
energies

Article

High-Accuracy Power Quality Disturbance Classification Using
the Adaptive ABC-PSO As Optimal
Feature Selection Algorithm

Supanat Chamchuen 1,2, Apirat Siritaratiwat 1, Pradit Fuangfoo 2, Puripong Suthisopapan 1

and Pirat Khunkitti 1,*

����������
�������

Citation: Chamchuen, S.;

Siritaratiwat, A.; Fuangfoo, P.;

Suthisopapan, P.; Khunkitti, P.

High-Accuracy Power Quality

Disturbance Classification Using the

Adaptive ABC-PSO as Optimal

Feature Selection Algorithm. Energies

2021, 14, 1238. https://doi.org/

10.3390/en14051238

Academic Editor: Miguel Castilla

Received: 26 January 2021

Accepted: 18 February 2021

Published: 24 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University,
Khon Kaen 40002, Thailand; ssupanat@kkumail.com (S.C.); apirat@kku.ac.th (A.S.); purisu@kku.ac.th (P.S.)

2 Provincial Electricity Authority, Bangkok 10900, Thailand; pradit.fua@pea.co.th
* Correspondence: piratkh@kku.ac.th; Tel.: +66-86-636-5678

Abstract: Power quality disturbance (PQD) is an important issue in electrical distribution systems
that needs to be detected promptly and identified to prevent the degradation of system reliability.
This work proposes a PQD classification using a novel algorithm, comprised of the artificial bee
colony (ABC) and the particle swarm optimization (PSO) algorithms, called “adaptive ABC-PSO”
as the feature selection algorithm. The proposed adaptive technique is applied to a combination
of ABC and PSO algorithms, and then used as the feature selection algorithm. A discrete wavelet
transform is used as the feature extraction method, and a probabilistic neural network is used as the
classifier. We found that the highest classification accuracy (99.31%) could be achieved through nine
optimally selected features out of all 72 extracted features. Moreover, the proposed PQD classification
system demonstrated high performance in a noisy environment, as well as the real distribution
system. When comparing the presented PQD classification system’s performance to previous studies,
PQD classification accuracy using adaptive ABC-PSO as the optimal feature selection algorithm is
considered to be at a high-range scale; therefore, the adaptive ABC-PSO algorithm can be used to
classify the PQD in a practical electrical distribution system.

Keywords: power quality disturbance classification; optimal feature selection; probabilistic neural
network; particle swarm optimization; artificial bee colony

1. Introduction

The demand for electricity in Thailand has continually increased over the past sev-
eral decades, due mainly to an expansion of industrial and commercial customers. Nu-
merous load types have been installed to the grid according to the various customer
types [1–3]. The power quality disturbance (PQD) is an important issue in electrical dis-
tribution systems, especially since this issue becomes more severe in a system having
different load types [4]. PQD can significantly decrease the reliability and performance of
the grid [5,6]. According to international standards, i.e., EN 50160 and IEEE-1159, PQD can
occur in various forms, such as voltage sag, flicker, swell, harmonic distortion, momentary
interruption, spike, notch, transient, or a combination of these forms [7–9]. The power
quality signals are generally categorized into stationary and nonstationary signals, which
can be characterized and analyzed either by time-domain or frequency domain analysis
methods [10].

Feature extraction is a well-known and reliable procedure used to identify perfor-
mance degradation in a distribution system caused by PQD; feature selection and feature
classifiers are also useful [11]. Feature extraction is a signal processing method to estimate
the signals’ data based on its statistics [11]. So far, several signal processing tools have
been used for feature extraction, depending on the type of signals [12]. The empirical
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mode decomposition (EMD) is one of the signal analysis methods for time-domain analysis;
meanwhile, Fourier transform (FT) is extensively used in the frequency domain signal
analysis [13]. The wavelet transform (WT) and S-transform (ST) are applicable for both time
and frequency domain signal analysis [14–16], and their outstanding ability makes them a
suitable signal analysis method for feature selection. FT is usually used for characterizing
the spectrum and harmonics of the stationary signal, whereas it is inappropriate to iden-
tify the characteristics of nonstationary signals, due to its fixed window function [10,17].
The short-time Fourier transform (STFT) was used to improve the time–frequency window
of the FT during the temporary, transient signal localization [18]. ST has been proposed to
improve the localization of the STFT [19]; nevertheless, ST still has poor detection potential-
ity for nonstationary transient disturbances [20]. The Discrete Wavelet Transform (DWT)
was developed from the STFT to improve the fixed resolution issue; this extraction method
can provide a short window in high-frequency compositions while maintaining a long
window at low-frequency components. In the literature, DWT has been widely used for
signal detection and feature extraction of a transient disturbance, i.e., fault detection and
identification of the transmission line, PQD classification, and islanding detection [21–23].

Since feature extraction is insufficient to classify the type of power quality signals
accurately, an additional tool called a “classifier” is used after the feature extraction process
to improve the accuracy of power quality signal identification [10]. Artificial intelligence
(AI) is widely known as an effective tool used to identify the power quality signals and
solve many problems in power systems research [24–26]. AI is an automatic system that
can behave similarly to human thinking, and can engage in decision-making, learning,
problem-solving, perception, reasoning, and classification [12,27]. In particular, several
AI techniques, i.e., Expert Systems, Fuzzy Logic, Artificial neural networks, and Genetic
Algorithms (GA), have been applied to PQD classification, showing that it could precisely
classify the power quality signal type [28–34]. The neural network especially demonstrates
higher performance at classifying the PQD than many other AI techniques [35–37].

