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Abstract: Constructing the power curve of a power generation facility integrated with complex and
large-scale industrial processes is a difficult task but can be accomplished using Industry 4.0 data
analytics tools. This research attempts to construct the data-driven power curve of the generator
installed at a 660 MW power plant by incorporating artificial intelligence (AI)-based modeling tools.
The power produced from the generator is modeled by an artificial neural network (ANN)—a reliable
data analytical technique of deep learning. Similarly, the R2.ai application, which belongs to the
automated machine learning (AutoML) platform, is employed to show the alternative modeling
methods in using the AI approach. Comparatively, the ANN performed well in the external validation
test and was deployed to construct the generator’s power curve. Monte Carlo experiments comprising
the power plant’s thermo-electric operating parameters and the Gaussian noise are simulated with
the ANN, and thus the power curve of the generator is constructed with a 95% confidence interval.
The performance curves of industrial systems and machinery based on their operational data can be
constructed using ANNs, and the decisions driven by these performance curves could contribute to
the Industry 4.0 vision of effective operation management.
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1. Introduction

Industry 4.0 is generally taken as the alternative of the fourth industrial revolution
and is defined as smart networking of machines and industrial operations. The Internet
of Things, Big Data, sensors, artificial intelligence (AI) and augmented reality, etc., are the
key technologies of Industry 4.0 [1] and are deployed to develop smart and connected
production systems. Energy efficiency is the key element of Industry 4.0, and digital
energy transformation goals promise energy savings and process optimization of the
power systems. In this regard, the data-driven optimum control strategies and construction
of custom-built performance profiles of industrial machinery are the promising paradigm
shift for achieving operational excellence and energy efficiency for the energy systems [2–4].

Mathematical models are constructed based on the simplified assumptions and the
governing laws’ limitations [5]. Constructing an analytical model for complex and large-
scale systems is difficult as it requires deriving the mathematical equations for a large
number of systems’ components. Moreover, these modeling techniques cannot effectively
mine the complex interactions and nonlinear interdependencies present among a physical
system’s large number of control variables. As a result, the mathematical models express
only a certain degree of agreement with the system’s actual response and cannot be
deployed to develop the complex industrial systems’ accurate performance curves. On
top of this, these models’ shortcomings in terms of including valuable operation data for
deriving the optimum control strategies have further limited their usage in real-world
industrial applications [5–11].

On the other hand, the real operational data, having the featured information and
operational details of industrial systems, can be used to construct the effective data-driven
models and performance curves of industrial equipment by the advanced AI techniques.
Unlike mathematical modeling which requires detailed process analyses, a few systems’
representative operation parameters are needed to construct the AI models [5,11]. The AI
models present excellent predictability and are also deployed as the operation excellence
tools for industrial operations [3,10]. In this regard, the AI techniques, including artificial
neural networks (ANNs) and automated machine learning (AutoML) platforms, are well
suited for improving the process operation management, material, energy savings, failure
diagnosis, and, ultimately, the efficient industrial practices [12–14].

Use of an ANN is a proven data analytic technique widely used for its well established
ability and efficacy to formulate data-driven characteristics, operating strategies, and plan-
ning [15]. ANNs utilize large-scale data for their construction with higher computational
performances and small memory storage [15,16]. ANNs’ remarkable features make them
suitable for industrial operations to be effectively stimulated for enhancing the energy-
efficient process control of industries. [2,3,7,15,17,18]. Recently, AutoML techniques have
been popular in various applications, as they help develop high-quality AI models. Several
machine learning-based models are trained from the toolbox, and the model’s performance
is compared. The best performing model is retained and deployed for real-life applications.

In recent times, the status of AI applications in various industrial sectors has been
reported. It is found that the current scientific focus on deploying AI for modeling and
optimization purposes covers manufacturing and petrochemical industries [19,20]. The
other studies focusing on the inclusion of Industry 4.0 technologies in industrial systems
have identified the data enabling aspect of Industry 4.0. The value-creating and Industry
4.0-driven data analytics centered on the performance enhancement and efficiency im-
provement of complex industrial systems are scarcely reported [21,22]. However, potential
applications of AI are anticipated for energy and electrical power systems’ optimization,
management, and control [21,23].

Recently, AI techniques have been deployed to accurately capture the characteristic re-
sponses of many components of a supercritical steam power plant and combine cycle power
plants, including the flue gas network, water and steam network, and turbine units [24–26].
Industry 4.0 data analytics-driven parametric responses on the key performance indicators
have been plotted for a 660 MW power plant in other studies. The useful operating regions
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of critically controlled parameters have been identified. Moreover, the savings in energy
spent are achieved without compromising the power plant operation [2,3].

