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Abstract: Primary frequency reserves in Northern Europe have traditionally been provided with
hydro plants and fossil fuel-burning spinning reserves. Recently, smart distributed energy resources
have been equipped with functionality needed to participate on frequency reserves. Key categories
of such resources include photovoltaic systems, batteries, and smart loads. Most of these resources
are small and cannot provide the minimum controllable power required to participate on frequency
reserves. Thus, virtual power plants have been used to aggregate the resources and trade them on
the frequency reserves markets. The information technology aspects of virtual power plants are
proprietary and many of the details have not been made public. The first contribution of this article is
to propose a generic data model and application programming interface for a virtual power plant with
the above-mentioned capabilities. The second contribution is to use the application programming
interface to cope with the unpredictability of the frequency reserve capacity that the photovoltaic
systems and other distributed energy resources are able to provide to the frequency reserves markets
in the upcoming bidding period. The contributions are demonstrated with an operational virtual
power plant installation at a Northern European shopping center, aggregating photovoltaic Primary
Frequency Reserves resources.

Keywords: solar power; virtual power plant; application programming interface; primary frequency
reserve; frequency containment reserve; demand response; forecasting; machine learning; neural network

1. Introduction

One significant trend in the transition to renewable energy is that the need for PFR
(Primary Frequency Reserves) increases due to the penetration of Photovoltaic (PV) and
wind power generation, while conventional providers of PFR, namely fossil fuel burning
plants with spinning reserves, are being replaced by renewable energy sources [1]. In
response to this trend, there is a booming body of research on innovative solutions for
providing PFR with smart loads (e.g., [2,3]), wind power generators (e.g., [4,5]), and electric
vehicles or other battery storages (e.g., [6,7]).

One major constraint that is often neglected in academic research is that the minimum
capacity requirement for the PFR market must be met. For example, in the Finnish PFR
markets Frequency Containment Reserve for Normal Operation (FCR-N) and Frequency
Containment Reserve for Disturbances (FCR-D), the minimum capacity of one bid is
0.1 Megawatt (MW) and 1 MW, respectively [8]. Thus, aggregation of the PFR providing
reserve resources by a Virtual Power Plant (VPP) or similar solution is necessary for all
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energy resources that do not by themselves satisfy such requirements. However, real-world
VPPs remain proprietary solutions with little publicly available documentation. In order to
catalyze research in this area, the goal of this paper is to propose an architecture and data
model for a generic VPP application programming interface to encapsulate proprietary
details of commercial VPPs.

One major use case for the virtual power plant application programming interface is
energy forecasting. Several machine learning forecasting applications relevant to virtual
power plants have been proposed for wind power generation [9]; photovoltaic power gen-
eration [10]; electric vehicle charging load [11]; electric vehicle battery state-of-charge [12];
battery storage state-of-charge [13]; and Heating, Ventilation and Air Conditioning (HVAC)
load [14]. This article demonstrates the use of the virtual power plant application program-
ming interface for one energy forecasting application. However, the contribution of the
article is not the forecasting solution. The contribution is the virtual power plant informa-
tion architecture, data model, and application programming interface, which support the
development of energy forecasting applications beyond the one presented in this paper,
such as the ones referenced above, as well as other analytics applications exploiting virtual
power plant data.

This paper is structured as follows. Section 2 reviews related works and places the
currently limited research on photovoltaic PFR into the context of emerging types of PFR.
Section 3 presents our proposal for an architecture and data model for a generic VPP
application programming interface. Section 4 presents use cases for the VPP application
programming interface. Section 5 describes technology choices for implementing the archi-
tecture and data model in Section 3 for our case study. Section 6 applies the VPP application
programming interface to realize the use cases in the context of an operational virtual power
plant installation at a Finnish shopping center, aggregating photovoltaic and other PFR
resources. Section 7 discusses the exploitation scenarios of the results. Section 8 concludes
the paper.

2. Related Research
2.1. Primary Frequency Reserves Markets

Technical requirements for PFR originate from an era in which fossil fuel-based so-
lutions were used to provide the PFR. As the power system inertia is impacted by the
penetration of wind and photovoltaic generation, authors are calling for shorter response
time requirements in the provision of frequency reserves [15,16]. The emergence of new
solutions for PFR, such as controllable loads, offers a solution for meeting such require-
ments [17]. Since the loads can have much faster response time than generators, due to a
lack of inertia, proposals have been made to redesign the established market and control
mechanisms for PFR. Li et al. [18] redesigned the PFR market mechanism to account for
the response time in the valuation of offers. Liu & Du. [19] approached the problem by
proposing separate markets for generators and loads participating in PFR, so that the pro-
curement of resources on these two markets is coordinated. However, this article focusses
on existing markets, since data from the operation of existing PFR solutions on existing
markets is required to solve the research problem.

2.2. Novel Solutions for Primary Frequency Reserves
2.2.1. Smart Loads

The development of a smart load capable of providing PFR requires innovation
that takes into account the specific characteristics of the load, so that the PFR can be
provided without compromising the primary function of the load. Liu et al. [20] proposed
an approach for controlling Light-Emitting Diode (LED) luminaires to obtain the PFR
while maintaining user satisfaction within acceptable limits. Several different solutions
have been presented to aggregate refrigerators while maintaining the temperature of each
refrigerator in the desired range [2,21,22]. Zhao et al. [23] proposed a more general solution
for thermostatically controlled loads. Wu et al. [3] generalized further to HVAC loads.
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Biegel et al. [24] proposed an even more general approach for an aggregator managing
on/off loads, but this does not take into account the specific constraints of each type of load.
Perroy et al. [25] analyzed diverse industrial loads, capture their constraints for providing
PFR, and develop a pooling system for aggregating such loads for the provision of PFR. In
contrast, De Carne et al. [26] did not try to tailor a control strategy for any particular type
of load but perform load sensitivity identification to determine a PFR control strategy with
limited impact to the primary usage of the load. Weckx et al. [27] assumed the availability
of utility functions, which capture the inconvenience to end users from using their devices
for PFR.