In addition, the feature selection process has been implemented extensively to increas-
ingly improve the precision of PQD identification [38–40]. Feature selection is the process
that eliminates the redundant information of the feature extracting data, aiming to improve
accuracy and reduce the computational time of the PQD classification. Several previous
studies have demonstrated that PQD classification adopting feature selection can achieve
high accuracy. In 2009, adaptive particle swarm optimization (PSO) was proposed as the
optimal feature selection algorithm for PQD classification, based on ST feature extraction
to identify nine PQD types; this classification system could provide 96.33% accuracy [37].
H. Erişti et al. presented the k-means with the Apriori algorithm to determine the optimal
feature of PQD classification using five PQD signals, and it was shown that an accuracy
of 98.88% could be reached [36]. After that, the PQD classification system based on the
PSO algorithm as the optimal feature selection algorithm with DWT feature extraction was
introduced by R. Ahila et al. [41]. This system could provide a classification accuracy of
97.60% for ten PQD signals. A. A. Abdoos et al. showed that their PQD classification system
using the Sequential Forward Selection (SFS) algorithm to find the optimal features could
achieve up to 99.66% classification accuracy [13]. In 2018, the Fisher linear discriminant
analysis (FDA) algorithm was performed as the optimal feature selection to classify the
15 PQD types based on Variational Mode Decomposition (VMD) as feature extraction,
indicating that an accuracy of 98.82% could be accomplished [39]. Recently, L. Fu et al.
performed Permutation Entropy with the Fisher Score algorithm to find the optimal feature
based on 13 PQD types [40]. It was found that this system has an accuracy of 97.6%.

From the previous studies, we noticed that the PQD classification system’s perfor-
mance could be improved increasingly. In this paper, a combination of the adaptive artificial
bee colony (ABC) and the PSO algorithms is introduced and applied to identify 13 PQD
signals. We propose a high-accuracy PQD classification using a novel algorithm called
“adaptive ABC-PSO” as the feature selection algorithm. The inspiration for this proposed
feature selection algorithm was implementing the merit of PSO to compensate for ABC’s
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weakness; the adaptive technique was also applied to improve the combination algorithm’s
searching ability. The feature extraction of the presented classification system was based on
the DWT, whereas the probabilistic neural network (PNN) was performed as the classifier.

2. Power Quality Disturbances

In this work, 13 types of power quality signals were used for PQD classification.
Ten single types of PQD signals were the pure sine waveform, sag, swell, interruption, har-
monics, impulsive transients, oscillatory transients, flicker, notch, and spikes, whereas the
rest were multiple-type PQD signals, including sag with harmonics, swell with harmonics,
and interruption with harmonics. The mathematical models for PQD signal generation
were based on the IEEE-1159 standard, as shown in Table 1. All PQD waveforms were
considered for 10 cycles with 2000 sampling points, signal amplitude of 1 p.u., electrical fre-
quency of 50 Hz, and sampling frequency of 10 kHz. The signals were randomly generated
for each test within their mathematical constraints.



Energies 2021, 14, 1238 4 of 18

Table 1. Mathematical equations of power quality disturbances (PQDs) [7].

Label Disturbance Class Mathematic Modeling Equation Parameter Constraints

C1 Pure sine y(t) = A sin(ωt) A = 1
C2 Sag y(t) = A[1− α(u(t− t1)− u(t− t1))] sin(ωt) 0.1 ≤ α ≤ 0.9; T ≤ t2 − t1 ≤ 9T
C3 Swell y(t) = A[1 + α(u(t− t1)− u(t− t1))] sin(ωt) 0.1 ≤ α ≤ 0.8; T ≤ t2 − t1 ≤ 9T
C4 Interruption y(t) = A[1− α(u(t− t1)− u(t− t1))] sin(ωt) 0.9 ≤ α ≤ 1; T ≤ t2 − t1 ≤ 9T
C5 Harmonic y(t) = A[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)] 0.05 ≤ α3, α5, α7 ≤ 0.15; ∑ α2

i = 1
C6 Impulsive transient y(t) = A[1− α{u(t− t1)− u(t− t1)}] sin(ωt) 0 ≤ αi ≤ 0.414;

T/20 ≤ t2 − t1 ≤ T/10
C7 Oscillatory transient y(t) = A[sin(ωt) + α−c(t−t1)/τ sin (ωt)n(t− t1)(u(t2)− u(t1))]

0.1 ≤ α ≤ 0.8; 0.5T ≤ t2 − t1 ≤ 3T;
8 ≤ τ ≤ 40ms; 300 ≤ fn ≤ 900Hz

C8 Flicker y(t) = A[1 + α f sin(βωt)] sin(ωt) 0.1 ≤ α f ≤ 0.2; 5 ≤ β ≤ 20Hz

C9 Notch y(t) = sin(ωt)− sign(sin(ωt))
×
{

∑9
n=0 K× [u(t− (t1 − 0.02n))− u(t− (t2 − 0.02n))]

} 0 ≤ t1, t2 ≤ 0.5T;
0.01T ≤ t2 − t1 ≤ 0.005T;

0.1 ≤ K ≤ 0.4

C10 Spikes y(t) = sin(ωt)− sign(sin(ωt))
×
{

∑9
n=0 K× [u(t− (t1 − 0.02n))− u(t− (t2 − 0.02n))]

} 0 ≤ t1, t2 ≤ 0.5T;
0.01T ≤ t2 − t1 ≤ 0.005T;

0.1 ≤ K ≤ 0.4

C11 Sag with harmonic y(t) = A[1− α(u(t− t1)− u(t− t1))]
[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

0.1 ≤ α ≤ 0.9; T ≤ t2 − t1 ≤ 9T;
0.05 ≤ α3, α5, α7 ≤ 0.15; ∑ α2

i = 1

C12 Swell with harmonic y(t) = A[1 + α(u(t− t1)− u(t− t1))]
[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