Similarly, various studies have attempted to construct the data-driven power curve
of power systems. A power curve of offshore wind turbines has been made by utilizing
the synthetic data reported in the literature. However, a further improvement in the
performance curve is suggested by including many system’ operational parameters [27].
The other studies have reported a better version of data-driven power curves developed
for wind turbines. Power curves are constructed by fueling the large volume of operational
data of wind turbines and, after that, using them for monitoring, fault detection, and
conditional monitoring purposes [28,29]. Likewise, the data-driven performance curves of
a hydroelectric power plant are utilized to improve the power facility [30]. However, the
generator’s operation data-based performance curve incorporating sizeable operational
data and an appropriate number of operating parameters of the power facility are not
reported in the literature.

In this paper, the operation data-driven power curve of the generator installed at
a 660 MW supercritical coal power plant is constructed. The modeling tools of AI such
as ANN and AutoML are deployed for the task. Active loads of 330 and 660 MW are
the two extremes of the power plant’s active load, whereas the power factor is kept from
0.85 to 1.0 (lagging phase) and 0.95 to 1.0 (leading phase). Under these operating states,
the generator’s power, which is the vectorial sum of resistive power and reactive power,
is changed from 355 to 715 MVA. The operational data containing almost all the power
plant’s operating states is retrieved from the power plant’s Supervisory Information System
(SIS). Practical ANN and AutoML approaches are employed for a principal objective—i.e.,
to construct the operation data-based power curve of the generator power with a 95%
confidence interval. The construction of a data-driven power curve against the power
plant’s operating parameters’ influence is the main novelty reported in this paper. The
performance profiles of equipment or systems constructed by AI modeling tools can be
potentially valuable for developing the custom-built optimum operational control strategies
for the industrial systems. In contrast with analytical solutions, the data-driven control
strategies governed by the operational constraints of complex processes can effectively help
achieve higher energy efficiency and the industrial systems’ energy economy. Therefore,
it would realize Industry 4.0 ideas in industrial applications and contribute to the United
Nations Sustainable Development Goals 2030.

The next section describes the applied materials and methods; particularly, it presents
an overview of a pulverized coal plant operation and the generator. Moreover, the method-
ology applied within the carried out research is described. The third section concerns
data acquisition and processing as well as visualization. The construction of AI models
and validation are presented in Section 4. This section is divided into two subsections
concerning the development of ANN and AutoML models. The results and discussion
section presents the selection of the best AI model and construction of the power curve of
the generator. Finally, the conclusions are discussed in the last section.

2. Materials and Methods

The applied materials and methods, particularly an overview of a pulverized coal
plant operation, the generator as well as the methodology used within the confines of the
carried out research, are described in this section.

2.1. Overview of a Pulverized Coal Power Plant Operation and the Generator

The schematic flow diagram of a pulverized coal-fired power plant is presented in
Figure 1. The power plant’s operation can be explained in two cycles—i.e., air–flue gas
cycle and steam and the water cycle.

In the first cycle, primary air from the primary air fan (PAF) is supplied to the air
preheater (APH) and is heated by the flue gas exiting the boiler. From the APH, primary
air is supplied to the coal mill for transporting the pulverized coal to the boiler furnace.
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Similarly, secondary air from the forced draft fan (FDF) is heated in APH and supplied to
the furnace to assist coal combustion. Moreover, secondary air is supplied in multiple boiler
stages to decrease NOx formation in the combustion zone. The flue gas produced from fuel
combustion exchanges heat to the heating surfaces. Upon leaving from the boiler’s tail, flue
gas transmits the heat to a low-temperature economizer (LT Economizer). Then, flue gas is
fed into an electrostatic precipitator (ESP) for the removal of ash carried by it. An induced
draft fan (IDF) essentially maintains negative pressure in the boiler. Additionally, IDF
directs the flue gas to the flue gas desulfurization (FGD) system, where oxides of Sulphur
(SOx) and other harmful gases are removed. Finally, flue gas is discharged to the ambient
environment from the stack.