2.2.2. Energy Storages

In addition to smart loads, energy storage systems have been proposed as a solution
for PFR in a scenario where conventional power generation is replaced by wind and photo-
voltaic generation [28]. Knap et al. [29] determined the minimum size for the storage to
cope with a certain volume of wind power generation. If batteries are not dedicated for the
purpose of PFR, probabilistic methods are needed to minimize the risk of PFR interfering
with the primary purpose of the battery [7]. Electric vehicles are notable examples of
such batteries, and specific solutions have been developed for their use to provide PFR.
Izadkhast et al. [6] proposed using the rapid load-shedding capability of electric vehicle
chargers in order to rapidly react to frequency deviations, so that as soon as the conven-
tional PFR reserves are activated they will relieve the chargers. Kariminejad et al. [30]
proposed a hierarchical control of conventional fossil fuel reserves and electric vehicles to
minimize the utilization of electric vehicles for PFR. Srinivasan et al. [31] noted that battery
storages are generally too small for PFR unless they are aggregated.

2.2.3. Photovoltaic and Other Sources of Renewable Power Generation

The adaptation of wind power generators for the provisioning of PFR is feasible and
necessary [32–34]. Several variations of droop control have been proposed for wind genera-
tors [4,5,35,36]. Several authors argue that such approaches need to be complemented with
battery storage system in the case of wind [37,38] and photovoltaic power generation [39].
Molina-García et al. [40] complement wind generator PFR with PFR capable smart loads.
You et al. [41] analyzed the opportunity cost of lost power generation resulting by provid-
ing PFR with wind or photovoltaic power generators, and call for economic comparisons
with other approaches, such as the use of smart loads and energy storages for PFR.

While wind power applications dominate the research on PFR provisioning by re-
newable power generators, a few works exist related to hydro power. Saarinen et al. [42]
noted that hydro plants are already being used for PFR and analyze the economic tradeoff
of providing PFR versus selling power to the spot market. Spitalny et al. [43] proposed
small hydro plants developed specifically for PFR. Ahmed et al. [44] noted the possibility
of providing PFR from pumped storage hydro.

2.3. Managing Primary Frequency Reserves with a Virtual Power Plant

It is important to distinguish between Demand Response (DR) and PFR. In a recent
survey on DR, Vardakas et al. [45] identified frequency-controlled DR such as PFR as one
exotic type of DR. Thus, it is unsurprising that the great majority of VPP solutions for
managing DR focus on other types of DR, namely various price-based or incentive-based
programs offered to consumers (e.g., [46–48]). Few researchers address the management
of PFR capable resources with a VPP. Abbasi. [49] defines PFR-capable loads as DR loads,
to be managed by a VPP doing business directly with a transmission system operator.
Srinivasan et al. [31] recognize the need for a virtual power plant managing batteries
capable of providing PFR, since the individual batteries are generally too small to partic-
ipate on such markets directly. Molina-Garcia et al. [50] proposed a specific solution for
aggregating several small consumer-owned DR-capable loads to meet PFR market require-
ments. Although the research on managing PFR with a VPP is currently very limited, if the
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research reviewed in Section 2.2 results in practical implementations, there will be a need
for VPP-like solutions to aggregate and trade these solutions on PFR markets. In order to
trade profitably, forecasts will be required, as discussed in the next section.

The primary users of the virtual power plant application programming interface
would be developers of advanced functionalities to the virtual power plant, especially
related to participation on PFR markets. For example, PFR market price and asset capacity
forecasts could be developed by third parties and integrated to the virtual power plant
through the proposed virtual power plant application programming interface. Regarding
the applicability of the results to other system integrations, the following areas of further
research are identified. Calvillo et al. [51] presented an overview of smart city energy
management systems such as power grid simulators; the integration of a virtual power
plant through our proposed interface could work as a one-way solution (datasets are
extracted as input to the simulator), but not as a two way solution as generally commercial
virtual power plant packages cannot be expected to have simulation capability. However,
our solution could integrate to provide Key Performance Indicators (KPIs) to an urban
control center [52]; the asset operational reliability quantified in use case 1 is an example
of a possible KPI. Currently, commercial virtual power plants in general, and in our case
study in particular, are focusing on electric systems, but in case of extensions to district
heating and combined heat and power production, it would be necessary to assess the
applicability of our proposed data models to multicommodity smart energy systems [53].
Under current PFR market participation rules, especially in the case study country Finland,
virtual power plants are not expected to coordinate; however, the auction-based PFR mar-
ket may not be optimal from an energy management perspective, so further research on
novel PFR markets could be undertaken based on concepts of interactively cooperating
virtual power plants [54]. Finally, one essential system integration for any virtual power
plant is the integration to the system managing the distributed energy resources. Exam-
ples of such systems to be integrated include microgrid controllers, battery management
systems, and building automation systems [55,56]. The Representational state transfer
(REST) Application Programming Interface (API) presented in this article is one possible
integration technique; however, the industry standard IEC 104 may be better supported by
such systems.