0.1 ≤ α ≤ 0.8; T ≤ t2 − t1 ≤ 9T;
0.05 ≤ α3, α5, α7 ≤ 0.15; ∑ α2

i = 1

C13 Interruption with harmonic y(t) = A[1− α(u(t− t1)− u(t− t1))]
[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

0.9 ≤ α ≤ 1; T ≤ t2 − t1 ≤ 9T;
0.05 ≤ α3, α5, α7 ≤ 0.15; ∑ α2

i = 1
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3. Feature Extraction

Feature extraction is the process of initializing the group of datasets as features by
reducing raw data. Figure 1 shows that the dataset of power quality signals is passed
through the WT with multi-resolution analysis (MRA) to obtain signals’ wavelet coefficients.
The statistical parameters of signals are calculated by the obtained coefficients and used for
feature vector construction. This section is organized as follows: Section 3.1 describes the
wavelet transform. Then, the MRA and the feature vector construction are explained in
Sections 3.2 and 3.3, respectively.
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3.1. Wavelet Transform

In power quality research, the WT and ST are widely known as efficient signal pro-
cessing techniques. The WT is a signal processing tool that can identify the global and
local components of signals through the wavelet function. The advantages of WT are its re-
silient time-scale representation and good conservation of time and frequency information
without resolution reduction compared to the STFT; however, the WT sometimes requires
complicated setting parameters. The ST is extended from the continuous wavelet transform,
which magnifies the referenced phase information in specific frequency bands with suitable
expanse and contraction of Gaussian window as the mother wavelet. Comparing the WT
to the ST shows that the WT indicates a simpler implementation and requires less memory
storage than ST; therefore, the WT is more suitable for the PQD classification of numerous
signal types [21–23,42]. In this work, we performed WT in PQD classification, since the
number of signal types is huge (13 types). The DWT is developed from the WT using a
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discrete set of wavelet scales. This method has been extensively performed to detect the
characteristics of signals, especially in the feature extraction of the recent PQD classification
research [21]. In this work, we performed the DWT to identify the characteristics of signals
in the feature extraction process. The expression for DWT can be written as Equation (1).

DWT(m, n) =
1√
am

0
∑
k

f (k)ψ
(
(n− kb0am

0 )

am
0

)
(1)

where am
0 is the scaling parameter representing the recurrence and the length of wavelet as

a function of the indicated frequency localization, m. b0 is the translation parameter that
collects a moving position of wavelet. The parameter n indicates the time localization. f (k)
is the sequence of discrete point of continuous-time. The ψ is called the mother wavelet.
In this paper, the fourth-order Daubechies (dB4) was used as the mother wavelet, since
it was claimed in many studies that this value is suitable for analysis of power system
transient signals and power quality signals [23,43–45].

3.2. Multi-Resolution Analysis

The theory of the MRA algorithm was introduced by S. G. Mallat in 1989 [44]. This al-
gorithm uses the scaling function and the orthogonal wavelet function to decompose and
reconstruct signals at different resolution levels. The decomposition of a time-varying
signal, f (t), can be written in terms of the scaling, ϕm,n, and the wavelet, ψm,n, as shown in
Equations (2) and (3), respectively.

ϕm,n = 2(−
m
2 )ϕ
(
2−mt− n

)
(2)

ψm,n = 2(−
m
2 )ψ
(
2−mt− n

)
(3)

Figure 2 shows that the time-varying signal is passed through a system consisting
of Low-Pass (LP) and High-Pass (HP) filters at each resolution level. After the original
time-domain signal is passed through the HP filter and downsampling afterwards, the high-
frequency components with the first detail coefficient signal (D1) are obtained. Similarly,
the low-frequency component with the first approximation coefficient signal, (A1), is
obtained after LP filtering and the original signal’s downsampling. After that, the output
of signal (A1) is decomposed to produce the second detail coefficient signal (D2) and
(A2). This procedure was performed repeatedly until the desired decomposition level was
obtained. In this work, the decomposition level was set to be eight levels, since this value
results in the appropriate frequency range of each decomposed level for characterizing the
disturbances of the focused power quality signals [18]. Then, the feature vector of the PDQ
signals, F(k), can be written as Equation (4).

F(k) = [ D1 D2 D3 D4 D5 D6 D7 D8 A8 ] (4)

3.3. Feature Vector Construction

When the PQD signals are passed to the MRA process, nine signal characteristics
are obtained through the statistical parameters’ signal features. In this work, the eight
features included the energy (E), entropy (Ent), standard deviation (σ), mean value (µ),
kurtosis (KT), skewness (SK), root-mean square (RMS), and range (RG). The statistical
equation for each feature is given in Table 2, where i, j = 1, 2, 3, . . . , l are the number
of wavelet decompositions in level l, and N represents the number of coefficients in
each decomposed data. X is the signal obtained from eight detail signals (D1, D2, . . . , D8)
and one approximate signal (A8). The total feature of coefficients is 72. The feature
selection algorithm selects the best nine statistical parameters that can provide the highest
classification accuracy. This quantity of selected features corresponds to the number of
obtained signal coefficients. Then, the feature vector of each statistical parameter was
created, as shown in Table 3. Since the feature vector’s magnitude might be obtained in
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highly different scales, the feature vectors were normalized before entering the classifier, as
expressed in Equation (5).Energies 2021, 14, x FOR PEER REVIEW 6 of 18 
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Zi =
Fi − Fmin

Fmax − Fmin
(5)

where Zi is the normalized data, Fi is feature vector, Fmin and Fmax are the minimum and
maximum value of the feature vectors, respectively. Then, the overall feature set is given as
Equation (6).