In the second cycle, condensate water from the condenser is pressurized by a con-
densate pump, and it is passed through a low-pressure heater (LP Heater). Condensate
water in the LP heater is heated by steam extraction from the intermediate-pressure (IP)
turbine and enters the deaerator to remove dissolved gases present in it. Feedwater is
pressurized by the feedwater pump and is passed through the high-pressure heater (HP
Heater), economizer and superheater. Upon leaving the superheater, it is converted to
superheated steam. The superheated steam expands in high-pressure (HP) steam turbine
and after leaving HP turbine, is reheated in a re-heater and fed to the IP turbine. After
expanding in the IP turbine, steam is further expanded in low-pressure (LP) turbines LPA
and LPB, and enters the condenser where it is condensed to condensate water, and the
cycle continues. The steam expansion in the turbine series helps rotate the generator shaft,
and, thus, electrical power is produced.

QFSN-660-2 water-hydrogen–hydrogen steam turbine synchronous generator of
660 MW capacity is manufactured by Shanghai Electric Group Co., Ltd., for which the
rated voltage is 22 kV. SIEMENS SPPA E3000-SES530 self-shunt static excitation system
is integrated with the generator. Rated parameters for excitation voltage and excitation
current are 491 V and 4669 A, whereas no-load excitation system parameters are 150 V and
1497 A, respectively. Here in this study, the power produced by the generator was added
to the 500 kV national grid of Pakistan.
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Figure 1. Schematic diagram of coal power plant.

2.2. Methodology

In this paper, the framework developed for constructing the generator’s data-driven
power curve is presented in Figure 2. In the first step, the essential operating parameters
associated with the power generation operation of the power plant are selected. Then, the
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operational data of the selected parameters is retrieved from the data storage system. In
the next step, extensive data processing and visualization techniques are incorporated into
prepare the filtered dataset out of the extracted raw operational data. The two steps for data
acquisition, data processing, and visualization are comprehensively explained in Section 3.
Later, various AI models are constructed on the filtered data and validated as described in
Section 4. As a result, the best AI model is selected as explained in Section 5.1 and thus would
be deployed for constructing the power curve of the generator, as described in Section 5.2.

Energies 2021, 14, x FOR PEER REVIEW 5 of 19 
 

 

 

Figure 1. Schematic diagram of coal power plant. 

2.2. Methodology 
In this paper, the framework developed for constructing the generator’s data-driven 

power curve is presented in Figure 2. In the first step, the essential operating parameters 
associated with the power generation operation of the power plant are selected. Then, the 
operational data of the selected parameters is retrieved from the data storage system. In 
the next step, extensive data processing and visualization techniques are incorporated into 
prepare the filtered dataset out of the extracted raw operational data. The two steps for 
data acquisition, data processing, and visualization are comprehensively explained in Sec-
tion 3. Later, various AI models are constructed on the filtered data and validated as de-
scribed in Section 4. As a result, the best AI model is selected as explained in Section 5.1 
and thus would be deployed for constructing the power curve of the generator, as de-
scribed in Section 5.2. 

 

Figure 2. Framework for constructing the data-driven power curve of the generator. 

3. Data Acquisition, Data Processing, and Visualization 

Figure 2. Framework for constructing the data-driven power curve of the generator.

3. Data Acquisition, Data Processing, and Visualization

In this work, twenty-four operating parameters were selected to model the generator
power and, consequently, construct the power curve of the generator installed at the power
plant. All of the parameters were critically controlled to ensure smooth power production
and were decided after discussion with experienced operation managers of the power
plant and the literature survey [2,5,11,31,32]. The parameters enlist the boiler, turbine, and
generator operational parameters and are named as thermo-electric operating parameters
in this study. It is essential to mention here that sub-bituminous coal is used at the power
plant, and the average values of different coal properties measured on the air-dried basis
are listed in Table 1.

Table 1. Properties of coal under the air-dried basis.

Properties Unit Value

Moisture % 1.80

Ash % 16.83

Volatile Matter % 24.26

Fixed Carbon % 57.10

Sulfur % 0.56

Net Calorific Value MJ/kg 24.11

State of the art and reliable sensors were installed for measuring the values of different
operation parameters of the power plant. A distributed control system driven through
these sensors was employed for the control of the processes and subsystems integrated
with the power generation operation of the power plant. The data generated by these
sensors were stored in a centralized data storage system of SIS. TPRI SIS software version
3.7.5. was used for the implementation of SIS at the power plant. It provides easy access
and retrieval of the historical operation data of the operating parameters of the power plant.
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Approximately 2560 hourly averaged observations of thermo-electric operating parameters
were retrieved from the SIS. Different power generation modes’ operational data of the
power plant were taken in the dataset. The data were subjected to removal of outliers
and recorded faulty observations of sensors before being fed for model development.
Moreover, the operating parameters’ effective operating ranges were established, which
would otherwise be inappropriate, and the models constructed on those ranges would be
inefficient [5,11].