2.4. Forecasting Problems in the Context of Primary Frequency Reserves

Prior to defining the forecasting problem in further detail, some terms need to be
defined. Before providing the definitions, an example is provided. In several European
countries, and especially in Northern Europe, PFR are called Frequency Containment
Reserves (FCR) [22,25,42,57]. Taking the Finnish FCR markets as a concrete example of
national PFR markets, the Transmission System Operator, which operates the market, runs
an auction on the previous day in which participants bid certain capacities at certain prices
for the hours of the next day [8]. If bids are accepted, the bidder is required to monitor the
local grid frequency and activate reserve in the case of frequency deviations according to
the technical specification of FCR [58]. It is notable that the Transmission System Operator
compensates bidders according to the bids and for their reserve capacity at the market
clearing price, regardless of whether any activations occurred [8]. If the reserve could not be
provided during frequency deviations, the market rules also specify a penalty payment [8].

The following definitions are used in this article. These are in line with Nordic PFR
market operator terminology in general and Finnish PFR markets specifications in particular:

1. The capacity of PFR reserves is defined as the power that is standing by, ready to be
controlled in the event of a frequency deviation. Thus, the capacity is a fixed value
for the duration of the bidding period, which is 1 h in the case of Finnish FCR.

a. The operator of the PFR market, usually a Transmission system operator, needs
to forecast the needed PFR capacity in order to decide how much to procure for
the upcoming bidding period.
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b. The participant to the PFR market, for example a Virtual Power Plant operator,
needs to forecast the available capacity from the resources under its control, in
order to bid profitably, to exploit the PFR capacity as fully as possible, and to
ensure that it can honor its bids, should they be accepted by the market operator.

2. The activation of PFR reserves is the actual change in power consumption or genera-
tion that is required in response to a frequency deviation that may occur during the
delivery period.

3. The price of PFR reserves is the price that the market operator pays for accepted bids,
regardless of whether activations occurred.

4. The penalty is the payment that a bidder must pay to the market operator, in case the
bid was accepted, and activations occurred, but the PFR reserve could not be provided.

In order to use the PFR reserves profitably on the PFR market, it is desirable to
forecast the capacity, activation, and price as well as the likelihood of incurring penalties.
Based on such forecasts, intelligent decision making would be possible. However, most
publications that discuss forecasting in the context of PFR do not address the items 1–4.
One reason for the existence of PFR is to cope with errors in load forecasting, which result
in the wrong quantity of electricity generation being procured, resulting in imbalance
of electricity production and consumption, which can be managed at delivery time by
PFR (e.g., [59–61]). However, much research has already been done on load forecasting
(e.g., [62,63]), which is a separate problem from forecasting capacity, activation, price, and
penalty as defined above.

A few publications address forecasting the items 1–4. Relevant to 1a are forecasts of
PFR capacity required to cope with the variability of photovoltaic power generation [64]. In
contrast, Wang et al. [32] forecasted the reserves that can be provided by PFR capable wind
power generators, relevant to 1b. Srinivasan et al. [31] considered a virtual power plant
managing diverse resources capable of providing PFR. Their approach involves creating
a control signal forecast for a model predictive controller, which can be categorized as
activation forecasting as defined in 2. Giovanelli et al. [57,65] forecasted prices for FCR,
relevant to 3. No works have addressed item 4, penalty forecasting, although such a
forecast could be constructed by combining forecasts for 1b and 2.

A limited body of research for machine learning applications addresses PFR directly.
Giovanelli et al. [57] assesses the use of a classic neural network and [65] performs a com-
parative assessment of the performance of non-neural network approaches, namely GBDT
(Gradient Boosting Decision Tree), SVR (Support Vector Machine), Linear Regression, and
Regression Tree. However, there is no direct comparison between neural network and
non-neural network-based approaches in this context. The machine learning solutions pre-
sented in this article are provided for exemplary purposes and are similar to the approach
presented in [57]. Other more advanced machine learning approaches in the broader field
of energy forecasting are potential areas for further research in PFR-related forecasting
applications. Liu et al. [66,67] address a significant shortcoming in the said articles, namely
a systematic method for determining the significance of each input feature on the forecast
quality; the approach could be applicable to the present article for an example related
to selecting the key weather features from a large set of available weather features. The
machine learning research on PFR is currently focusing on short term forecasting, but
further work on long term forecasting with neural networks could benefit from model
migration techniques [68].

As virtual power plants manage resources with unpredictable behavior, such as electric
vehicle batteries, the forecasts would ideally be accompanied with an uncertainty metric.
Kempitiya et al. [69] propose such a metric for PFR price forecasting as well as bidding
logic that exploits the forecasts as well as the uncertainty metrics to achieve increased
revenues from the PFR markets. Other uncertainty metrics could also be applied from the
literature in machine learning solutions for energy forecasting. Gaussian process regression
has been applied to determine confidence intervals for the predictions [70–72]. A topic
for further research would be PFR market bidding algorithms that are able to utilize the
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confidence intervals to maximize market revenue while minimizing the risk of failing to
deliver the offered capacity.

2.5. Northern European Primary Frequency Reserves Markets: Current Status and Future Trends

The Nordic countries are Finland, Denmark, Iceland, Norway, and Sweden. Due to its
geographical isolation, Iceland is not part of the Nordic electrical power markets, though.
The remaining countries have evolved a so-called Nordic markets model or power market
structure, see e.g., [73], which consists of:

1. Financial market (Nasdaq Commodities), from 10 years down to 1 day ahead of the
physical delivery of the power

2. Day-ahead markets (aka Elspot in case of Nord Pool), 1 day ahead of physical delivery
3. Intraday markets (aka Elbas similarly), on the day of physical delivery, and
4. Reserve and balancing power markets, elaborated below.

