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Abstract: The ability to forecast electricity generation for a small wind turbine is important both
on a larger scale where there are many such turbines (because it creates problems for networks
managed by distribution system operators) and for prosumers to allow current energy consumption
planning. It is also important for owners of small energy systems in order to optimize the use of
various energy sources and facilitate energy storage. The research presented here addresses an
original, rarely predicted 48 h forecasting horizon for small wind turbines. This topic has been
rather underrepresented in research, especially in comparison with forecasts for large wind farms.
Wind speed forecasts with a 48 h horizon are also rarely used as input data. We have analyzed the
available data to identify potentially useful explanatory variables for forecasting models. Eight sets
with increasing data amounts were created to analyze the influence of the types and amounts of
data on forecast quality. Hybrid, ensemble and single methods are used for predictions, including
machine learning (ML) solutions like long short-term memory (LSTM), multi-layer perceptron (MLP),
support vector regression (SVR) and K-nearest neighbours regression (KNNR). Original hybrid
methods, developed for research of specific implementations and ensemble methods based on hybrid
methods’ decreased errors of energy generation forecasts for small wind turbines in comparison
with single methods. The “artificial neural network (ANN) type MLP as an integrator of ensemble
based on hybrid methods” ensemble forecasting method incorporates an original combination of
predictors. Predictions by this method have the lowest mean absolute error (MAE). In addition,
this paper presents an original ensemble forecasting method, called “averaging ensemble based
on hybrid methods without extreme forecasts”. Predictions by this method have the lowest root
mean square error (RMSE) error among all tested methods. LSTM, a deep neural network, is the
best single method, MLP is the second best one, while SVR, KNNR and, especially, linear regression
(LR) perform less well. We prove that lagged values of forecasted time series slightly increase the
accuracy of predictions. The same applies to seasonal and daily variability markers. Our studies
have also demonstrated that using the full set of available input data and the best proposed hybrid
and ensemble methods yield the lowest error. The proposed hybrid and ensemble methods are also
applicable to other short-time generation forecasting in renewable energy sources (RES), e.g., in
photovoltaic (PV) systems or hydropower.

Keywords: wind energy; wind turbine; hybrid methods; ensemble methods; short-term forecasting;
electric energy production; machine learning; deep neural network; swarm intelligence

1. Introduction

Renewable energy sources have become a very important element of energy mixes
in many countries across our planet. The majority of green energy is produced in large
hydropower stations, wind and solar farms. However, more and more energy has been
produced every year by various types of prosumer sources. A prosumer is most often
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perceived as a user of photovoltaic systems. Nevertheless, some prosumers use small wind
turbines to produce electricity. This may be particularly appropriate where insolation is low
or wind conditions are favourable. Of course, small wind turbines are not as convenient as
PV systems for prosumers. Small wind turbines need more free space around them and
can be problematic due to noise and vibration that can adversely affect people and cause
structural damage. That is why wind turbines are rarely installed on buildings.

Forecasting electricity generation for a small wind turbine is important both on a
larger scale where there are many such turbines (because it creates problems for networks
owned by distribution system operators), but also for prosumers due to the current energy
consumption planning. It is also important for owners of small energy systems as it
facilitates the use of various energy carriers and optimizes energy storage.

The problem of forecasting electricity generation for small wind turbines seems to be
as complex as forecasting for large wind farms. The following reasons can be mentioned:

• Small wind turbines have small rotor inertia, therefore, any change of wind speed
instantly affects energy generation;

• Towers of small turbines are low and forecasting of wind speed at low altitudes is
burdened with large errors;

• Operation of small turbines can be affected by surrounding obstacles and rough
terrain, and energy generation varies due to vegetation or lying snow.

The research presented in this article concerns small prosumer wind turbines. No
actual wind speed data were collected, which made data analysis difficult.

1.1. Related Works

In recent decades, renewable energy sources (RES) has become an important way
to address environmental concerns. RES shares have been rising at different rates across
countries, e.g., for the European Union (EU) the share has tripled to 18% since 1990, while
for Poland it has increased six-fold [1]. Wind energy is and will be important part of this
equation. Since wind sources with their intermittency could become destabilizing factors
for power system energy balance, different solutions were proposed by researchers to ease
the situation. One aspect would be to determine maximum wind power penetration level
in view of frequency response adequacy [2]. Another aspect would be good quality of
generation predictions to allow us to properly plan for and increase wind power capacity
to above the threshold [3].

Recent papers addressing wind power forecasts could be broadly classified into 5 cat-
egories: papers focused on how to increase NWP accuracy [4–8], good-practice prediction
guidelines [9–11], comparisons of accuracy across prediction models [12–15], hybrid and
ensemble methods [16–27], and conventional methods improved by, among other things,
preprocessing [28–35]. At this point, clear distinction should be made between hybrid,
ensemble and improved models. Methods classified as hybrid ones consist mainly of a
set of forecasting engine tools without considering input data improvement tools part of
the hybrid. Improved models, on the other hand, either preprocess input data using a
traditional non-hybrid model or slightly alter/add to the model. Unlike both approaches,
ensemble methods use different models working in parallel.

Papers addressing the topic of wind forecasts improvement [4–6] have attempted to
incorporate Doppler light detection and ranging (lidar) or sodar systems readings into
verification or enhancement of wind forecasts. The presented improvement proved to be the
most promising for strong, volatile winds. Other papers [7,8] propose different approaches,
like Gaussian process regression [8] and combination of artificial neural networks, ensemble
learning, and feature selection techniques [7].

Research in [9–11] focused on adequate dealing with common problems associated
with forecasting and machine learning. Tawn et al., 2020 [9] presented an approach for
dealing with missing data, both for operational work and training of models. Messner et al.,
2020 [10] demonstrate forecasting verification methods more fitted to perspective of the
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forecast user, while Sewdien et al., 2020 [11] assessed the influence of different parameters
on artificial neural network prediction accuracy.

Comparative studies [12–15] provide analyses of the forecasting quality of different
single models. Mishra et al., 2020 [12] contrast deep neural networks, namely DFFNN,
DCNN, RNN, AM and LSTM, both with and without preprocessing by FFT and DWT.
Shetty et al., 2020 [13] confront ANN and the surface response method (RSM) with more
fundamental models like cubic spline interpolation, least squares, power curve and power
equation. The authors of [14] have chosen more complex methods, comparing LR with six
machine learning (ML) models: multi-layer perceptron (MLP), Bayesian neural network
(BNN), random forests (RF), gradient boosting trees (GBT), KNNR and SVR, while [15]
compares MLP, SVR and ANFIS models. Overall winners of comparisons were AM in [12],
ANN in [13] and ANFIS in [15]. In [14], the best model heavily depends on the performance
indicator and no statement about any model superiority was made.