In this study, data were initially visualized in the form of line graphs, scatterplots,
and histograms, and the identified faulty observations were eliminated from the dataset.
Here, the data cleaning of a few operating parameters is presented in Figure 3a–c. The
fluctuating and faulty observations of LT Eco water outlet temperature (LT.ECO) caused
by the sensor’s fault are represented in Figure 3a. The faulty observations of LT.ECO
have an operating range from 3 ◦C to 2024 ◦C, which is quite inappropriate and thus
were eliminated from the dataset. Similarly, the outliers present in the observations of
attemperation water flow rate and the fixed values of ambient temperature measured
due to the sensor’s fault are represented in Figure 3b,c. The faulty observations in the
two operating parameters were thus eliminated. The same practice was repeated on the
remaining thermo-electric operating parameters, and the data were further filtered to
eliminate the inconsistent and inappropriate observations. Resultantly, the dataset was
reduced to around 1900 observations after the data processing procedure and was therefore
utilized for the model development, as discussed in the next section.

Finally, the list of the thermo-electric operating parameters (1st–24th) and generator
power (25th) with their operating ranges is given in Table 2. The operating ranges of the
thermo-electric operating parameters were established after the extensive data processing
techniques and are comparable to those reported in literature studies [3,33]. Moreover, the
histograms of two important operating parameters, i.e., the main steam temperature and
excitation current, are shown in Figure 4a,b, respectively.

Table 2. Statistics of the training data of input and output variables.

Parameters Unit Min Max SD

1 Coal flow rate (Mc) t/h 129 252 45.78

2 Air flow rate (Ma) t/h 1469 2636 418.22

3 Water/Coal ratio (w/c) (-) 6.98 8.49 0.31

4 Middle temperature (Tmid) ◦C 343 425 27.93

5 LT Eco water outlet temperature (LT.ECO) ◦C 90 100 2.5

6 APH air outlet temperature ((Ta)APH) ◦C 311 352 12.23

7 % O2 in flue gas at APH outlet (% O2) % 5.27 8.50 0.95

8 Flue gas temperature after APH ((Tfg)APH) ◦C 120 157 8

9 Ambient temperature (Tamb) ◦C 5 43 9.4

10 Feed water pressure (FWP) MPa 15.4 30.1 6.11

11 Feed water temperature (FWT) ◦C 260 299 15.37

12 Feed water flow (FWF) t/h 942 1987 402.25

13 Main Steam Pressure (MSP) MPa 13.0 24.4 4.69

14 Main Steam Temperature (MST) ◦C 550 569 4.79

15 Reheat pressure (RHP) MPa 2.6 5 0.93

16 Reheat temperature (RHT) ◦C 553 569 4.03

17 Condenser vacuum (Pvac) kPa −89.3 −95.6 1.41
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Table 2. Cont.

Parameters Unit Min Max SD

18 Deaerator temperature (Td) ◦C 164 190 9.59

19 Attemperation water flow rate (AWF) t/h 4 97 19.48

20 Condensate temperature (Tc) ◦C 27 47 4.29

21 Auxiliary power (Paux) MW 20.3 29.2 2.63

22 Turbine speed (N) rpm 2986 3017 5.69

23 Excitation voltage (Exc. V) V 176 435 67.71

24 Excitation current (Exc. I) A 1839 4144 614.91

25 Generator power (G.P) MVA 355.1 714.9 131.25
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Figure 4. Histograms: (a) main steam temperature; (b) excitation current.

The two histograms present the wide distribution of data across the operating param-
eters, which is essentially required to construct a robust and flexible model representing
the complex process of a physical system. Therefore, data processing and visualization are
crucial for selecting the appropriate dataset of the operating parameters. They provide
a strong foundation for carrying out data-driven modeling and optimization analytics,
thereby enabling the developing of effective operational control strategies for real-life
industrial systems [5,11].

4. Construction of AI-Models and External Validation

The development of ANN and AutoML models are described in this section. Moreover,
the validation of the above-mentioned models is presented.