Finally, imbalance settlement is done on Nordic level post-delivery, to account for
differences between plans, forecasts, or trades and actual deliveries. Denmark will fully
join this Nordic settlement activity by 2021 [74].

Currently, the time resolution of the electrical power markets in the Nordics is hourly,
so the trading, delivery, and settlement will be distinct for every hour of the day (see
e.g., [74–77]).

The Nordic reserve and balancing power markets, a.k.a. ancillary services markets,
are currently the following throughout the region [78–81]:

1. Fast frequency reserve (FFR), a national day-ahead market in select seasons
2. Frequency containment reserve for normal operation (FCR-N), national yearly, and

day-ahead markets
3. Frequency containment reserve for disturbances (FCR-D), mainly national yearly

and day-ahead markets (the Transmission System Operator (TSO) may also purchase
capacity from neighbouring countries)

4. Automatic frequency restoration reserve (aFRR), a Nordic hourly market in select hours
5. Manual frequency restoration reserve (mFRR), a Nordic hourly market

The time resolution of all the reserve and balancing power markets in the Nordics is
also hourly, and it will become quarterly, as with the Nordic power markets [82]. This is
related in part to European harmonization of energy markets.

From a grid balancing point of view, the EU’s whole Internal Energy Market is split up
into different synchronous areas. Synchronous areas are defined as ‘areas covered by syn-
chronously interconnected TSOs, such as the Nordic synchronous area’ [83]. Synchronous
areas are mainly important for the fastest types of reserves, in Europe called Frequency
Containment Reserves (FCR), which are dimensioned and operated at this scale [84]. The
main task of the FCR is to dampen/stop a sudden drop or rise in system frequency.

The international concept of primary frequency reserves corresponds with the Euro-
pean concept of FCRs. In the Nordic synchronous area, the primary frequency reserves
cover the FFR, FCR-N, and FCR-D markets. The main features of these markets are sum-
marized in Table 1.

2.6. Summary

According to the research that has been reviewed in this section, a significant number
of smart solutions are being developed to equip distributed energy resources with a PFR
participations capability. An analysis of the PFR market specifications reveals that the
minimum bid size in MW significantly exceeds the capacity of most distributed energy
resources, so a solution such as a virtual power plant is needed to aggregate the resources
and meet the minimum bid size. Key tasks related to bidding, such as forecasting the
available capacity, require data from the virtual power plant. There is a lack of research on
virtual power plant information architectures, data model, and application programming
interfaces, and this is an obstacle towards applying the emerging body of literature on PFR
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provided by distributed energy resources. The contribution of this article is to overcome
this obstacle and to encourage further research in the area, possibly resulting in eventual
standardization of interfaces and data models.

Table 1. Main features of the Nordic primary frequency reserve markets [79,85–92].

FCR-N FFR FCR-D

Market area National National National

Bid submittal by 18:30 (EET) 18:00 (EET) 18:30 (EET)

Minimum capacity 0.1 MW 1 MW 1 MW

Maximum capacity 5 MW per bid 10 MW (13.5 MW) per bid 10 MW per bid

Control capability Linear or piecewise linear Single step activation Linear, piecewise linear or single step activation

To begin from 0.01 Hz deviation −0.3 or −0.4 or −0.5 Hz deviation −0.1 Hz deviation (or see spec re: single step
activating assets)

Activation speed Max 180 sec where 0.1 Hz Max 0.7 or 1.0 or 1.3 s respectively Max 5 sec 50% of cap., max 30 s 100% where −0.5 Hz

Activation duration (sustain) Continuous (at least 30 min) Min 5 sec or 30 sec, max as long as
deviation > −0.2 Hz Continuous (at least 30 min)

Deactivation When deviation < 0.01 Hz Max 20%/sec or not limited, set by
min Activation duration When deviation < 0.1 Hz for 3 min

Recovery wait N/A Min 10 sec N/A

Recovery power N/A Max 25% of capacity, earliest 10 s from
end of Deactivation. N/A

Re-activatable Any time during delivery period In max 15 min In max 15 min (or see spec re: energy storages)

Direction Symmetric Upregulation only Upregulation only

Example technologies Industrial process, heating, lighting Electrolysis, EV batteries, UPS Industrial process, heating, lighting

Price formation Margin price principle Margin price principle Margin price principle

Energy fee/cost Energy fee per mFRR price No energy fee received Energy fee per mFRR price

3. Architecture and Data Model for a Generic VPP Application Programming Interface
3.1. Architecture

An overview of the architecture is presented in Figure 1. The generic VPP API is
built on top of the underlying commercial VPP to encapsulate its proprietary details. For
security reasons, neither the VPP nor the generic API are exposed to a public network. The
communication to frequency reserve markets is opened only for those VPPs that have an
agreement with the TSO.

VPP client interfaces between the VPP and the REST API are described in Section 3.3.
The client accesses whatever proprietary interface that is provided by the VPP to get the
data. It converts the data to comply with the REST API specification and passes it to the
REST API, and vice versa for the data flow from the generic API to the VPP. This provides
the possibility to use the same generic API with any VPP. Only the VPP client needs to be
built and configured for each different VPP.

Generic VPP API consists of a relational database, a REST API, and preprocessing. The
relational database is used to persist the data retrieved from the VPP, and its data model is
presented in Section 3.2. The REST API provides endpoints to create, retrieve, update, and
delete all the necessary data. The REST API also provides the ability to retrieve extensive
time series datasets that can be used in the capacity forecaster and to provide data for
reports and analytics. Preprocessing is used to create those datasets. It unites multiple
timeseries into one table and resamples the data to a specified frequency. The preprocessing
can also calculate minimum, maximum, and average values as well as sums, differences,
and multiplications. Examples of these calculations are presented in Section 4.1. The REST
API is explained in more detail in Section 3.3.