Hybridization [16–21] and parallelization [22–27] of prediction models use data-
refining and error compensation, respectively, as an approach to maximize prediction accu-
racy. The most common bases for hybrid models in recent literature are ANNs [17–19,21]
due to their generalization ability, while the most common hybrid add ons would be single
optimization methods [16,18,20,21]. With varying implementation, error reduction can be
achieved in different ways. For that purpose, Zhen et al., 2020 [17] propose a Bidirectional
Long Short Term Memory–Convolutional Neural Network (BiLSTM-CNN) model for better
extraction of spatio-temporal features from data and Zhou et al., 2020 [19] describe a long
short-term memory–seasonal autoregressive integrated moving average (LSTM-SARIMA)
model for capturing seasonality.

Ensemble models proposed in literature vary by the methods used and how out-
put is aggregated. Studies pertaining to both switchable [22] and output-aggregated
models [23–27] have been described in recent research papers. As for methods, researchers
frequently use variations of regression trees [22–25]. Another approach is proposed in [26].
The solution suggested there is based on parallelization of stacked autoencoders for ad-
vanced feature extraction.

Papers concerning improved models are more data-focused. Durán-Rosal et al.,
2018 [28] propose an algorithm for optimal reduction of the size of time series and the
authors of [29] investigate the influence of reduced numerical weather prediction (NWP)
data on forecast quality. Research by Yu et al., 2020 [30] and Fan et al., 2020 [31] focuses
on assimilating spatial data with Graph Networks, while Li et al., 2020 [32] present an
adaptive time resolution method to deal with the error hidden in the data due to error
averaging. Some of the papers are focused on enhancing performance of long short-term
memory (LSTM) networks. Shadid et al., 2020 [33] propose preprocessing by wavelets, an
approach popular in recent years, while Zhang et al., 2020 [34] provide modification to
LSTM by constructing error following forget gate. Other contributions, focused largely on
improvements of the existing methods—kernel density estimation (KDE) [35] and others.

1.2. Objective and Contribution

The main objectives of this paper can be summarized as follows:

• Conduct statistical analysis of time series of energy generated from a small wind
turbine and potential explanatory variables. Select 8 input data sets to verify how the
types and amounts of input data impact on forecasts quality;

• Verify the accuracy of forecasts conducted by single methods, hybrid methods and
ensemble methods (18 methods in total);

• Develop and verify an original ensemble method: an averaging ensemble based on
hybrid methods without extreme forecasts. Conduct an original selection of combina-
tions of predictors for ensemble methods;

• Indicate the most efficient forecasting methods with no historical wind speed mea-
surements available, but with wind speed forecasts available for up to 48 h ahead.

Below are listed selected contributions of this paper:
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1. This research applies to forecasting of small turbine generation using wind speeds
predicted for up to 48 h. This problem is understudies in research so far, especially in
comparison with forecasting for large wind farms;

2. Development of an ensemble method called “artificial neural network (ANN) type
MLP as an integrator of ensemble based on hybrid methods”, which includes a combi-
nation of original predictors, and has been arrived at by testing different combinations
of predictors. Predictions by this method have yielded the lowest mean absolute error
(MAE) among the tested methods;

3. Development of an original method called “Averaging ensemble based on hybrid
methods without extreme forecasts”. Predictions by this method have yielded the
lowest root mean square error (RMSE) among the tested methods;

4. Completion of an extensive scenario analysis taking into account different degrees
of data availability and model complexities. In total, more than 100 models with
different parameters/hyperparameters were tested to choose an optimal model for
this complex predictive problem.

The research carried out and the methods developed here contribute significantly to
the topic of small wind turbine generation prediction, especially for 48 h time horizon
and lack of historical wind speed measurements, but with wind speed forecasts up to
48 h ahead available instead. In practice, it is impossible to obtain acceptable generation
forecasts for 48 h horizon without using wind speed forecasts as input data. Nevertheless,
using other data as additional explanatory variables have further reduced the error.

The remainder of this paper is organized is as follows: Section 2.1 presents statistical
analysis of times series of small wind turbine hourly generation and wind speed forecasts.
The process of input data selection for particular forecasting methods is described in
Section 2.2, and Section 3 specifies the forecasting methods used in the paper. Evaluation
criteria used for the assessment of forecasting quality are presented in Section 4, followed
by many-sided analysis of the obtained results and their discussion in Section 5. Finally,
the main conclusions of our studies are summarized in Section 6, and references are listed
at the end of this paper.

2. Data
2.1. Statistical Analysis of Data

Data acquired from a small prosumer turbine located in the south of Poland were
used for statistical analyses (exact location is confidential). The location is characterized by
rather low wind speeds. Rated power of the turbine was 5 kW, maximum power 7.5 kW,
and tower height 13 m. The turbine’s cut-in speed was 2.5 m/s, and the cut-out speed was
25 m/s.

The collected data consisted of hourly wind turbine power output and wind speed
forecasts with a horizon from 1 to 48 h. Measurements of actual wind speeds were not
available. The data covered almost 2 years (22.5 months), from January of one year to
14 November of the following year, with exact date and time range being confidential. The
time series consisted of 16,392 consecutive hours.

2.1.1. Statistical Analysis of Time Series of Hourly Wind Turbine Generations

Table 1 shows descriptive statistics for time series of hourly electric energy generated
by the wind turbine considered here.
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Table 1. Descriptive statistics for hourly electric energy generation.

Descriptive Statistics Value

Mean 0.650 [kWh]
Standard deviation 0.899 [kWh]

Minimum 0.000 [kWh]
Maximum 6.684 [kWh]

Coefficient of variation 138.13%
The 25th percentile (lower quartile) 0.000 [kWh]

The 50th percentile (median) 0.364 [kWh]
The 75th (upper quartile) 0.835 [kWh]

The 90 percentile 1.676 [kWh]
Variance 0.808
Skewness 2.578
Kurtosis 8.208

The analysis of electric energy generation percentiles analysis shows that 0 values
made up more than 30% of the time series samples. Usually, energy generation was within
0–1 kWh range (47.35% of the samples). Values closest to maximum power ranged from
6 to 7 kWh and made up for slightly more than 0.1% of samples. Percentage distribution of
electric energy generation is shown in Figure 1.