4.1. Development of ANN Model

ANN model is a multilayer perceptron structure, and it is made up of three structural
layers. The first, second, and third layers are called the input layer, hidden layer, and output
layer, respectively. The second layer can have one or more layers and contains a varying
number of neurons. Usually, the hit and trial method is used to decide the total number
of neurons in the hidden layer [4]. The feed-forward backpropagation algorithm is well
known to mine useful information and develop the variables’ causal relationships [4]. An
iterative method is used to develop the ANN, and its training is stopped when either the
maximum number of epochs is achieved or error convergence change is 0.0000001 [4]. The
detailed information for the construction of ANN is presented in the related research [2].

In this research, 80% of the training data were allocated for training (1520 observations),
10% for testing (190 observations), and the remaining 10% (190 observations) for validation
during the development of ANNs. The min–max normalization technique was employed
to normalize the data in order to construct the effective AI models. Training function
gradient descent with momentum was chosen for the network development, whereas
tangent hyperbolic and purelin were the activation functions applied at the hidden and
output layers of ANN, respectively [4]. Several ANNs were trained with varying numbers
of neurons in the hidden layer—i.e., from 10 to 36. The optimal ANN was selected based
upon the network performance against the external validation test conducted on the power
plant’s new operating data.

Apart from the testing and validation tests performed during the model’s devel-
opment, the trained ANNs models’ predictability was assessed by the external valida-
tion dataset. The external validation test dataset comprises 39 random observations and
contains three power generation modes of the generator—i.e., half-generation capacity,
mid-generation capacity, and full-generation capacity. The external validation test is a
direct measure to check the models’ efficacy to predict the power plant’s unseen operating
conditions and consequently helps select the best performing ANN out of the multiple
ANNs developed earlier.
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The performance parameters such as the coefficient of determination (R2), root-mean-
square error (RMSE), and normalized RMSE (NRMSE) were measured on the models’
prediction. The performance parameters represent the efficacy of the trained models to
predict the validation dataset. The performance parameters are described in the following
equations (Equations (1)–(3)):

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

NRMSE =
RMSE

ymax−ymin
∗ 100 (3)

where n is the size of the dataset. yi is the actual value and ŷi is the predicted value by
the model, whereas yi is the mean of actual value, ymax is the maximum and ymin is the
minimum value of yi, respectively.

The performance of trained ANNs was assessed by an external validation test. Out of
many ANNs trained on the varying neuron numbers, i.e., from 10 to 36, an optimal ANN
exhibited the best performance in the external validation test. The performance evaluation
of the trained ANNs against the external validation dataset is presented in Table 3. The
best performance against the external validation dataset was achieved for ANNs with 31
neurons in the hidden layer and having maximum R2 values, whereas the minimum values
were RMSE and NRMSE. This ANN represented as [24–30,34,35] and shown in Figure 5 is
the optimal ANN that has comparatively well predicted the external validation dataset
with an R2, RMSE, and NRMSE of 0.999636, 2.424 MVA, and 0.815%, respectively.

Table 3. Performance of Artificial Neural Network (ANN) models in the validation test.

Neurons R2 RMSE (MVA) NRMSE (%)

10 0.99886 3.972 1.336

11 0.999404 3.036 1.021

12 0.999548 2.785 0.937

13 0.998301 4.819 1.621

14 0.998654 4.782 1.609

15 0.999286 3.294 1.108

16 0.99948 2.834 0.953

17 0.99893 4.264 1.434

18 0.998738 4.318 1.453

19 0.99892 3.298 1.11

20 0.999228 3.324 1.118

21 0.999396 2.888 0.972

22 0.9988 4.181 1.407

23 0.999322 3.069 1.033

24 0.999336 3.33 1.12

25 0.998507 4.822 1.622

26 0.999244 3.284 1.105
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Table 3. Cont.

Neurons R2 RMSE (MVA) NRMSE (%)

27 0.999602 2.739 0.922

28 0.999286 3.336 1.122

29 0.998866 4.553 1.532

30 0.999184 4.495 1.512

31 0.999636 2.424 0.815

32 0.999232 3.524 1.186

33 0.99913 3.665 1.233

34 0.999118 3.486 1.173

35 0.999114 3.906 1.314

36 0.9987 2.431 0.818
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4.2. Development of the AutoML Model

An alternative approach constitutes the use of the automated machine learning (Au-
toML) approach. The R2.ai [36] application was used in this work. The tool allows for the
automation of time-consuming and iterative tasks related to the development of the model.
By such an approach, high-quality and scalable models are possible to obtain. The software
offers various machine learning-based model development techniques to be deployed
for creating data-driven models for real-life applications. The system can consider the
following problems: binary classification (in predicting if an event is likely to happen or
not), regression (in predicting continuous or numeric values), multiclass classification (a
classification task with more than two classes), clustering (for grouping samples such that
samples in the same group are more similar to each other than to those in other groups),
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anomaly detection (to identify the low frequency, suspicious samples that are distinct from
others), association analysis (to identify items that have an affinity for each other), and
time series forecasting (for prediction of the future or the trend of time series).