Market forecaster is used to forecast the price of PFR reserves for each market interval
of the upcoming bidding period. An applicable solution has been presented in previous
research [57], based on supervised machine learning and using open data sources to teach
the model and to make the predictions.
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Capacity forecaster is used to predict the available capacity that the VPP can use
to participate in PFR markets. Capacity in this context is according to the definition in
Section 2.4. There is a lack of previous research for this purpose, but a solution is presented
in this article, based on supervised machine learning. Relevant data shall be retrieved from
the VPP through the VPP client to teach the model and make the predictions. Open data
sources can be used to enhance the accuracy of the model; for example, solar radiation data
from the local meteorological institute is relevant for predicting the capacity of photovoltaic
reserve resources participating on PFR markets.

Figure 1. Overview of the architecture of the proposed generic VPP API.

3.2. Data Model

The data model is described in the Unified Modeling Language (UML) class diagram
in Figure 2. Each class has a corresponding table in the database and each attribute has a
corresponding column in the table.

Datapoint is used to store timeseries data. Each datapoint has a timestamp field and
value field. It also has a foreign key to measurement type and measurement point.

MeasurementType is used to store the metadata of all the different types of timeseries
data that are stored. The main types of timeseries are forecasts and measurements. Each
MeasurementType has a reference to the identification information the MeasurementType
has in the VPP. The field data_after specifies the starting date of the cached data.

MeasurementPoint is a super class for Asset and ControlArea. This allows use of the
same DataPoint model to store both asset- and control area-related time series data. Each
MeasurementPoint has a reference to the identification information the MeasurementPoint
has in the VPP.

Asset is used to store the metadata of all different assets that have the capability to function
as reserve resources on the PFR markets. Examples of such assets were reviewed in Section 2.2.

ControlArea is used to store the metadata of all different control areas. A control area
pools a set of assets that can be aggregated to a single offer to a frequency reserve market.
Each ControlArea has a reference to the identification information the ControlArea has in
the VPP. It is also used to maintain an up-to-date list of Markets the ControlArea is used to
participate in.
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Figure 2. UML Class diagram of the data model.

Market is used to store the metadata of different frequency reserve markets. Each
Market has a reference to the identification information that the Market has in the VPP.

TransactionType is an enumeration with two possible values: ‘offer’ or ‘order’. Offer
is a term that VPP systems use to refer to the bids discussed in Section 2.4. Order is an offer
that has been accepted by the market operator.

MarketTransactions is used to store the time series data of offers and orders of different
markets. In this context, offers are bids made to a frequency reserve market and orders are
bids that the TSO has accepted. Each MarketTransaction has market, type, status, price,
quantity, start, and period fields. Market field is a foreign key to a Market. Price field is as
defined in Section 2.4. Quantity in this context is the capacity defined in Section 2.4. Start
field is the start time of the bid. Period field is the bidding period as defined in Section 2.4.

AssetEnrollment is used to maintain an up-to-date list of assets that are able to partici-
pate as reserve resources in a given market at a given time. Each AssetEnrollment has a
start and end time and foreign key references to Market and Asset.

AssetAssignment is used to store the time period when a specific asset participated
in market activation in a specific ControlArea. Each AssetAssignment has start and end
times and foreign key references to ControlArea and Asset. Activation in this context is as
defined in Section 2.4. The assignment information is needed for reporting to the TSO.

3.3. REST API

REST has become a well-established technology for implementing Information Tech-
nology (IT) systems according to the Service-Oriented Architecture paradigm (e.g., [93,94]),
and it is used broadly in commercial VPPs, such as the VPP in our case stsudy. For each
class in Figure 2, with the exception of the superclass MeasurementPoint, the following
REST API endpoints are defined. This is an example for the Asset class:

• GET/assets/
• GET/assets/{ref}/
• GET/assets/{ref}/data
• POST/assets/
• PATCH/assets/{ref}/
• PUT/assets/{ref}/
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• DELETE/assets/{ref}/

There are three GET endpoints. The first one lists all the assets configured into the
VPP. The following is an example of the JSON (JavaScript Object Notation) output in the
case of a VPP with two assets:

[ {
“udc_id”: “CHP1”,
“sub_type”: “Generation”,
“active”: true,
“id”: 1,
“type”: “VPP”,
“ref”: 51,
“status”: “Active”,
“data_after”: “2020-06-03 11:45:00”
}, {
“udc_id”: “Building1”,
“sub_type”: “Load”,
“active”: true,
“id”: 2,
“type”: “VPP”,
“ref”: 52,
“status”: “Active”,
“data_after”: “2020-06-03 11:45:00”
} ]
The second GET returns the unique asset with the unique id ‘ref’ (ref is a field of

Asset’s superclass MeasurementPoint in Figure 2.) The third GET is only available for those
classes in Figure 2 that have timeseries data, namely Asset, ControlArea, and Market. It
returns the timeseries for all of the MeasurementTypes associated with the said class.

There are three endpoints that are used to modify the assets: POST, PATCH, and
PUT. The POST endpoint is used to add a new asset. PATCH and PUT endpoints are used
to update the assets. The PUT endpoint requires that data for all fields of an asset are
submitted; with the PATCH endpoint, it is possible to submit a partial modification to one
or more fields.

The DELETE endpoint is used to delete an asset.