Figure 1. Percentage of time-series observations in particular generation ranges.

Autocorrelation coefficient (ACF) analysis of hourly generation time series shows
slight daily periodicity, with increase of autocorrelation for number of backward periods
equal to multiplicity of 24 h. Autocorrelation rapidly decreases for the consecutive hours
of the first day. Details are presented in Figure 2. For the time series analyzed here, all
autocorrelation coefficients are statistically significant (5% significance level) up to 7 days
back (168 prior observations).

Figure 2. Autocorrelation function (ACF) of the wind turbine energy generation time series.
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To check for daily variability of energy, hourly averages of generation were calculated
for each hour of the day, based on the available 2-year dataset. Calculation results are
shown in Figure 3. The analysis has demonstrated high daily variability of electric energy
production. The ratio of generation for the period between 11:00 and 12:00 (maximum
production) and generation for the period between 1:00 and 2:00 (minimum production)
was 2.06.

Figure 3. Daily variability of wind turbine energy generation.

To check for annual variability of energy, monthly averages of generation were calcu-
lated for each month of the year, based on the available 2-year dataset. Calculation results
are shown in Figure 4.

Figure 4. Monthly electric energy production—the mean over a 2-year period.

The analysis demonstrated strong seasonality of energy generation, with the highest
production in winter months and lowest in summer ones. For both of the analyzed years,
peak production was in March, which is an unusual, probably accidental phenomenon.

2.1.2. Statistical Analysis of Wind Speed Forecasts with Horizon from 1 to 48 h

Two days ahead wind speed forecasts were generated once per day, at 00:00 UTC.
NWP unified model (UM) with 4 km × 4 km grid was used as the data source.

Wind speed forecasts for the period from m-1 to m refer to mean forecasts for hours
m-1 and m. Descriptive statistics for the time series of forecasts with horizons from 1 to 24 h
and forecasts with horizons from 25 to 48 h are shown in Table 2. For both horizons, means
and variances were at the same level. For the 1–24 h horizon, mean, median, minimum
and maximum wind speed forecasts were slightly higher.
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Table 2. Descriptive statistics of wind speed forecasts with horizons from 1 to 24 h and 25 to 48 h.

Descriptive Statistics Time Series of Wind Speed Forecasts
for up to One Day Ahead (d + 1)

Time Series of Wind Speed Forecasts
for the Second Day Ahead (d + 2)

Mean 3.592 [m/s] 3.626 [m/s]
Standard deviation 1.767 [m/s] 1.750 [m/s]

Minimum 0.088 [m/s] 0.228 [m/s]
Maximum 11.059 [m/s] 13.463 [m/s]

Coefficient of variation 49.18% 48.26%
The 25th percentile (lower quartile) 2.290 [m/s] 2.377 [m/s]

The 50th percentile (median) 3.284 [m/s] 3.341 [m/s]
The 75th (upper quartile) 4.672 [m/s] 4.641 [m/s]

The 90 percentile 6.089 [m/s] 6.023 [m/s]
Variance 3.121 3.063
Skewness 0.718 0.800
Kurtosis 0.277 0.697

2.2. Selection of Input Data for Particular Forecasting Methods

For input data selection, the Pearson linear correlation coefficient (R) was calculated
between energy generation and potential explanatory variables. Analysis was made with
omitting test-range data and results of analysis from chapter 2.1 were used for preliminary
selection. Lagged inputs were selected by relying on ACF results and choosing 00:00 UTC
of the following days as the starting point for 48 h generation forecasts, with horizons from
1 to 48 h. Table 3 describes results of R calculations and codes of input variables selected
for use in explanatory data sets. All R values were statistically significant (5% significance
level). R values of wind speed forecasts for the second day ahead were lower than for one
day ahead, which suggests that wind speed forecasting accuracy decreases with increasing
horizon. Wind speed was the most important input variable, with the highest R value.
EN_L—coded input variables for different lag variants were given in a decomposed form.
Separate results were given for horizons 1–24 h and 25–48 h for better visualization.

Table 3. Pearson linear correlation coefficients between selected input variables and energy generation.

Description of Input Data Code of Input Data R

Indicator of annual seasonality—mean daily energy generation for given month MONTH_I 0.263
Indicator of daily variability of electric energy production—mean hourly energy generation for

given hour DAY_I 0.195

Wind speed forecasts—horizons from 1 to 24 h V_F 0.756
Wind speed forecasts—horizons from 25 to 48 h V_F 0.717

Electric energy production forecast by physical method—the function of polynomial degree 3 POLY_F 0.690
Hourly energy generation lagged by 24 h, for 1–24 h horizons EN_L 0.343

Hourly energy generation lagged by 48 h, for 25–48 h horizons EN_L 0.166
Hourly energy generation lagged by 25 h, for 1–24 h horizons EN_L-1 0.326

Hourly energy generation lagged by 49 h, for 25–48 h horizons EN_L-1 0.161
Hourly energy generation lagged by 26 h, for 1–24 h horizons EN_L-2 0.304

Hourly energy generation lagged by 50 h, for 25–48 h horizons EN_L-2 0.157
Hourly energy generation lagged by 48 h, for 1–24 h horizons EN_L-24 0.166

Hourly energy generation lagged by 72 h, for 25–48 h horizons EN_L-24 0.117
Hourly energy generation lagged by 72 h, for 1–24 h horizons EN_L-48 0.117

Hourly energy generation lagged by 96 h, for 25–48 h horizons EN_L-48 0.161

Figure 5 describes correlation between per unit values of hourly generations of electric
energy and wind speed forecasts. Data were normalized to the <0.1> range and sorted in
ascending order by energy production. Figure 5 demonstrates that for some production
data with the zero value, NWP-UM wind speed forecasts had non-zero values, with some
wind speeds above cut-in speed of the analyzed wind turbine.
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Figure 5. Correlation between hourly energy generations and wind speed forecasts.

A dispersion diagram for relationships between wind speed forecasts and actual
energy generation [p.u.] is presented in Figure 6. The diagram demonstrates non-linear
relationships between wind speed vector’s module and production of electric energy. Data
concentration is low, hence a wind turbine power curve typical of singular wind turbine is
not clearly visible. This is mostly due to the differences between forecast and actual wind
speeds. Extreme outliers were treated as unreliable data and were removed.

Figure 6. Relationship between wind speed forecasts [p.u.] and actual electricity production.