Feature = [ F1 F2 F3 F4 F5 F6 F7 F8 ] (6)

Table 2. Statistical parameter equations.

Parameter Statistical Equation Parameter Statistical Equation

Energy Ei = ∑N
j=1

(∣∣Xl j
∣∣2) Kurtosis KTi =

E(Xl j−µl )
4

σ4
l

Entropy Enti = −∑N
j=1

{
X2

l j log X2
l j

}
Skewness SKi =

E(Xl j−µl )
3

σ3
l

Standard deviation
(S.D.) σi =

(
1

n−1 ∑N
j=1

{(
Xl j − µl

)2
}) 1

2 RMS RMSi =
(

1
n ∑N

j=1
(
Xl j
)2
) 1

2

Mean µi =
1
n ∑N

j=1
(
Xl j
)

Range RGi = Max
(
Xl j
)
−Min

(
Xl j
)

Table 3. Feature vectors created from statistical parameters.

Feature Vector

F1 = [ ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8 EA8 ]
F2 = [ EntD1 EntD2 EntD3 EntD4 EntD5 EntD6 EntD7 EntD8 EntA8 ]

F3 = [ σD1 σD2 σD3 σD4 σD5 σD6 σD7 σD8 σA8 ]
F4 = [ µD1 µD2 µD3 µD4 µD5 µD6 µD7 µD8 µA8 ]

F5 = [ KTD1 KTD2 KTD3 KTD4 KTD5 KTD6 KTD7 KTD8 KTA8 ]
F6 = [ SKD1 SKD2 SKD3 SKD4 SKD5 SKD6 SKD7 SKD8 SKA8 ]

F7 = [ RMSD1 RMSD2 RMSD3 RMSD4 RMSD5 RMSD6 RMSD7 RMSD8 RMSA8 ]
F8 = [ RGD1 RGD2 RGD3 RGD4 RGD5 RGD6 RGD7 RGD8 RGA8 ]

4. Probabilistic Neural Network for PQD Classification as a Classifier

To classify the type of power quality signals, the optimally selected features from the
feature extraction obtained in Section 3 were passed through the classifier based on the
PNN. Then, the dataset was trained and was used to classify the types of power quality
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signals, as shown in the flowchart of Figure 1. The PNN is one type of neural network that
has been widely used as the classifier in PQD classification. It operates the neural network
through the probabilistic model based on the Bayesian classifier for a pattern recognition
system [46]. The main advantage of PNN is that its linear learning algorithms are capable
of reaching similar results to the nonlinear learning algorithms, while conserving high
accuracy. A simple implementation of PNN is also widely known for its distinctive
merit, since the number of hidden layers and weights of the network are automatically
defined by the network itself through the spread constant. In the literature, it has been
widely shown that PNN is a highly capable tool for solving several types of classification
problems [23,47–49]. Figure 3 shows that the PNN system comprises three layers: The input
layer, hidden layer, and output layer. It is a radial network based on the Bayes strategy
and the Parzen window. The initial weight value of each node is automatically initialized.
The input data set are classified according to the distribution value or probability density
function, fk(X), as given in Equation (7).

fk(X) =
1

Nk

Nk

∑
j=1

exp

(
−
‖X− Xkj‖

2σ2

)
(7)

where X represents the input vector, σ is the standard deviation value, which is generally
known as the spread constant or smoothing parameter, N is the number of clusters, j is
the number of output layers, k is the amount of training data, and the ‖X− Xkj‖ term
represents the Euclidean distance between X and Xkj. The probability density function
is utilized to obtain the output vector of the hidden layer of PNN, Hh, as written in
Equation (8).

Hh = exp

−∑i

(
Xi −Wxh

ih

)2

2σ2

 (8)

where Wxh
ih represents the connection weight between the input layers and the hidden layer,

i is the number of input layers and h is the number of hidden layers. The network of PNN,
net, can be calculated as Equation (9). Each pattern unit contributing to a signal has the same
probability as its participated category unit. The test point is created by a Gaussian centered
on the associated training point. The summation of these local estimations, computed at
the corresponding category unit, provides the neural network as netj = max

k
(netk), given

in Equation (9).

netj =
1
Nj

∑
h

Why
hj Hh and Nj = ∑

h
Why

hj netj = max
k

(netk) then Yj = 1 else Yj = 0 (9)

where Why
hj is the connection weight between the output layers Y and the hidden layers.

The max
k

(netk) operation provides the desired category of the test point.
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5. Proposed Adaptive ABC-PSO Algorithm as Optimal Feature Selection

The literature shows that the feature selection process is an important procedure in
PQD classification, since this process can significantly impact the classification system’s
performance indicators, i.e., the quantity of feature data obtained from feature extraction,
processing time, and accuracy [38–40]. Figure 1 shows that the feature selection was
performed to select the feature extracting data’s optimal features before it was passed
through the classifier. We expected that the classification system could provide higher
accuracy with a much shorter computational time based on the optimally selected data.
We aimed to improve PQD classification performance by using a combination of adaptive
ABC and PSO algorithms as a feature selection algorithm. This combination was motivated
by the fact that the ABC algorithm can provide a high-quality solution, but its convergence
rate is low; therefore, the fast convergence rate of the PSO algorithm might compensate
for the drawbacks of the ABC algorithm. The proposed technique was also adapted to the
ABC-PSO combination to improve the searchability of the ABC. Details of the proposed
algorithm are described in the following sub-sections.