4. Use Cases

The applicability of the proposed virtual power plant application programming inter-
face is demonstrated with two use cases.

The first use case is the operational reliability of an asset. Its objective is to determine
an indicator that captures how well an individual asset has delivered its forecasted PFR
capacity. This is of interest to several actors. Firstly, a maintenance manager is able to target
maintenance activities to assets that score poorly on this indicator. Secondly, the trader on
PFR markets is able to use this information to assess the likelihood of the assets failing to
deliver the forecasted capacity, and to take this into account when deciding the capacity
to bid on the PFR market. Thirdly, the virtual power plant operator and the asset owners
need to have an agreement about how the revenues from the PFR market are shared. The
operational reliability of an asset is one possible metric that can be used to determine the
shares. The presentation in Section 4.1 is applicable to any asset managed by the virtual
power plant. The case study in Section 6.1 is specific to a battery storage asset.

The second use case is a forecast of the PFR capacity of an asset. Its objective is to
deliver forecasts of the capacity for all intervals of the upcoming bidding period. The
PFR market in several countries, including the case study country Finland, is day-ahead
and hourly, so one capacity forecast is needed for each hour of the next day. The main
actor for this use case is the trader, since the trader must specify the capacity in the bid
for each hour, as specified in Sections 2.4 and 2.5. The trader’s objective is to maximize
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the capacity, and thus the revenue, while avoiding penalties related to situations in which
the asset is not able to fully deliver the capacity specified in the bid. The presentation
in Sections 4.2 and 5 is generally applicable to virtual power plant assets and needs to
be adapted to a specific asset type through the selection of relevant input features to the
machine learning forecaster. Section 6.2 presents the relevant inputs to the photovoltaic
asset capacity forecaster.

4.1. Use Case 1: Operational Reliability of Virtual Power Plant Assets

The operational reliability of an asset is calculated in the preprocessing module of
Figure 1. The definition of capacity in Section 2.4 is elaborated as follows:

• CapacityNeg: If the asset is a load, this is the adjustable additional power consumption
that can be activated in over frequency events. If the asset is a generator such as a PV
panel, this is the adjustable curtailable power production.

• CapacityPos: If the asset is a load, this is the adjustable curtailable power consumption
that can be activated in underfrequency events. If the asset is a generator, this is the
additional power production that can be activated.

• ForecastCapacityPos: This is the forecasted CapacityPos.
• ForecastCapacityNeg: This is the forecasted CapacityNeg.

A special case of an asset is an energy storage. A storage may participate on PFR
markets by curtailing its charging power, in which case it behaves in the same way as
a load, and the curtailable power is specified by CapacityPos; in case the storage is able
to increase its charging power in an overfrequency event, the possible power increase is
specified by CapacityNeg. In case the storage is able to provide power to the grid through
a grid inverter, it acts as a generator, and the provided power is specified by CapacityPos.

The third GET in the REST API in Section 3.3 can be used to obtain the timeseries for
all of the MeasurementTypes associated with the Asset class, including the types in the
above list.

In commercial VPPs, the operational reliability of an asset is a metric of how well it
actually delivers its forecasted capacity. It is defined as follows:

Min(CapacityPos, CapacityNeg)/Min(ForecastCapacityPos, ForecastCapacityNeg)

4.2. Use Case 2: Reserve Capacity Forecasting

An advanced feature of a virtual power plant is to forecast the ForecastCapacityPos
and ForecastCapacityNeg timeseries (defined in Section 4.1). Such forecasts are useful
for the VPP when it bids on the frequency reserves markets. Since the CapacityPos and
CapacityNeg timeseries (defined in Section 4.1) are available through the REST API, a
supervised learning type of machine learning forecast is possible. This approach will
be applicable to all kinds of reserve resources managed by the VPP, which have been
prequalified for the frequency reserves markets. Such reserves include PV, batteries, electric
vehicles, and building automation loads.

5. Implementation

The box with the label Capacity forecaster in Figure 1 is implemented as follows.
Supervised learning is applied to the time series forecasting problem defined in Section 4.2.
The approach is similar to [57], but without the restrictive assumption that the AI model
is trained once per day and then used to make predictions for each hour of the next day.
The goal is to provide predictions for a time series at intervals called epochs. In the results
section of this paper, the epoch is 1h, which is the bidding interval of frequency reserves
markets in Finland.

In supervised learning, the model is trained with a labelled set of training samples. In
time series forecasting, there is one sample for each epoch. A matrix Xtrain is constructed
with one row for each feature and one column for each epoch. The labels are the correct
values for the time series to be predicted for the said epochs and they are stored in a
one-column matrix Ytrain. Since the goal is to obtain the values for the ForecastCapacityPos
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and ForecastCapacityNeg timeseries (defined in Section 4.1), the labels are CapacityPos
and CapacityNeg, respectively (defined in Section 4.1).

The most recent epoch in the training set cannot be any more recent than the most
recent epoch for which the label would be available, if the solution would be deployed
in real time. When Xtrain and Ytrain are available, it is possible to train an AI model. The
model architecture and hyper-parameters are based on time series forecasting research
in this domain [57]. A three-layer classic neural network is used. Both hidden layers are
followed by a ‘dropout’ layer for the purpose of regularization, i.e., preventing the model
from overfitting to the training samples. Table 2 provides additional information for AI
practitioners who may wish to reproduce the results. The Adam optimizer is used to ensure
the convergence of neural network training.

Table 2. Neural network architecture and hyper-parameters.