Eight different sets of input data with different information potential were proposed
for the forecasts in order to analyze differences in the quality of forecasts between the sets.
Table 4 presents sets of appropriate, selected sets of input data for the forecasting methods
described in Section 3. Global sensitive analysis in the MLP model was used to eliminate
unnecessary input data in the given set (from set 4 to set 8).
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Table 4. Sets of input data selected for forecasting methods.

Name of Set Description of Set Codes of Input Data

Set 1 Time lag of forecasted time series EN_L
Set 2 Selected time lags of forecasted time series EN_L, EN_L-1, EN_L-2

Set 3 Selected time lags of forecasted time series EN_L, EN_L-1, EN_L-2,
EN_L-24, EN_L-48

Set 4
- Time lag of forecasted time series
- Indicator of annual seasonality
- Indictor of variability of daily electric energy production

EN_L,
MONTH_I,

DAY_I
Set 5 Wind speed forecast V_F

Set 6
- Indicator of annual seasonality
- Indictor of variability of daily electric energy production
- Wind speed forecast

MONTH_I,
DAY_I

V_F

Set 7

- Time lag of forecasted time series
- Indicator of annual seasonality
- Indictor of variability of daily electric energy production
- Wind speed forecast

EN_L,
MONTH_I,

DAY_I
V_F

Set 8

- Time lag of forecasted time series
- Indicator of annual seasonality
- Indicator of variability of daily electric energy production
- Wind speed forecast
- Electric energy production forecast by physical model

EN_L,
MONTH_I,

DAY_I
V_F

POLY_F

3. Forecasting Methods

This section describes the methods employed in this paper. Forecasts are made
using single methods based on time series only, other single methods using also addi-
tional exogenous variables including machine learning methods and the most advanced
(complex)—ensemble methods. Below there is a brief description of the proposed methods.
Naive model and naive smoothing model are benchmarks for the quality of other, more
advanced forecasting methods.

Naive model (method code NAIVE). The naive model, which is simplest to implement,
assumes that forecast generation values are identical to the actual energy generation values
for the last known period being the multiplicity of 24. An unquestionable advantage
of such model is simplicity and ability to take daily and seasonal variabilities of energy
generation into account. Forecasts are calculated by the following Formula (1):

ŷt = yt−24·n (1)

where ŷt—forecast electric energy generated by wind turbine for hour t, yt−24·n—energy
generation for period lagged by (t−24·n) from forecast period t, n = 1 for forecasting
horizons from 1 to 24 h and n = 2 for horizons from 25 to 48 h.

Naive smoothing model (method code SMOOTHING). The naive model with smooth-
ing assumes that forecast energy generation is the same as “smoothened” generation for
the last known period being the multiplicity of 24. “Smoothened” production from the last
known period is calculated as weighted average, with weight of production from t−24·n
equal to 0.5 and weights for productions from t−24·n−1 and t−24·n+1 and equal to 0.25.

ŷt = 0.5 · yt−24·n + 0.25 · yt−24·n−1 + 0.25 · yt−24·n+1 (2)

where ŷt—energy generation forecast for hour t, n = 1 for horizons 1 to 23, and n = 2 for
horizons 24 to 48.

Physical model (method code PHM). This forecasting model of generated hourly
power is a function of forecasted wind speed. Form of function is the 4th order polynomial
described by Formula (3). Catalogue data of wind turbine power curve were used to
develop the function equation, with data points responding to powers for 3–25 m/s wind
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speeds, with 1 m/s steps. Second, third, and fourth order of polynomials were tested and
4th order function was chosen due to the highest determination coefficient R2, equal 0.9964.

ŷt(v) = 0.0005 · v4
t − 0.0285 · v3

t + 0.4992 · v2
t − 2.5708 · vt + 4.3363 (3)

where ŷt(vt)—energy generation forecast for period t, and vt—wind speed forecast for t.
Multiple Linear regression model (method code LR). It is a linear model that assumes

a linear relationship between the input variables and the single output variable [36]. The
input data are selected lags of the forecasted output variable and other input explanatory
variables correlated to the output variable. The model is fitted using the least squares
approach.

K-Nearest Neighbours Regression (method code KNNR). This algorithm is a non-
parametric method used for classification and regression [37]. The input consists of the
k closest training examples in the feature space. In KNN regression, the output is the
property value for the object. This value is the average of the values of k nearest neighbors.
The main hyperparameter for tuning is the number of nearest neighbors. Distance metric
is the second hyperparameter.

Support Vector Regression (method code SVR). SVM for regression of the Gaussian
kernel (non-linear regression) transforms the classification task into regression by defining
width ε tolerance region around the destination [38]. The learning task is reduced to the
quadratic optimization problem and depends on few hyperparameters: regularization
constant C, width parameter s of the Gaussian kernel and tolerance ε.

Artificial neural network, type MLP. It is a class of feedforward ANNs. MLP is a
popular and effective non-linear or linear (depending on the type of activation function
in hidden layer(s) and output layer) global approximator [29,36,39]. It consists of a single
input layer, typically has one or two hidden layers, one output layer and uses the back-
propagation algorithm for supervised learning. The main hyperparameter for tuning is
the number of neurons in hidden layer(s). Two MLP models differing by the optimization
algorithm are used for the forecasts.

• The BFGS method utilized for solving unconstrained non-linear optimization prob-
lems was chosen as a learning algorithm of a neural network (method code MLPBFGS).

• The particle swarm optimization (PSO) method was used to determine MLP weights
(method coded MLPPSO). This hybrid combination of PSO and MLP has been imple-
mented in an original computer program by one of the authors. The following tuning
hyperparameters were investigated in our research: number of neurons in hidden
layers (5, 8, 10, 20), number of particles in the swarm (20, 50, 100, 150), number of
algorithm iterations (100, 1000), coefficients in the formula for particles movements
(0.7, 1.0, 1.4), number of iterations between subsequent disturbances in the swarm
(50, 100, 400), neighborhood width (2, 5, 10). The optimization concept is presented in
Figures 7 and 8.

Figure 7. General concept of using particle swarm optimization (PSO) algorithm for multi-layer
perceptron (MLP) training.
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Figure 8. General algorithm of particle swarm optimization artificial neural network (PSO-ANN).

