MW. The CCGT constitutes the highest proportion in terms of the installed
capacity, and the capacity of wind and solar PVs reaches 7400 MW, which is about 27.6%
of the total generating capacity. With the given capacity, it is assumed that 20% of the
total electric energy is generated from renewable resources. For a reference case, electric
demand is set to 14,651.42 MW. In the model, 411 high voltage transmission lines exist.

Table 2. Capacity of generating units.

Types of Generation # of Units Capacity (MW) Percents (%)

Coal 6 3900 14.55
Conv. CT 8 2400 8.96
Avd. CT 10 2100 7.84
CCGT 15 9000 33.58

Nuclear 1 2000 7.46
Wind 35 3500 13.06
Solar 39 3900 14.55
Total 114 26,800 100

3.3. Hourly Random Sample Paths

Figure 1 presents historical data for the given uncertain parameters, where the top and
bottom values on the vertical bar indicate the maximum and minimum values, respectively.
The data for solar DNI are obtained from the website [27]. Wind power availability and
electric load data are from the study [17]. The plots in blue and red indicate the median
and mean values of each data, respectively. Hourly scenarios representing one year are
generated from four different ARTA processes representing spring, summer, fall, and
winter, where a sample path for a year contains 96 intervals. Figure 2 illustrates 20 sample
paths together. For a comparison of impacts on optimal solutions due to a change of sample
path number, 10, 20, and 30 paths are generated. The generated sample paths for electric
load are scaled down to fit the 300-bus system by multiplying a fixed value, 0.35.
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Figure 1. Historical data for solar DNI, wind power availability, and electric load [17,27].

Figure 2. Generated hourly sample paths for four seasons with autoregressive-to-anything (ARTA) process.
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4. Simulation Results

Optimal solutions with the presented optimization model are found using GAMS/
CPLEX [28]. A computing machine with two Intel 8-core 3.6 GHz Xeon Gold processors and
256 GB memory is used for calculation. The average computing times for obtaining optimal
solutions with 10, 20, and 30 samples are 13,934.72, 290,901.16, and 315,852.84 s, respectively.

4.1. Optimal Capacity and Costs for BESSs

Three types of BESSs with 1-, 2-, and 4-h durations are applied to the simulation to
find optimal points of BESS capacity and durations at different locations. At each electrical
bus, an individual solar PV has three candidate BESSs with different durations, and optimal
capacity of the BESSs can be found with any combination of three candidate BESSs within
100 MW. The optimal BESS capacity in accordance with the duration is listed in Table 3,
where the optimal solutions with 10, 20, and 30 sample paths are compared in order to
see sensitivity associated with the number of sample paths. A larger capacity of BESSs
can be built when 30 sample paths are applied compared to 10 and 20 sample paths. The
BESSs with a long duration tend to be preferred for building as the number of sample
paths increases.

In Table 4, the optimal costs are reported when different numbers of sample paths
are applied. When the number of samples is increased, the optimization model selects
to build more capacity of BESSs; therefore, the building cost increases. The presence of
more sample paths results in higher variability in the model, and the amount of electric
energy that certainly obtained from solar PVs decreases. Therefore, in the decision-making
to build BESSs, it tends to build more capacity to cope with high variability and utilize
more renewable energy when the number of sample paths increases. From the perspective
of building solar PV generation systems, less capacity of solar PVs can be built when the
short-term variability is considered or the number of sample paths increases [17].

Table 3. Optimal building capacity for BESSs with different numbers of samples (MW).

Duration
Number of Samples

10 20 30

1-h 3.25 4.24 53.97
2-h 885.86 19.49 202.88
3-h 3.82 1337.21 1466.55

Total 892.94 1360.94 1723.4

Table 4. Optimal building costs for BESSs with different numbers of samples ($ million/year).

Duration
Number of Samples

10 20 30

1-h 0.0116 0.0152 0.1930
2-h 4.7856 0.1053 1.0960
3-h 0.0346 12.0928 13.2626

Total 4.8318 12.2133 14.5515

4.2. Charging and Discharging Operations of BESSs

The average charging and discharging operations of the built BESSs and stored energy
status are presented in Figure 3. The charged and discharged amounts are represented
in electric energy for time t. The BESSs with optimal capacity obtained in Section 4.1
are built in the system, and an operating simulation is conducted with 30 additionally
generated random sample paths. The resulting 30 operating plans at time t for each BESS
are averaged, and the total amounts of charged and discharged energy for all BESSs are
illustrated for time t. The initial states of BESSs are assumed to be 0 MWh for each season,
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implying that the BESSs are not allowed to act as an inter-season energy storage. For any
BESS, the charging and discharging operations do not occur simultaneously by adding a
small amount of operating cost for both charging and discharging operations as stated in
Section 2.2. During spring, summer, and fall, the charging operation occurs mainly before
noon, which is the time in which solar PVs actively generates electricity. The load profile
for winter indicates a different pattern compared with the other seasons, and the charging
operation continues until 19:00.