Layer Type Number of Nodes Dropout Activation Function

1st hidden layer Dense Same as input layer 0.4 tanh

2nd hidden layer Dense 24 0.4 tanh

Output layer Dense 1 No dropout relu

The purpose of AI is to obtain the values for a set of future epochs for the time series
to be predicted. This is a column matrix Ypred. Thus, a matrix Xpred is constructed, which is
otherwise similar to Xtrain but has the values for the said future epochs. Thus, all features
must be selected in such a way that data are available for those epochs. If this is not the
case, the following feature engineering technique can be used: a time shift is applied, such
as using the data from the day before. The same time shift applies to Xpred and Xtrain.

Figure 3 shows the data flows. Xtrain and Ytrain are used to fit the model. Xpred and
Xtrain are concatenated before normalization, so that the training data and Xpred have the
same statistical properties. In our implementation, X had features in rows and Ypred is
a column vector, so X is transposed before model fitting. Xpred is given as an input to
the fitted model, which outputs the forecasts Ypred. Since the research is conducted with
historical data, the actual values Yreal were also available and have been plotted in the
results section alongside the forecasts.

Figure 3. Data flows for training the machine learning model and using it to make forecasts.
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The implementation of the Database in Figure 1 is as follows. Django is a high-level Web
application development framework broadly used in industry and academia (e.g., [95,96]).
It has been used to implement the data model in Figure 2. This means that the data
model consists of multiple Django models. A Django model is the single, definitive source
of information about the data. It contains the essential fields and behaviors of the stored
data. Each model maps to a single database table and each model is a Python class that
subclasses django.db.models.Model.

In use case 1, the ForecastCapacityPos, ForecastCapacityNeg, CapacityPos, and Ca-
pacityNeg are obtained from the virtual power plant through our API. In use case 2, the
matrix Y data is likewise obtained from the virtual power plant. The matrix X uses weather
data from the relevant region as input features to the neural network; the data is obtained
from the Finnish Meteorological Institute open API https://en.ilmatieteenlaitos.fi/open-
data-sets-available (accessed on 22 February 2021). The trading interval for PFR in the case
country Finland is hourly, so the datasets have one datapoint per hour. Further research
may utilize additional data from the control systems of the distributed energy resources. In
the case of sensor data from control systems, there will be a large number of data points
per hour, so these need to be preprocessed to obtain one data point per hour. One direction
of further research is preprocessing solutions that intelligently filter the sensor noise.

6. Case Study
6.1. Use Case 1: Operational Relisability of Virtual Power Plant Assets

Figure 4 shows the time series CapacityPos, CapacityNeg, ForecastCapacityNeg,
and ForecastCapacityPos, defined in Section 4.1, and the Operational reliability which is
calculated based on these time series by the equation in Section 4.1. These series are from a
battery storage unit in a shopping mall. The unit is participating on the Finnish FCR-N
market and the data is obtained through the VPP API of the VPP that manages the energy
resources of the shopping mall. In Figure 4, ForecastCapacityNeg and ForecastCapacityPos
both have a constant value of 1.7 MW. Thus, based on the equation in Section 4.1, it is
expected that the Operational reliability will look like min (CapacityPos, CapacityNeg) and
be scaled by dividing by 1.7 MW. This behavior is observed in Figure 4.

Figure 4. Operational reliability calculation for a battery storage asset.

https://en.ilmatieteenlaitos.fi/open-data-sets-available
https://en.ilmatieteenlaitos.fi/open-data-sets-available
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6.2. Use Case 2: Reserve Capacity Forecasting

Reserve capacity forecasting of a photovoltaic PFR resource is performed on the
data received from the VPP application programming interface. This operational VPP is
installed at a Finnish shopping center, aggregating photovoltaic and other PFR resources.
This use case mainly targets to forecast a day-ahead photovoltaic capacity for each hour
of the next day, i.e., forecasting ForecastCapacityPos and ForecastCapacityNeg time-series
(defined in Section 4.1) from the labels CapacityPos and CapacityNeg, respectively (defined
in Section 4.1). For this purpose, historical data of about 16 months is collected from the
VPP application programming interface.

The response from the application programming interface includes the PV capacity
(in 10 kW) data for every 15-min interval. The forecasting is targeted for every hour,
but there are more data points than required. The preprocessing is done by taking the
average of the data points per hour. Figure 5 shows the preprocessed PV data collected
from the application programming interface. In addition to VPP data, openly available
solar radiation data is collected from the local meteorological institute. Utilizing the open
API of the Finnish Meteorological Institute, data is collected for every hour for 16 months
in the same time frame as the PV capacity data. This open API provides the solar radiation
features listed in Table 3.

Figure 5. Aggregated FCR-N capacity of the photovoltaic panels at the shopping center.

Table 3. Solar Radiation features provided by open API.

Parameter Unit

Diffuse radiation W/m2

Direct solar radiation W/m2

Global radiation W/m2

Long wave solar radiation W/m2

Long wave outgoing solar radiation W/m2

Radiation balance W/m2

Reflected radiation W/m2

Sunshine duration s

Ultraviolet irradiance index
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Among these features, except Direct solar radiation (W/m2), Radiation balance
(W/m2), and Ultraviolet irradiance (index), all other features were chosen for the model
training. Figure 6 portrays these six features plotted alongside with the PV power output.

Figure 6. FMI radiation observation data.

Figure 6 shows an apparent influence of solar radiation features on the PV power
output. For instance, like other features, the feature ‘Global radiation’ peaks from May
2019 to August 2019. In the same time frame, the power output from the PV panel is also
high. Conversely, from October 2019 to March 2020, the feature value and power output
both are low. Furthermore, a steady increase or decrease in the power values are directly
proportional to the steady increase or decrease in the feature values. From this analysis, it
is evident that these six features are relevant with respect to the power generation in the
PV panels, and they can be used in forecasting.