Deep neural network type LSTM (method code LSTM). It is a type of recurrent ANN.
Internal modules different from the traditional RNNs allow LSTM to avoid problems
with long-term dependencies [3,24], gradient explosion and vanishing [8,10]. Typically, a
LSTM network consists of one input layer, one or two LSTM layers, and a dense output
layer. Hidden LSTM layers consist of neurons for which input gate, forget gate and out-
put gate are responsible for selective control of information [24,25]. Detailed information
about algorithms incorporated in LSTM networks is presented in these papers. Between
layers, dropout layers can be used to prevent model overfitting [3,8]. The principle of
this mechanism for each node is to retain given node with a probability according to
Bernoulli distribution, and dropping from network with complementary probability [40].
Settable hyperparameters for the LSTM model would be mainly the number of hidden
layers and neurons in them and each layer activation function, but also batch size, number
of training epochs and dropout degree. Besides those, various model optimizers like
AdaGrad, RMSProp or ADAM can be used [3,10,24]. For optimal LSTM model selection,
ReLU/ELU/PReLU/LeakyReLU/sigmoid/tanh activation functions were used for hidden
layers, and sigmoid/linear/tanh/ ReLU were used for the output layer. The tested net-
works had one or two hidden layers with different combinations of neurons in them. Data
shuffling and patience mechanisms were used. Networks were trained for 2000 epochs,
with patience from 100 to 500, by the ADAM optimizer with lr = 0.001 and decay = 1 × 10−5.
To decrease computation time, batch size = 128 was used.

Hybrid methods. Hybrid methods are the physical model (PHM) and a single method
connected in series. In these methods, information flows between two models. The first
model receives forecast wind speeds (set 5) as input data. The following model receives not
only output from the first model (generation forecast), but also endogenous and exogenous
(set 7) input data. Both sets together form set 8. The concept of hybrid methods is described
in Figure 9 and used for the following pairs of single methods connected in series:

• Physical model and multiple linear regression model (method code PHM+LR),
• Physical model and K-nearest neighbours regression (method code PHM+KNNR),
• Physical model support vector regression (method code PHM+SVR),
• Physical model and deep neural network type LSTM (method code PHM+LSTM),
• Physical model and artificial neural network type MLP (method codes: PHM+MLBFGS

and PHM+MLPPSO).
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Figure 9. Diagram of series information processing in hybrid method.

Ensemble methods based on hybrid methods. This category of methods use more
than one individual predictor and are supported by a simple or more complex integration
system of individual forecasts. The general scheme of ensemble of predictors based on
hybrid methods is presented in Figure 10. The simplest integration system is the weighted
averaging of individual predictors and the most advanced integrator system is the ANN.

Figure 10. The general scheme of ensemble of predictors based on hybrid methods.

Four types of integration system were used for forecasts using “ensemble methods
based on hybrid methods”:

(1) Averaging ensemble based on hybrid methods (method code AVE_INT). It inte-
grates the results of selected predictors into final verdict of the ensemble. The final forecast
is defined as the average of the results produced by all s hybrid predictors organized in
the ensemble [38]. The final prediction result is calculated by Formula (4). This formula
uses stochastic distribution of predictive errors. The averaging of the forecast results is
an established method of reducing the variance of forecast errors. Two main strategies of
predictor choice were tested. An important condition for including the predictor into the
ensemble is mutually independent operation and also similar levels of prediction error [38].
Hybrid predictors are included in the ensemble based on the smallest MAE errors on the
validation subset and only predictors of different types.

ŷi =
1
s

s

∑
j=1

ŷj
i (4)

where, i is the prediction point, ŷi is the final predicted value, ŷj
i is predicted value by

hybrid predictor number j, and s is the number of hybrid predictors in the ensemble.
(2) An ensemble based on hybrid methods with weight optimization for each pre-

dictor (method code W_OPT_INT). Each hybrid predictor in the ensemble has an individual
weight. The optimal weights for each predictor in ensemble are calculated using the social
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cognitive optimization (SCO) method on the validation data (forecasts from each predictor
in the ensemble are input data) while minimizing MAE error of final forecasts (output data).
SCO is a population-based metaheuristic optimization algorithm developed in 2002 [41].
This algorithm is based on the social cognitive theory. The key point of the ergodicity is the
process of individual learning of a set of agents with their own memory and their social
learning with the knowledge points in the social sharing library. The final prediction result
is calculated by Formula (5). For ws (weights) optimization by SCO, no limits were set for
weight ranges or their sum.

ŷi = w1 · ŷ1
i + w2 · ŷ2

i +, . . . ,+ws · ŷs
i (5)

where, i is the prediction point, ŷi is the final predicted value, ŷs
i is the predicted value by

hybrid predictor number s, ws is the weight associated with the forecast from the hybrid
predictor with number s, and s is the number of hybrid predictors in the ensemble.

(3) Averaging ensemble based on hybrid methods without extreme forecasts (method
code MIN&MAX_SKIP). This method assumes removing the minimum and maximum
forecast from the set of hybrid predictors before each calculation of single final forecasts,
being an average of forecasts from s hybrid predictors. For a 48 h horizon, removal is done
48 times for each forecast separately. Such a procedure should in theory decrease prediction
errors (MAE and RMSE) and increase the value of R. An important condition for including
the predictor into the ensemble is mutually independent operation and also similar levels
of prediction error. The final prediction result is calculated by Formula (6).

ŷi =
1

s− 2
· (

s

∑
k=1

ŷk
i −min

{
ŷk

i

}
−max

{
ŷk

i

}
) (6)

where, i is the prediction point, ŷi is the final predicted value, ŷk
i is the predicted value by

hybrid predictor number k, and s is the number of hybrid predictors in primary ensemble
before the elimination of the outputs of predictors yielding extreme forecasts from the set
of results.

(4) ANN type MLP as a integrator of ensemble based on hybrid methods (method
code MLP_INT). It incorporates the results of selected predictors into final verdict of the
ensemble using the MLP model. Finally, four hybrid predictors are chosen for the ensemble
based on the smallest MAE errors on validation subset and predictors of differing type.
The MLP integrator uses forecasts from individual hybrid predictors as input data, and
the actual value of electric energy production from the wind turbine is the output. Dataset
training is used for the training of the MLP integrator and validation dataset for MAE
control, and the tuning of hyperparameters. Finally, the evaluation criteria are checked on
a test data set. The general structure of MLP as an integrator of ensembles is presented in
Figure 11.