5.1. Artificial Bee Colony

The ABC is one of the swarm intelligent algorithms based on an emulation of honey
bees seeking nectar [50,51]. This algorithm’s outstanding merits are a high-quality solution,
good local search, and an updated solution mechanism. The type of bee grouping of the
ABC algorithm is divided into three groups: The employed bee, onlooker bee, and scout
bee. Each bee type typically finds the nectar source and exchanges the information with
others until the best nectar source is found. The ABC algorithm procedure starts from the
employed bee randomly searching the position of the best nectar and then memorizing
the obtained position, as written in Equation (10). In this work, it is noted that the feature
vector represents the position of the nectar.

vij = xij + ϕij

(
xij − xkj

)
(10)

where xij is the feature vector, vij is an updated vector according to the memorized feature
vector, i is the iteration number, j is the feature dimension, k is a random feature at each
iteration, and ϕ is a random value between −1 and 1. The feature vector is updated by the
onlooker bee, based on the result previously memorized by the employed bee. If the result
obtained by the onlooker bee is higher than that of the observation bee, the existing result
will be replaced by the updated feature data position. Then, all feature vectors collected
by the employed bee are analyzed by the onlooker bee. The quality of the solution called
fitness value, f it(θi), is calculated from the fitness function, fi, of the classifier, as given in
Equation (11).

f iti =
1

1 + fi
(11)

The probability of the highest solution related to the PQD classification accuracy, pi,
can be calculated using Equation (12).

pi =
f it(θi)

∑S
i=1 f it(θi)

(12)

where θi is the accuracy of the feature vector and S is the number of food souces, which is
equal to the number of employed bees. Then, the probability of the fitness having the best
solution is selected. An updated food position is calculated using Equation (13).

vij = zij + φij

(
zij − zkj

)
(13)

where v is an updated feature vector, k is a random value, φ is a random number between
0 and 1 in which the neighbor food sources are around z. The scout bee randomly searches
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the solution within their limited boundary, which is defined as “Limit”. If the iteration
of the maximum cycle number and the fitness value of classification accuracy cannot be
improved, it will be abandoned, and then the employed bee would turn into a scout bee.
The expression for finding the new solution of the scout bee’s feature vector is given as
Equation (14).

zj
i = zj

min + rand(0, 1)
(

zj
max − zj

min

)
(14)

where zj
i is the abandoned feature vector, j is the feature dimension, and i is the itera-

tion number.

5.2. Particle Swarm Optimization

The PSO algorithm is a kind of swarm intelligence technique that emulates a swarm’s
foraging behavior, for example, birds, fish, ants, or bees [52]. The advantages of this
algorithm are its simple implementation, good global optima, fast convergence, and short
computational time [53]. The mechanism of the PSO algorithm is that the particles ran-
domly move to find the best solution, and then the previous and the updated best positions
throughout the maximum iteration number are recorded. The velocity of particles is
updated using Equation (15), whereas the updated position of particles is expressed in
Equation (16).

Vi−1
j = wVi

j + c1r1(Pi
j − Xi

j) + c2r2(Pi
g − Xi

j) (15)

Xi−1
j = Xi

j + Vi+1
j (16)

where j is the feature dimension, V is the speed of feature dimension, X is the position
of feature dimension, i is the iteration number, w is the initial factor, c1 and c2 are the
acceleration constants, r1 and r2 are random numbers between 0 to 1, P is the best feature
dimension position identified during its past iteration, and Pg is the best global feature
dimension position obtained from overall iterations.

5.3. The Proposed Adaptive ABC-PSO Algorithm

As previously mentioned, we use the distinctive property of the PSO algorithm to com-
pensate for the convergence weakness of the ABC algorithm (described in Section 5.1), aiming
to improve the performance of PQD classification. An adaptive technique was also applied to
the ABC algorithm to improve the searching resolution of the overall algorithm. The procedure
to implement the adaptive ABC-PSO algorithm as the feature selection algorithm of PQD
classification is shown in the pseudocode of Figure 4 and is detailed as follows.

Step 1: Initialize the control parameters of PSO and ABC algorithms, including the
initial speed, position, and number of particles of the PSO algorithm.

Step 2: Determine the solution of the PSO algorithm. All feature vectors are compared
in order to select the one having the best solution (highest classification accuracy). Af-
ter that, calculate the fitness value of the selected optimal feature vector. In this work, the
accuracy of identifying each type of PQD is defined as a ratio of the numbers of correctly
classified signal types to the numbers of test signals. The overall accuracy (classification
accuracy) is defined as the average accuracy of all signal types.

Step 3: The highest classification accuracy obtained from the PSO algorithm is adopted
as the initial solution of the ABC algorithm. Then, obtain a new vector feature by using the
adaptive ABC, as in the following details. In this work, we enhanced the exploration of
the ABC-PSO algorithm by enlarging the employed bee’s search space, while finding the
new position of best nectar. This process aims to achieve a better solution that could be
located near the previously obtained solution; therefore, the improved random value of the
proposed self-adaptive bee colony technique is redefined based on the random value of the
previous iteration, as given in Equation (17).
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ϕk
ij = ϕk−1

ij − C(wmax − wmin)

Cmax
(17)

where ϕk
ij is a random value obtained from the previous iteration. wmax and wmin are the

initial and the final weights, respectively, C is the current iteration of the adaptive process,
Cmax is the number of iterations of the adaptive process, j is the feature dimension, i is
the iteration number of the employed bee phase, and k is the iteration of the updated
random value. Then, one randomly selected element of the feature vector is replaced by the
improved random value to generate the updated vector feature, as written in Equation (18).

vij = xij + ϕk
ij

(
xij − xkj

)
(18)

Next, calculate the fitness value of the classification accuracy of each feature vector.
If the result obtained by the adaptive ABC algorithm is better than that of the PSO algorithm,
the PSO algorithm’s optimal feature is replaced by that of the adaptive ABC algorithm.