The R2.ai, as an automated machine learning (AutoML) application, automatically
selects the model that best fits the considered problem from the list of models. The tool
gives model recommendations with a balance between execution time and performance.
Several algorithms are supported by the software, including Support Vector Machines
(SVMs), deep neural networks, decision trees, naïve Bayes–Gaussian, and random forests.
The following measurement metrics can be selected to judge the machine learning model’s
effectiveness: R2 as default, the MSE, and RMSE. The system also allows constructing
ensembled models with selected models combined. A model can be developed using two
approaches: K-fold cross-validation holdout and train validation holdout [36]. The first
one covers the following steps: partitioning training dataset into “k” number of “folds”,
running a modeling process where each of the “k” subsamples is in turn used as the
validation set. In contrast, the remaining “folds” serve as training sets. On the other hand,
train validation holdout constructs a machine learning model by partitioning the training
dataset into the three subsets: the training set (employed to build the machine learning
model), validation set (used to tune the hyperparameters of classifiers for better accuracy),
and holdout set (a set of data to assess the performance of the final model) [36].

A regression problem is considered in this paper. The same input and output dataset
having the same ranges as mentioned in Table 2 was used for the present AutoML approach
as it was for the ANN case. The system recommended the support vector machine (SVM)-
based model as it is the best of all 36 models developed by the R2.ai tool. SVM is an
advanced machine learning tool, and it has proven to effectively model complex and
interdependent processes and industrial operations [20,37,38]. From the available input-
output variables data, SVM approximates the output variable by employing a multivariate
function. The multivariate function is driven by a kernel function. Generally, a nonlinear
radial basis kernel function is used to map the nonlinearity and complex interactions
present in the training data. A detailed description of SVM working can be found in our
previous research [2,3].

The developed SVM model in this study obtained high accuracy as reflected by the
calculated values of R2, RMSE, and NRMSE as 1.0, 2.004 MVA, and 0.006%, respectively.
The SVM model was retained, and its prediction efficacy was further evaluated by an
external validation test. The same dataset utilized for the ANNs’ external validation test
was used for the SVM model for external validation. R2, RMSE, and NRMSE of the SVM
model’s predictions against the external validation dataset are 0.999534, 2.726 MVA, and
0.863%, respectively.

5. Results and Discussion

The selection of the best AI model and construction of the power curve of the generator
is discussed below.

5.1. Selection of the Best AI Model

Two modeling techniques of AI, i.e., ANN and AutoML, were comprehensively
deployed to model the power generation operation of the power plant. The efficacy of the
two modeling techniques to predict the unseen operating conditions of the power plant
was evaluated by the external validation test. Since SVM turns out to be the best model
out of the 36 models trained by AutoML, the optimal ANN and SVM models’ external
validation test performance is presented in Figure 6a,b. Moreover, performance parameters
such as R2, RMSE, and NRMSE of the two models’ prediction of the validation dataset are
represented in Figure 7. R2, RMSE, and NRMSE for the optimal ANN and SVM model
predictions are 0.999624, 2.424 MVA and 0.815%, and 0.999534, 2.726 MVA and 0.863%,
respectively. Comparing the two developed models’ performance parameters, it is evident
that the optimal ANN well predicted the external validation dataset compared to the
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SVM. Thus, the optimal ANN was selected for the construction of the power curve of the
generator as described in the next section.
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Figure 6. Graphs of external validation data: (a) optimal ANN; (b) support vector machine (SVM).
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5.2. Construction of Power Curve of the Generator

Once an optimal ANN model of the power plant’s generator power is constructed and
extensively validated, the model is ready to construct the generator’s power curve against
the influence of the power plant’s thermo-electric operating parameters, as mentioned in
Table 2. Comprehensive Monte Carlo experiments were designed based on the operating
ranges of thermo-electric operating parameters and the Gaussian noise. Gaussian noise
having a standard deviation equal to 1% range of operating parameters was generated.
Moreover, the systematic variation, as well as divisions of operating ranges of thermo-
electric operating parameters, are mentioned in Table 4.