Figure 11. General structure of MLP as an integrator of ensemble of predictors based on hybrid
predictors.
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Different sets of explanatory variables with different information potentials were used
for forecasts by single methods. The least information was contained in sets of variables
that use only selected lagged variables of forecasted energy generation time series (set
1, 2, 3). The largest explanatory data set (set 8) was used for predictions by hybrid and
ensemble methods. Table 5 shows tested input data sets for each method. One reason
for organizing data into such sets was to verify the influence of the type and number of
variables on forecast accuracy.

Table 5. Tested input data sets for each method.

The Method Code Type of Method Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

NAIVE Linear + *
SMOOTHING Linear +

PHM Non-linear +
LR Linear + + + +

SVR Non-linear + + + +
MLPBFGS Non-linear + + + +
MLPPSO Non-linear + + + +

LSTM Non-linear + + + +
PHM+LR Non-linear +

PHM+SVR Non-linear +
PHM+MLPBFGS Non-linear +

PHM+KNNR Non-linear +
PHM+MLPPSO Non-linear +

PHM+LSTM Non-linear +
AVE_INT [PHM+LSTM, PHM+SVR

PHM+MLPPSO, PHM+KNNR] Non-linear +

AVE_INT [PHM+LSTM,
PHM+KNNR, PHM+MLPPSO] Non-linear +

W_OPT_INT [PHM+LSTM,
PHM+KNNR, PHM+MLPPSO,] Non-linear +

W_OPT_INT [PHM+LSTM,
PHM+SVR, PHM+MLPPSO,

PHM+KNNR,]
Non-linear +

MIN&MAX_SKIP [PHM+MLPPSO,
PHM+KNNR, PHM+LSTM,

PHM+SVR]
Non-linear +

MIN&MAX_SKIP [PHM+MLPPSO,
PHM+LR, PHM+LSTM, PHM+SVR,

PHM+KNNR]
Non-linear +

MLP_INT [PHM+LSTM,
PHM+MLPPSO, PHM+KNNR] Non-linear +

Note: —* tested input data set.

4. Evaluation Criteria

For the performance tests of the methods, six evaluation criteria (measures of errors)
are used, including RMSE, MAE, Pearson linear correlation coefficient (R), mean bias error
(MBE), 75th percentile of the absolute errors (AE) and 99th percentile of the AE.

Mean absolute error is calculated by Formula (7)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (7)

In the process of forecasting of wind turbine electric energy production, changes of
RMSE and MAE follow the same trend, and the smaller the two errors, the more accurate
the prediction results. MAE is related to the first order of error moment while RMSE is
related to the second order.
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Root mean square error, which is sensitive to large errors, is calculated by Formula (8):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

where, ŷi is the predicted value, yi is the actual value, and n is the number of prediction
points.

Pearson linear correlation coefficient of the observed and predicted data is calculated
by Formula (9):

R =
Cyŷ

std(y) · std(ŷ)
(9)

where, Cyŷ is the covariance between the actually observed and predicted data and std
denotes standard deviation of the appropriate variable.

The bigger the error R value (range from −1 to 1), the more accurate the prediction
results.

Mean bias error (MBE) captures the average bias in the prediction and is calculated by
Formula (10):

MBE =
1
n

n

∑
i=1

(yi − ŷi) (10)

The value of single i-th Absolute Error (AE) needed for calculation of percentiles of
AE errors is calculated by Formula (11):

AEi = |yi − ŷi| (11)

The 75th percentile (PCTL75AE) is the value of AE error below which there are 75% of
all AE errors, and it indicates very well the density of AE errors.

Similarly, the 99th percentile (PCTL99AE) is the value of AE error below which there
are 99% of all AE errors, and it indicates very well the level of the biggest AE errors.

Measures of errors (MAE, RMSE) are basic measures to evaluate the accuracy of
proposed models, while others measures (R, MBE, PCTL75 and PCTL99) are auxiliary.

5. Results and Discussion

Predictions were conducted sequentially, from single methods with a limited number
of input variables to hybrid methods and ensemble methods using all selected input
variables (set 7, 8). Such a procedure allows us to observe differences in the quality
of results depending on the complexity of particular methods and the range of input
variables used.

Data available from the 2-year period were divided into training, validation and test
sets. Eighty-five percent of the first year’s data were used as the training data set and the
remaining 15% constituted the validation set.

Data for both data sets were chosen at random from the first year’s data set. The
second year’s data set constituted the test set used for one-time final evaluation of the
quality of specific prediction methods on data containing all seasons.

Table 6 provides the classification of forecasts by the range of input variables used,
with class number increasing with the range of data used. It should be noted that no wind
speed measurements were acquired, so they could not be used in the forecasting process,
which is not unusual for small wind turbines. On the other hand, wind speed forecasts can
be purchased, and they are the most important explanatory variable.
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Table 6. Tested input data sets for each class forecast.

Class No. Description of Input Data Input Data Sets (Depend on Method)

Class 1 Only selected previously observed value of forecasted time series set 1, set 2, set 3

Class 2
Selected previously observed values of forecasted time series and

indicators of annual seasonality and variability of daily electric
energy production

set 4

Class 3
Wind speed forecast and indicators of annual seasonality and

variability of the daily electric energy production (without forecasted
time series data)

set 5, set 6

Class 4
Selected previously observed values of forecasted time series,

indicators of annual seasonality and variability of daily electric
energy production and wind speed forecast

set 7

Class 5

Selected previously observed values of forecasted time series,
indicators of annual seasonality and variability of the daily electric

energy production, wind speed forecast and electric energy
production forecast by physical model

set 8

Forecasts of Class 1 have practical use where the wind turbine has been installed
relatively recently and wind speed forecasts are unavailable. NAIVE and SMOOTHING
models in particular do not need collecting energy production time series from date times
more than 48 h backwards. Class 1 forecasts are predictions based only on time series of
forecasted process of energy production, hence their accuracy is low. Class 2 forecasts can
be used if seasonal and daily variability markers have been calculated (if the time series
covers at least 1 year) and wind speed forecasts are not used due to data acquisition cost.
Tests of class 3 use predictions of wind speed and try to check whether lagged energy
production can be included in inputs without decreasing the accuracy of forecasting. These
tests verify if collecting energy production time series is reasonable. Class 4 represents
forecasts using all available input data, while class 5 additionally uses electric energy
production forecast as an output from physical model and input to another single method,
which makes it a hybrid structure composed of two single methods connected in series.

The performance indicators on the test subset are presented separately for each class
in Tables 7–12. Results are sorted in descending order by MAE values. Best result for each
quality measure is bold-faced. A detailed description of the results of hyperparameters
tuning for tested hybrid and ensemble methods (Tables 11 and 12) is provided in Table A1
of Appendix A.