Step 4: The onlooker bee selects a feature vector according to the quantity of the
optimal feature following the probability function, shown in Equation (12).

Step 5: The scout bee randomly generates the feature vector of the next iteration using
Equation (13) and then evaluates the optimal feature.

Step 6: The optimal feature vector is selected, while the fitness value is collected and
used as the input data of the feature selection.

6. Results and Discussion

The PQD classification system’s performance based on the proposed adaptive ABC-
PSO as a feature selection algorithm was evaluated under the 13 power quality signal
types. The feature extraction of the presented classification system was based on the DWT,
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while the PNN was performed as the classifier. The simulations were based on a MATLAB
program. The mechanism of the adaptive ABC-PSO as optimal feature selection algorithm
is described in detail in Section 6.1. The classification performance is then demonstrated in
Section 6.2; classification under a noisy environment is shown in Section 6.3. A convergence
rate profile is presented in Section 6.4. The classification performance based on the real data
of the distribution network is discussed in Section 6.5. Lastly, a performance comparison
between the presented classification system and the other existing methods is indicated in
Section 6.6.

6.1. Mechanism of the Proposed Adaptive ABC-PSO Algorithm as Optimal Feature Selection

Table 4 shows all 72 features obtained from the DWT feature extraction through
the MRA coefficients. The best statistical parameters of each wavelet coefficient that
could provide the highest classification accuracy were selected by the adaptive ABC-PSO
algorithm, as shown by the squares in Table 4. The quantity of optimal selected features
corresponded to the number of signal coefficients obtained from feature extraction. Further
details of the classification accuracy as a function of iteration number, spread constant,
and selected features are reported in Table 5. It was found that the highest classification
accuracy of 99.31% was achieved at iteration 728. The nine selected optimal statistical
parameters were 5, 16, 18, 32, 40, 41,52, 58, and 68; the related spread constant is indicated.

Table 4. The feature vector and the selected features by the adaptive ABC-PSO algorithm.
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731 6       16 18 26 40 48 49 58 66 0.0009286 98.92 

732 5         16 17 29 37 41 54 64 67 0.0015500 98.00 

Table 5. The classification accuracy and the selected features by the adaptive ABC-PSO algorithm as
a function of iteration number and spread constant.
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6.2. Accuracy of the PQD Classification Using the Adaptive ABC-PSO Algorithm as Optimal
Feature Selection

The accuracy of the PQD classification both with and without using the proposed
adaptive ABC-PSO algorithm as optimal feature selection, based on 100 tests, is shown in
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Table 6. Table 6 shows that the classification accuracy based on a single statistical parameter
is about 87.38–96.84%, which falls in the low-range scale of classification compared to the
other existing techniques. Thus, multiple statistical parameters are typically required in the
PQD classification to improve classification accuracy. Results also show that using three
and five statistical parameters could provide an overall accuracy of 97.54% and 98.15%,
respectively. Meanwhile, a classification accuracy of 98.54% was obtained by using all
statistical parameters. By comparing the overall accuracy achieved by the PNN classifier
excluding feature selection with the existed literature, we found that our classification accu-
racy of 98.54% are higher than that shown in Reference [11] (96.11%), Reference [36] (94.4%),
Reference [40] (94.4%), Reference [49] (98.42%), Reference [51] (97.6%), Reference [52] (98%),
and Reference [53] (98.08%). It was found that an overall accuracy of up to 99.31% was
achieved when nine optimally selected features were used in the feature selection process.
In this case, it is also unnecessary to use all features in the classification process, which
significantly reduces computational time; therefore, the proposed adaptive ABC-PSO as
optimal feature selection algorithm indicates high performance in PQD classification.

6.3. Classification Accuracy under a Noisy Environment

Since a noisy situation is typical in a practical electrical distribution system, the
presented PQD classification system’s performance under a noisy environment was also
tested. The white noise added signals with a signal-to-noise ratio of 10, 20, 30, 40, and 50 dB
were uniformly applied to the power quality signals. Table 7 shows that the classification
system using the optimal feature selection algorithm indicates a higher durability to the
noise than that without using optimal feature selection and using ABC and PSO; therefore,
the proposed PQD classification system could operate well in a noisy environment.

6.4. Convergence Rate

As mentioned above, we aimed to adapt the fast convergence rate property of the PSO
to compensate for the low convergence rate of the ABC. Figure 5 compares the convergence
rate of the PSO, ABC, and adaptive ABC-PSO algorithms. In this work, the convergence rate
is determined based on the iteration in which the best solution is reached. It is noted that the
number of iterations must be sufficient to cover the steady-state of solutions. As expected,
the PSO algorithm has the highest convergence rate to reach the best solution (iteration 84);
meanwhile, the ABC algorithm has a worse convergence rate than others (iteration 1556),
as shown in Table 8. Remarkably, the results indicate that the adaptive ABC-PSO can reach
the highest overall accuracy at iteration 728, showing that the strength of PSO can greatly
enhance the weakness of the ABC. Nevertheless, the adaptive ABC-PSO convergence rate
is still lower than the PSO algorithm because it contains the ABC algorithm. Although we
attempted to improve the convergence rate of the proposed algorithm, it must be kept in
mind that an overall accuracy has the highest priority in PQD classification; therefore, it is
clear that the ABC-PSO algorithm indicates the highest performance in this case. Hence,
the feature selection based on the adaptive ABC-PSO algorithm not only provides high
classification accuracy, but the best solution can also be found within a shorter time.
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Table 6. Classification accuracy.

Type of
PQD

Accuracy (%)

One Type
(Energy)

One Type
(Entropy)

One Type
(S.D.)

Three
Types

(Energy +
Entropy +

S.D.)