A hundred repetitions of operating values at each division of thermo-electric operating
parameters as mentioned in Table 4 were created and added with the Gaussian noise. The
Monte Carlo experiments constructed for the division of operating values were made
to acquire predictions from the optimal ANN. The mean (µ) and standard deviation (σ)
of the ANN predictions for the constructed Monte Carlo experiments were calculated,
and the procedure was repeated for all of the divisions of operating values mentioned in
Table 4. The upper control limit (UCL = µ + 2*σ) and lower control limit (LCL = µ − 2*σ)
were established at 95% confidence intervals in order to ensure the reliable relationship
among the generator power and the power plant’s operating parameters. The detailed
procedure for creating the Monte Carlo experiments deployed in this work is discussed in
the previous research [3].

For increasing the generator’s power production from nearly 50% to 100% generation
capacity, the main steam pressure was gradually increased along with the excitation
current. Other thermo-electric operating parameters were also systematically varied in
their operating ranges, as mentioned in Table 4. The increase in main steam pressure was
utilized during the steam expansion in the turbine series to rotate the generator shaft. The
rotating magnetic field produced by the excitation system mounted on the generator shaft
induced voltage and current in the generator’s stator coil, and the power produced was
added to the connected national electrical grid through the power management system.

Table 4. Operating values for generating the performance curve of generator power.

Operating Parameter Operating Value

Coal flow rate (Mc) 129 142 154 166 179 191 203 215 228 240 252

Air flow rate (Ma) 1469 1586 1703 1819 1936 2053 2169 2286 2403 2519 2636

Water/Coal ratio (w/c) 6.98 7.13 7.28 7.43 7.58 7.74 7.89 8.04 8.19 8.34 8.49

Middle temperature (Tmid) 343 351 360 368 376 384 392 400 409 417 425

LT Eco water outlet
temperature (LT.ECO) 100 99 98 97 96 95 94 93 92 91 90

APH air outlet
temperature ((Ta)APH) 311 315 319 323 327 332 336 340 344 348 352

% O2 in flue gas at APH outlet
(% O2) 8.5 8.18 7.85 7.53 7.21 6.89 6.56 6.24 5.92 5.59 5.27

Flue gas temperature after
APH ((Tfg)APH) 120 123 127 131 135 139 142 146 150 154 157

Ambient temperature (Tamb) 5 8 12 16 20 24 28 31 35 39 43

Feed water pressure (FWP) 15.4 16.8 18.3 19.8 21.2 22.7 24.2 25.6 27.1 28.6 30.1

Feed water temperature (FWT) 260 264 268 272 276 280 283 287 291 295 299

Feed water flow (FWF) 942 1047 1151 1256 1360 1465 1569 1674 1778 1883 1987

Main Steam Pressure (MSP) 13 14.1 15.2 16.4 17.5 18.7 19.8 20.9 22.1 23.2 24.4
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Table 4. Cont.

Operating Parameter Operating Value

Main Steam Temperature (MST) 550 552 554 556 558 560 562 564 565 567 569

Reheat pressure (RHP) 2.6 2.8 3 3.3 3.5 3.8 4 4.2 4.5 4.7 5

Reheat temperature (RHT) 553 555 556 558 559 561 563 564 566 567 569

Condenser vacuum (Pvac) −95.6 −95.0 −94.4 −93.7 −93.1 −92.5 −91.8 −91.2 −90.6 −89.9 −89.3

Deaerator temperature (Td) 164 166 169 172 174 177 179 182 185 187 190

Attemperation water flow
rate (AWF) 97 88 79 69 60 51 42 32 23 14 4

Condensate temperature (Tc) 27 29 31 33 35 37 39 41 43 45 47

Auxiliary power (Paux) 20.3 21.2 22.1 22.9 23.8 24.7 25.6 26.5 27.4 28.3 29.2

Turbine speed (N) 2986 2989 2992 2995 2998 3001 3005 3008 3011 3014 3017

Excitation voltage (Exc. V) 176 202 228 254 280 305 331 357 383 409 435

Excitation current (Exc. I) 1839 2070 2300 2531 2761 2992 3222 3453 3683 3914 4144