Table 7. Performance measures for single methods with input data class 1.

The Method Code Input Data Set MAE
[kWh]

RMSE
[kWh]

MBE
[kWh]

PCTL75AE
[kWh]

PCTL99AE
[kWh] R

LSTM Set 3 0.4841 0.8029 0.1142 0.3632 2.7985 0.2416
MLPPSO Set 3 0.4842 0.8139 0.2052 0.0954 0.5252 0.2455

SVR Set 3 0.4975 0.8173 0.1643 0.1151 0.8584 0.1587
LR Set 3 0.5183 0.8556 0.3166 0.2923 1.0914 0.2301

MLPBFGS Set 3 0.5304 0.9105 0.3410 0.4291 2.9634 0.2335
SMOOTHING Set 2 0.6244 0.9807 0.0323 0.4064 3.3131 0.2260

NAIVE Set 1 0.6336 1.0026 0.0322 0.3997 3.6138 0.2193

Average measures for single methods
with input data class 1 0.5389 0.8834 0.1723 0.3002 2.1663 0.2221

Notes: the best fitting results for each fitting measure is printed in bold in blue. The worst fitting result is printed in red.
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Table 8. Performance measures for single methods with input data class 2.

The Method Code Input Data Set MAE
[kWh]

RMSE
[kWh]

MBE
[kWh]

PCTL75AE
[kWh]

PCTL99AE
[kWh] R

LSTM Set 4 0.4788 0.7911 0.1184 0.3491 2.6987 0.3323
LR Set 4 0.4802 0.7927 0.1823 0.1408 0.7133 0.3175

MLPPSO Set 4 0.4823 0.7983 0.2224 0.1815 0.5256 0.3417
SVR Set 4 0.5050 0.8280 0.2832 0.2109 0.9387 0.2776

MLPBFGS Set 4 0.5204 0.8912 0.0322 0.4114 2.9430 0.3505

Average performance measures for single
methods with input data class 2 0.4934 0.8203 0.1677 0.2587 1.5639 0.3239

Notes: —the best fitting results for each fitting measure is printed in bold in blue. The worst fitting result is printed in red.

Table 9. Performance measures for single methods with input data class 3.

The Method Code Input Data Set MAE
[kWh]

RMSE
[kWh]

MBE
[kWh]

PCTL75AE
[kWh]

PCTL99AE
[kWh] R

LSTM Set 6 0.2860 0.4812 0.1189 0.3520 2.7899 0.8176
MLPPSO Set 6 0.2902 0.4711 0.0891 0.3693 2.7694 0.8208
MLPBFGS Set 6 0.2961 0.4688 0.0328 0.4041 2.8710 0.8177

SVR Set 6 0.3299 0.5052 0.1448 0.2796 2.5782 0.8064
LR Set 6 0.3562 0.5981 0.1054 0.4612 1.2190 0.7068

PHM Set 5 0.4389 0.6155 −0.0662 0.4691 2.7801 0.6540

Average performance measures for single
methods with input data class 3 0.3329 0.5233 0.0708 0.3892 2.5013 0.7706

Notes: the best fitting results for each fitting measure is printed in bold in blue. The worst fitting result is printed in red.

Table 10. Performance measures for single methods with input data class 4.

The Method Code Input Data Set MAE
[kWh]

RMSE
[kWh]

MBE
[kWh]

PCTL75AE
[kWh]

PCTL99AE
[kWh] R

LSTM Set 7 0.2854 0.4805 0.1155 0.3514 2.7834 0.8188
MLPPSO Set 7 0.2909 0.4691 0.0942 0.3717 2.6131 0.8270
MLPBFGS Set 7 0.2929 0.4594 0.0293 0.4140 2.8527 0.8253

SVR Set 7 0.3412 0.5177 0.1474 0.2988 2.5490 0.7937
LR Set 7 0.3531 0.6055 0.1068 0.4512 1.2243 0.7145

Average performance measures for single
methods with input data class 4 0.3127 0.5064 0.0986 0.3774 2.4045 0.7958

Notes:—the best fitting results for each fitting measure is printed in bold in blue. The worst fitting result is printed in red.

Table 11. Performance measures for hybrid methods with input data class 5.

The Method Code Input Data Set MAE
[kWh]

RMSE
[kWh]

MBE
[kWh]

PCTL75AE
[kWh]

PCTL99AE
[kWh] R

PHM+LSTM Set 8 0.2823 0.4702 0.0830 0.3661 2.8905 0.8202
PHM+MLPPSO Set 8 0.2868 0.4727 0.0943 0.3668 2.8300 0.8209
PHM+MLPBFGS Set 8 0.2914 0.4595 0.0329 0.4062 2.8762 0.8260

PHM+KNNR Set 8 0.2996 0.4746 0.0456 0.3763 2.6014 0.8148
PHM+SVR Set 8 0.3239 0.4979 0.1294 0.2989 2.5510 0.8088
PHM+LR Set 8 0.3380 0.5457 0.0984 0.3899 1.9396 0.7677

Average performance measures for
hybrid methods with input data class 5 0.3037 0.4868 0.0806 0.3674 2.6148 0.8097

Notes: the best fitting results for each fitting measure is printed in bold in blue. The worst fitting result is printed in red.
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Table 12. Performance measures for ensemble methods based on hybrid methods with input data class 5.

The Method Code Input Data Set MAE
[kWh]

RMSE
[kWh]

MBE
[kWh]

PCTL75AE
[kWh]

PCTL99AE
[kWh] R

MLP_INT [PHM+LSTM,
PHM+MLPPSO, PHM+KNNR] Set 8 0.2816 0.4679 0.0855 0.3650 2.7511 0.8206

W_OPT_INT [PHM+LSTM,
PHM+KNNR, PHM+MLPPSO] Set 8 0.2819 0.4681 0.0973 0.3560 2.7173 0.8205

AVE_INT [PHM+LSTM,
PHM+KNNR, PHM+MLPPSO] Set 8 0.2825 0.4701 0.0972 0.3616 2.7871 0.8199

MIN&MAX_SKIP [PHM+MLPPSO,
PHM+KNNR, PHM+LSTM,

PHM+SVR]
Set 8 0.2858 0.4575 0.0844 0.3487 2.6534 0.8259

W_OPT_INT [PHM+LSTM,
PHM+SVR, PHM+MLPPSO,

PHM+KNNR,]
Set 8 0.2860 0.4696 0.0911 0.3563 2.8441 0.8228

AVE_INT [PHM+LSTM, PHM+SVR,
PHM+MLPPSO, PHM+KNNR] Set 8 0.2861 0.4708 0.0929 0.3572 2.8479 0.8221

MIN&MAX_SKIP [PHM+MLPPSO,
PHM+LR, PHM+LSTM, PHM+SVR,

PHM+KNNR]
Set 8 0.2909 0.4677 0.0752 0.3488 2.6536 0.8258

Average performance measures for ensemble methods
based on hybrid methods with input data class 5 0.2850 0.4688 0.0891 0.3562 2.7506 0.8224

Notes: the best fitting results for each fitting measure is printed in bold in blue. The worst fitting result is printed in red.