Five
Types

(Energy +
Entropy +

S.D. +
Mean +

Kurtosis)

All Types
Optimal
Adaptive
ABC-PSO

Pure sine 100 100 100 100 100 100 100
Sag 93 77 80 96 96 97 98

Swell 93 69 76 94 98 99 98
Interruption 100 94 87 100 100 100 100
Harmonic 100 79 100 99 100 100 100
Sag with
harmonic 92 71 81 95 94 89 98

Swell with
harmonic 89 72 75 91 95 98 100

Interruption
with

harmonic
98 92 93 99 98 100 99

Flicker 98 92 96 98 99 99 99
Oscillatory
transient 97 95 81 96 96 99 99

Impulsive
transient 99 95 98 100 100 100 100

Periodic
notch 100 100 100 100 100 100 100

Spike 100 100 100 100 100 100 100
Overall 96.84 87.38 89.77 97.54 98.15 98.54 99.31

Table 7. Classification accuracy under a noisy environment.

Magnitude of
Noise

Classification Accuracy (%)

All Features

Optimal
Selected

Features by
PSO

Optimal
Selected

Features by
ABC

Optimal
Selected

Features by
ABC-PSO

10 dB 77.54 73.97 76.00 79.62
20 dB 89.66 88.00 88.68 88.68
30 dB 95.57 95.14 95.38 95.45
40 dB 96.92 96.12 96.31 97.23
50 dB 98.28 97.91 98.28 98.40
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6.5. Classification Performance Based on the Real Data of a Distribution Network

Table 9 shows the classification accuracy based on the real dataset of a distribution
network in China, Singapore, South Africa, and Sweden. The dataset was adopted from
PQube equipment, an instrument for power quality monitoring and real-time electrical
signal phenomena recoding [54]. The classification accuracy was based on the optimally
selected features. The classification system based on the proposed adaptive ABC-PSO
algorithm as feature selection demonstrates the classification accuracy of 99.2%, which
is consistent with the accuracy, shown in Table 6; therefore, the proposed algorithm not
only provides high accuracy to classify the standard waveforms of PQD, but it can also
accurately classify the PDQs in a real distribution system.

Table 9. Classification accuracy based on a real dataset of a distribution network.

Type of PQDs Test Number
Classification Accuracy by

the Proposed Adaptive
ABC-PSO

Pure sine 100 99
Sag 100 98

Swell 100 100
Interruption 100 99
Harmonic 100 100

Overall 99.2

6.6. Performance Comparison to the Existing PQD Classification Systems

The PQD classification performance using the adaptive ABC-PSO algorithm as op-
timal feature selection was compared to the other existing methods, as shown in Table
10. The overall accuracy of each method was adopted from the mentioned references.
The adaptive ABC-PSO algorithm could provide high classification accuracy of 99.31%
for identifying 13 types of power quality signals. The classification accuracy achieved
by the proposed method is higher than most of the existing methods and is classified



Energies 2021, 14, 1238 16 of 18

as a very-high precision range. Although our proposed algorithm has a slightly lower
accuracy than that shown in Reference [52] under the same PQD signal types, the proposed
algorithm’s convergence rate could be much better, due to the use of their GA selection al-
gorithm; therefore, the proposed optimal feature selection algorithm is suitable for practical
PQD classification.

Table 10. A comparison of classification accuracy with previous studies.

Reference Number of
PQD Types

Feature
Extraction

Type

Classification
Technique

Optimal Feature
Selection

Algorithm

Overall
Accuracy

(%)

[40] 5 DWT least squares SVM k-means+Apriori
algorithm 98.88

[55] 9 ST Fuzzy C-means Adaptive PSO 96.33

[14] 9 ST+VMD support vector
machine (SVM) SFS 99.66

[41] 10 DWT extreme learning
machine (ELM) PSO 97.60

[56] 13 VMD one-versus-rest
SVM

Permutation
Entropy+Fisher

Score
97.6

[57] 13 hyperbolic
S-transform Decision tree GA 99.5

[58] 15 VMD
polynomial fast
reduced kernel

ELM
FDA 98.82

This
work 13 WT PNN Adaptive

ABC-PSO 99.31

7. Conclusions

In this article, a high-accuracy PQD classification, based on the adaptive ABC-PSO
algorithm as optimal feature selection, was introduced to classify the 13 types of power
quality signals. The feature extraction was based on the DWT, while the PNN performed
as the classifier. The nine optimal features were selected by the optimal feature selection
algorithm. The results show that the optimal features’ classification accuracy was higher
than that based on other numerical features. The highest classification accuracy of 99.31%
could be achieved by using the optimally selected features. The proposed PQD classification
system also indicated a high performance under a noisy environment. In addition, the
classification accuracy, based on the real dataset of a distribution network, was consistent
with that based on the standard waveforms. When comparing the performance of the
presented PQD classification system to previous studies, the PQD classification accuracy
using the adaptive ABC-PSO as optimal feature selection algorithm is classified as the high
precision range; therefore, the adaptive ABC algorithm is suitable for implementation of
PQD classification in electrical distribution systems.
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40. Erişti, H.; Yıldırım, Ö.; Erişti, B.; Demir, Y. Optimal feature selection for classification of the power quality events using wavelet
transform and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2013, 49, 95–103. [CrossRef]

41. Ahila, R.; Sadasivam, V.; Manimala, K. An integrated PSO for parameter determination and feature selection of ELM and its
application in classification of power system disturbances. Appl. Soft Comput. 2015, 32, 23–37. [CrossRef]

42. Ucar, F.; Alcin, O.F.; Dandil, B.; Ata, F. Power quality event detection using a fast extreme learning machine. Energies 2018, 11, 145.
[CrossRef]