Figure 3. Charging/discharging operations and stored energy in the system.

4.3. Load Profile

In this simulation, a net load profile with BESS installation is achieved by subtracting
wind and solar PV generation from the averaged load profile plus discharging power from
the BESSs. In Figure 4, the peak load is shaved. Instead, the net loads before the times 13:00,
12:00, and 15:00 are increased for spring, summer, and fall, respectively, when compared
with those without the BESS installation. In winter, double load peaks are observed, and
the highest peak during the evening is shaved. The net load is increased during the low
load period from 11:00 to 19:00 in the situation of BESS operation, which leads to narrowing
down the gap between the peak and base loads.

The power system simulated indicates a high portion of installed solar PV capacity,
reaching 14.55% of the total generation capacity. One drawback associated with the high
share of solar PVs in the generation mix is frequently addressed as the “duck curve”,
which indicates a deep sag of the net load profile around the middle of a day due to high
penetration of solar power generation and low load level. Based on Figure 4, it can be
observed that the deep sag is slightly mitigated during daytime by the operations of BESSs.
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Figure 4. Net load curves for the seasons. The dotted lines indicate net loads without BESSs.

4.4. Impacts of Stochastic Parameters

An optimal solution to the given stochastic problem is an approximated solution
obtained with a finite number of sample paths, where the uncertainty relaization is repre-
sented by the finite number of random sample paths. It remains unclear how the solution
is affected when the uncertainty is included in the optimization problem and how we can
quantify that. In this section, the idea of VSS is employed [14], which measures the impact
of considering stochastic factors by evaluating the difference between objective values with
and without considering stochastic parameters in the optimization model.

VSS can be calculated as VSS = EEV − RP, where EEV indicates the “expected result
of using the EV solution”, and RP indicates “the solution to the recourse problem”. The
EV solution indicates the optimal solution obtained using the expected value of sample
paths. VSSs with 10, 20, and 30 sample paths are compared in Table 5 to verify the changes
of VSSs as the number of sample paths changes. The EV solutions suggest that building
BESSs is not economic. Therefore, no BESS was built for 10, 20, and 30 sample paths. Based
on the VSSs, it is observed that the VSS, i.e., the gap between the optimal values obtained
with considering uncertainty of renewable resources and load and without considering
uncertainty, is affected by the number of samples. In the case that the number of sample
paths is large, the impact of considering the uncertainty in the problem becomes large.

Table 5. Value of stochastic solutions ($ million/year).

Number of Samples EEV RP VSS

10 3674.294 2358.81 1315.484
20 8397.132 5701.641 2695.491
30 8071.124 5079.642 2991.482

5. Discussion

The results discussed in Section 3.1 show the sensitivity of the optimal solutions with
respect to the number of sample paths. It is observed that the building capacity and costs
increase when the number of samples increases. The number of samples affects solution
quality in solving stochastic optimization problems using a sample average approximation
approach [29]. The approximated solution is expected to be close to the true stochastic
solution when the number of scenarios is sufficiently large. However, the problem size
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with a large number of scenarios dramatically increases; the problem becomes intractable
consequently. The solution time with 30 sample paths was about 315,852.84 s, and it can be
improved with implementing a method to reduce the solution time in the future.

Considering the uncertainty in the model can decrease the optimal objective values
because of the decreased penalty costs incurred by unserved electricity demand. VSSs
indicate that the solution obtained from a recourse problem has a lower objective value
than the solution from the deterministic problem. It can be noted that the optimal solution
to the stochastic BESS planning model implies that the uncertainty of electric loads and
renewable resources are dealt with, resulting in decreased penalty costs for unserved
electric loads.

6. Conclusions

In this paper, optimal durations and capacity of BESSs coupled with solar PVs have
been examined for a transmission-level power system when a high portion of solar PV
generating units exist. The BESSs can store energy only from the solar PV generators
and supply energy to the grid as needed. The mathematical model for the simulation is
based on stochastic linear programming that the decision variables are represented by
continuous variables to deal with a huge computational burden. The solar DNI, wind power
availability, and electric load are defined as uncertain factors in the optimization model.
The uncertain parameters are represented by the ARTA processes, which generate random
sample paths representing time sequence as well as uncertainty. Therefore, the second stage
operating problem considers chronology and hourly status of the system components.

The optimization model was applied to the high voltage 300-bus system, minimizing
the total cost with satisfying all the physical constraints, such as DC power flow, capacity
limits of transmission lines and generators. With the constraint to enforce at least 20%
electric energy from renewable sources, the optimal solution ensures renewable generation
at a target level. The key role of BESSs in bulk power systems may decrease the gap
between peak load and off-peak load using electric energy from solar PV systems, with
optimally arranged operating schedules of BESSs.
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