Figure 8 shows the combined effect of the power plant’s thermo-electric operating
parameters on the generator power. A smooth trend line for the generator power produc-
tion from nearly 50%~100% generation capacity is plotted with a 95% confidence interval.
Two of the thermo-electric operating parameters, i.e., main steam pressure and excitation
current, are represented along the x-axes. The UCL and LCL lines are tight, signifying the
robust response of ANN and the generator power curve’s reliability against the influence
of thermo-electric operating parameters. With every increment of 1.14 MPa in main steam
pressure, 230 A in excitation current, and the gradual change in other thermo-electric
operating parameters that lies in the controllable ranges (see Tables 2 and 4), the relative
increase in generator power production, on average, was 6.20%. The generator power
curve provides an actual response of the generator against the wide operating ranges of
power plant’s thermo-electric operating parameters.
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The power curve constructed on industrial systems’ operation data is more accurate
and reliable in terms of predicting the systems’ responses compared to the theoretical curves
that lack the typical operating constraints and the equipment profile of the specific actual
industrial system [27]. The utilization of ANNs for constructing the operation data-based
power curves of industrial systems and machinery can provide the basis for developing
effective operational control strategies, conditional monitoring, and troubleshooting strate-
gies for the industrial components and systems. Therefore, the methodology described
for the construction of a data-driven power curve provides the foundation for performing
value-creating data analytics built around the concept of Industry 4.0. It would contribute to
the Industry 4.0 revolution in industrial systems as demanded for by the power sector [22],
and the United Nations Sustainable Development Goals 2030 as well.

6. Conclusions

The power curves constructed by the mathematical modeling techniques are limited
in their applications to complex and large-scale industrial systems. In this work, two
data-driven modeling techniques of AIs, i.e., ANN and AutoML, were utilized to construct
a generator power curve against the influence of twenty-four thermo-electric operating
parameters of a 660 MW supercritical coal power plant.

Comprehensive operational data of the power plant containing all possible operating
modes of the generator power was taken from the SIS. Comprehensive data processing
and visualization techniques were used to eliminate the faulty observations present in the
raw data. Thus, the filtered data were fueled to construct the ANN and AutoML models
for the power plant’s generator power. However, in the external validation test, ANN
outperformed the AutoML-based SVM model and therefore ANN was selected. Monte
Carlo experiments comprising the power plant’s thermo-electric operating parameters and
the Gaussian noise were made to be simulated from ANNs and deployed to construct the
power curve of the generator with a 95% confidence interval.

The presented Industry 4.0 data analytics can be treated as a complementary approach
in the data-driven construction of power curves for industrial systems and machinery
and constitute the main novelty of the paper. The characteristic responses reflected in the
custom-built performance curves can be used to formulate effective operational control
strategies for the large-scale and complex industrial systems. However, it is important
to mention here that the quality of the data, operating ranges of control parameters, and
the specific operational constraints of real-life industrial systems need to be considered
carefully to construct true and effective data-driven performance curves. Thus, the perfor-
mance curves could be confidently implemented at the component level, system level, and
strategic level of the industrial systems and thereby would contribute to energy efficiency,
operation excellence, and the Industry 4.0 vision for industries.

The applicability levels of the developed ANN and AutoML models are very high
mostly due to their novelty and that they can be generalized to other branches of industry.
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Nomenclature

FWP Feedwater pressure (MPa)
FWT Feedwater temperature (◦C)
LT.ECO LT Eco water outlet temperature (◦C)
Ma air flow rate (t/h)
Mc coal flow rate (t/h)
MSP main steam pressure (MPa)
MST main steam temperature (◦C)
N turbine speed (rpm)
Paux auxiliary power (MW)
Pvac condenser vacuum (kPa)
RSP reheat steam pressure (MPa)
RST reheat steam temperature (◦C)
(Ta)APH APH air outlet temperature (◦C)
Tamb ambient air temperature (◦C)
Tc condensate temperature (◦C)
Td deaerator temperature (◦C)
(Tfg)APH APH outlet flue gas temperature (◦C)
Tmid middle temperature (◦C)
w/c water / coal ratio (-)
% O2 % O2 in flue gas at APH outlet (%)

Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
ANNs Artificial Neural Networks
APH air preheater
AutoML automated machine learning
ESP electro static precipitator
FDF forced draft fan
FGD flue gas desulphurization
HP high-pressure
IDF induced draft fan
IP intermediate pressure
LCL lower control limit
LP low-pressure
LPA low-pressure turbine A
LPB low-pressure turbine B
Max maximum
Min minimum
NRMSE normalized RMSE
PAF primary air fan
R2 coefficient of determination
RMSE root mean square error
SD standard deviation
SIS Supervisory Information System
UCL upper control limit
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