43. Hajian, M.; Foroud, A.A. A new hybrid pattern recognition scheme for automatic discrimination of power quality disturbances.
Measurement 2014, 51, 265–280. [CrossRef]

44. Radil, T.; Ramos, P.M.; Janeiro, F.M.; Serra, A.C. PQ monitoring system for real-time detection and classification of disturbances
in a single-phase power system. IEEE Trans. Instrum. Meas. 2008, 57, 1725–1733. [CrossRef]

45. Ray, P.K.; Kishor, N.; Mohanty, S.R. Islanding and power quality disturbance detection in grid-connected hybrid power system
using wavelet and S-transform. IEEE Trans. Smart Grid 2012, 3, 1082–1094. [CrossRef]

46. Huang, N.; Xu, D.; Liu, X.; Lin, L. Power quality disturbances classification based on S-transform and probabilistic neural network.
Neurocomputing 2012, 98, 12–23. [CrossRef]

47. Mohanty, S.R.; Ray, P.K.; Kishor, N.; Panigrahi, B. Classification of disturbances in hybrid DG system using modular PNN and
SVM. Int. J. Electr. Power Energy Syst. 2013, 44, 764–777. [CrossRef]

48. Sharma, R.; Pachori, R.B.; Acharya, U.R. An integrated index for the identification of focal electroencephalogram signals using
discrete wavelet transform and entropy measures. Entropy 2015, 17, 5218–5240. [CrossRef]

49. Beritelli, F.; Capizzi, G.; Sciuto, G.L.; Napoli, C.; Scaglione, F. Rainfall estimation based on the intensity of the received signal in a
LTE/4G Mobile terminal by using a probabilistic neural network. IEEE Access 2018, 6, 30865–30873. [CrossRef]

50. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06; Erciyes University: Talas,
Turkey, 2005.

51. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)
algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

52. Karaboga, D.; Akay, B. A survey: Algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 2009, 31, 61–85. [CrossRef]
53. Chen, J.-F.; Do, Q.H.; Hsieh, H.-N. Training artificial neural networks by a hybrid PSO-CS algorithm. Algorithms 2015, 8, 292–308.

[CrossRef]
54. Available online: http://map.pqube.com/ (accessed on 10 February 2021).
55. Biswal, B.; Dash, P.K.; Panigrahi, B.K. Power quality disturbance classification using fuzzy C-means algorithm and adaptive

particle swarm optimization. IEEE Trans. Ind. Electron. 2009, 56, 212–220. [CrossRef]
56. Fu, L.; Zhu, T.; Pan, G.; Chen, S.; Zhong, Q.; Wei, Y. Power quality disturbance recognition using VMD-based feature extraction

and heuristic feature selection. Appl. Sci. 2019, 9, 4901. [CrossRef]
57. Ray, P.K.; Mohanty, S.R.; Kishor, N.; Catalao, J.P.S. Optimal feature and decision tree-based classification of power quality

disturbances in distributed generation systems. IEEE Trans. Sustain. Energy 2014, 5, 200–208. [CrossRef]
58. Chakravorti, T.; Dash, P.K. Multiclass power quality events classification using variational mode decomposition with fast reduced

kernel extreme learning machine-based feature selection. IET Sci. Meas. Technol. 2018, 12, 106–117. [CrossRef]

http://doi.org/10.1016/j.eswa.2007.05.011
http://doi.org/10.1016/j.epsr.2010.07.001
http://doi.org/10.1016/j.eswa.2011.04.032
http://doi.org/10.3390/en13112761
http://doi.org/10.3390/en8010549
http://doi.org/10.1109/TPWRD.2007.911125
http://doi.org/10.1109/TPWRD.2007.899522
http://doi.org/10.1016/j.epsr.2006.12.011
http://doi.org/10.1109/TII.2017.2773475
http://doi.org/10.3390/en9110927
http://doi.org/10.1016/j.ijepes.2012.12.018
http://doi.org/10.1016/j.asoc.2015.03.036
http://doi.org/10.3390/en11010145
http://doi.org/10.1016/j.measurement.2014.02.017
http://doi.org/10.1109/TIM.2008.925345
http://doi.org/10.1109/TSG.2012.2197642
http://doi.org/10.1016/j.neucom.2011.06.041
http://doi.org/10.1016/j.ijepes.2012.08.020
http://doi.org/10.3390/e17085218
http://doi.org/10.1109/ACCESS.2018.2839699
http://doi.org/10.1007/s10898-007-9149-x
http://doi.org/10.1007/s10462-009-9127-4
http://doi.org/10.3390/a8020292
http://map.pqube.com/
http://doi.org/10.1109/TIE.2008.928111
http://doi.org/10.3390/app9224901
http://doi.org/10.1109/TSTE.2013.2278865
http://doi.org/10.1049/iet-smt.2017.0123

	Introduction 
	Power Quality Disturbances 
	Feature Extraction 
	Wavelet Transform 
	Multi-Resolution Analysis 
	Feature Vector Construction 

	Probabilistic Neural Network for PQD Classification as a Classifier 
	Proposed Adaptive ABC-PSO Algorithm as Optimal Feature Selection 
	Artificial Bee Colony 
	Particle Swarm Optimization 
	The Proposed Adaptive ABC-PSO Algorithm 

	Results and Discussion 
	Mechanism of the Proposed Adaptive ABC-PSO Algorithm as Optimal Feature Selection 
	Accuracy of the PQD Classification Using the Adaptive ABC-PSO Algorithm as Optimal Feature Selection 
	Classification Accuracy under a Noisy Environment 
	Convergence Rate 
	Classification Performance Based on the Real Data of a Distribution Network 
	Performance Comparison to the Existing PQD Classification Systems 

	Conclusions 
	References