Additionally, after analyzing the power output patterns from Figures 7 and 8, the data
seems to have a vital seasonality component. For example, the PV power output is high
between 10 and 16 h. Similarly, the month around July seems to contribute more to the
power generation and can provide more data to the network by explicitly referencing days
and months. Thus, these calendar features have been included.

The implementation method, model architecture, and hyper-parameters of PV capacity
forecasting are mentioned in Section 5. The VPP application programming interface and
meteorological institute’s collected data are aggregated to a single data source and the
features are manually selected. The matrix Xtrain is constructed with one row from each of
the selected features and one column for each epoch, i.e., hour, as specified in Section 5.
Once the forecasts were run by the system in Figure 3, the results were plotted, as shown
in Figure 9. In this use case, as the research is carried with historical data, Yreal was also
available along with Ypred from the forecast results. These three parameters: Historical
data, Yreal, and Ypred were plotted alongside one another in Figure 9.

Figure 10 shows True PV capacity (i.e., Yreal) vs. Predicted PV capacity (i.e., Ypred) to
get more clarity on the forecast results. By comparing the true and predicted values, it can
be observed that the model is performing very well in forecasting the PV capacity values.
However, few outlier power patterns were observed in some hours. For instance, from
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Figure 11, the day’s starting hours have been accurately predicted by the model, but one
outlier pattern is observed for a day. This pattern can be clearly seen in Figure 12.

Overall, this use case’s objective was to predict the day-ahead PV capacity from the
VPP application programming interface data. This research described the problem analysis
and implementation scheme used to forecast the capacity forecasting.

Figure 7. Hourly power output from Photovoltaic Panel.

Figure 8. Monthly power output from Photovoltaic Panel.
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Figure 9. True vs. Predicted PV capacity output with training data.

Figure 10. True PV capacity vs. Predicted PV capacity.
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Figure 11. True vs. Predicted PV capacity output for 3 days.

Figure 12. True vs. Predicted PV capacity output for 1 day.

7. Discussion

The case studies demonstrate application scenarios of the virtual power plant archi-
tecture, data model and application programming interface. Both case studies exploit time
series data from the virtual power plant as source information in order to perform analytics
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and to generate a new time series of interest to the end user. From Figure 2 and the REST
API calls in Section 3.3, it is clear that a commercial virtual power plant does not provide
user-friendly interfaces, which energy domain experts can be expected to use to request
the source information. Figure 2 is understandable for a computer science expert and can
serve as the basis for multidisciplinary collaboration between such professionals as well as
energy sector professionals building advanced features to virtual power plants. Both of
the use cases presented in this article are examples of such advanced features. Once the
source information has been obtained and the advanced feature has been implemented, the
result is a new dataset, such as the operational reliability of an asset or the predicted PV
PFR capacity. There remains the question of how such a dataset can be used. This question
is especially relevant in the context of virtual power plants that visualize all relevant data
for users and may even perform automatic trading on PFR markets. Thus, it is necessary
to input the result datasets to the VPP in a format in which it is able to receive it. From
Figure 2, it is seen that both of the mentioned result datasets are a series of datapoints
associated to a specific asset, so one of the endpoints in the REST API, namely POST,
PATCH, or PUT can be used to write the results back to the virtual power plant’s database,
after which they can be exploited by the virtual power plant.

It is notable that the work presented in this article is based on one commercial virtual
power plant. According to the experience of the authors, the material in Section 3 would
be applicable to other vendors’ virtual power plants. Unfortunately, there is a lack of
academic as well as professional publications on the subjects. This is an obstacle for
researchers who would like to perform case studies with real power plants. It is also an
obstacle for industry seeking to exploit research in this area by interfacing innovative
algorithms as advanced features to their power plant. The authors welcome follow-up
research by other groups working with different virtual power plant vendors, aiming at
an internationally shared vision of virtual power plant architecture, data models, and
application programming interfaces.

8. Conclusions

This paper has focused on the following gap in VPP research: Although much research
is being published, its applicability in the context of real-world VPPs is often unclear. This
paper has proposed a generic architecture, data model, and API for accessing real VPPs.
Its applicability has been demonstrated in the context of an operational commercial VPP
in Finland for two use cases: (1) computing the operational reliability of VPP managed
assets, and (2) forecasting the capacity that PV assets can offer on Finnish frequency reserve
markets. The first use case is straightforward and serves the purpose of demonstrating
the industrial applicability and technology readiness level. The second use case has
implications on advanced features of a VPP, namely its ability to bid intelligently to
maximize its revenue from trading its assets on frequency reserves markets. The bidding
is day-ahead in Nordic markets, and the capacity forecasting solutions work on the same
day-ahead timeframe. A key component of the bid is the capacity of adjustable power that
VPP is able to provide the next day to react to frequency deviations. The revenue is directly
proportional to this capacity. Thus, the VPP should maximize the capacity in its bids while
avoiding the penalties due to failing to deliver the promised capacity. The PV capacity
forecasts presented in this paper are directly applicable for the bidding module of the VPP.

Several directions of future work are possible. Firstly, the forecasting approach could
be applied to other types of assets in addition to PV; in this case, a key task would be to
select the relevant features that the machine learning model needs to predict the capacity of
that type of asset. Secondly, bidding strategies could be developed on top of the forecasts.
Thirdly, further case studies on different commercial VPPs operating in different countries
could further validate and develop the generality of the proposed VPP data model and API.
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