Based on the results from Table 7, it is possible to draw the following partial conclu-
sions which concern proposed single methods with input data class 1:

• Regarding MAE, qualitative differences between the best two methods (LSTM and
MLPPSO) are very small;

• The two clearly worst methods in terms of MAE are NAIVE (the reference method)
and SMOOTHING;

• Regarding performance measures for the MLP model, PSO is clearly superior to BFGS
as a weight optimization method;

• Values of R are very small and similar for all seven methods, which clearly indicates
that single methods with class 1 input data are of little value for the forecasting of
wind turbine generation.

Based on the results from Table 8, the following partial conclusions can be drawn
concerning the proposed single methods with input data class 2:

• Regarding MAE, qualitative differences between the three best methods (LSTM, LR
and MLPPSO) are very small; linear method LR has surprisingly ranked second-best,

• The two clearly worst methods in terms of MAE are SVR and MLPBFGS,
• Regarding performance measures, for the MLP model, PSO is clearly superior to BFGS

as a weight optimization method,
• Values of R are very small and similar for all five methods, which clearly indicates

that single methods with class 2 input data are of little value for the forecasting of
wind turbine generation.

Based on the results from Table 9, the following partial conclusions can be drawn,
regarding the proposed single methods with input data class 3:

• MAE, RMSE and R have demonstrated clear improvement as compared to the results
of Class 2. The reason is that using for Class 3 as an input wind speed forecasts the
most important explanatory variable.

• Regarding MAE, qualitative differences between the best three methods (LSTM,
MLPPSO and MLPBFGS) are very small,

• In terms of MAE value, PHM is clearly the worst method. This is due to using only
wind speed forecasts as input data (set 5),
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• The rank of linear method LR by MAE has notably decreased. It is the second worst
method in the ranking, so it can be concluded that it is of little value as compared to
non-linear methods when wind speed forecasts are included in input data.

Based on the results from Table 10, the following partial conclusions can be drawn
regarding the proposed single methods with input data class 4:

• Performance measures have slightly improved as compared to the results of Class
3. This is due to additional use of selected, previously observed values of forecasted
time series;

• Taking into account MAE value, qualitative differences among the three best methods
(LSTM, MLPPSO and MLPBFGS) are very small;

• MLPBFGS method deserves attention as its RMSE is not only the lowest, but also visibly
less than for the LSTM method with the lowest MAE;

• The two clearly worst methods in terms of MAE value are SVR and LR. In particular,
linear method LR seems to be of little value.

Based on the results from Table 11, the following partial conclusions can be drawn
regarding the proposed hybrid methods with input data class 5:

• Performance measures slightly improved in comparison with results of Class 4. This
is due to using a hybrid method—the energy generation forecast from PHM model is
additional input data for another, more advanced model;

• Taking into account MAE value, qualitative differences among the two best methods
(PHM+LSTM and PHM+MLPPSO) are very small,

• MLPBFGS method deserves attention as its RMSE is the lowest,
• The two clearly worst methods in terms of MAE value are PHM+SVR and PHM+LR.

In particular, linear method LR seems to be of little value.

Based on the results from Table 12, the following partial conclusions can be drawn
regarding the proposed ensemble methods based on hybrid methods with input data
class 5:

• Performance measures have slightly improved as compared to the results of hybrid
methods with input data of Class 5. This is due to the use of different integration
systems to achieve the final forecast with the use of selected hybrid methods;

• Taking into account MAE value, qualitative differences among ensemble methods
based on hybrid methods are quite small except the last method MIN&MAX_SKIP
[PHM+MLPPSO, PHM+LR, PHM+LSTM, PHM+SVR, PHM+KNNR] using 5 hybrid
methods;

• Special attention should be paid to MIN&MAX_SKIP [PHM+MLPPSO, PHM+KNNR,
PHM+LSTM, PHM+SVR] using 4 instead of 5 hybrid methods (PHM+LR removed
from ensemble). MAE of this method is similar to the value for the best method in the
MLP_INT [PHM+LSTM, PHM+MLPPSO, PHM+KNNR] ranking. At the same time,
it features the lowest RMSE, PCTL75AE, PCTL99AE and the highest value of R.

Table 13 and Figure 12 provide a collective set of results from Tables 7–12, made by
choosing best MAE result from each table. The same, but with RMSE, applies to Table 14
and Figure 13. Moreover, Tables 13 and 14 contain percentage differences between various
methods in relation to the method with the best value of the given error measure. A
percentage value with the positive sign means a difference in favor of the given method.
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Table 13. Collective set of best results with respect to MAE for each class of method.

Class of Method Method Code MAE
[kWh] Difference [%]

The ensemble method based on hybrid methods with input
data class 5

MLP_INT [PHM+LSTM,
PHM+MLPPSO,
PHM+KNNR]

0.2816 -

The hybrid method with input data class 5 PHM+LSTM 0.2823 0.25
The single method with input data class 4 LSTM 0.2854 1.35
The single method with input data class 3 LSTM 0.2860 1.56
The single method with input data class 2 LSTM 0.4788 70.03
The single method with input data class 1 LSTM 0.4841 71.91

Figure 12. Collective set of best results with respect to MAE for each class of method.

Table 14. Collective set of best results with respect to RMSE for each class of method.

Class of Method Method Code RMSE
[kWh] Difference [%]

The ensemble method based on hybrid methods with input
data class 5

MIN&MAX_SKIP
[PHM+MLPPSO,

PHM+KNNR, PHM+LSTM,
PHM+SVR]

0.4575 -

The single method with input data class 4 MLPBFGS 0.4594 0.42
The hybrid method with input data class 5 PHM+MLPBFGS 0.4595 0.44
The single method with input data class 3 MLPBFGS 0.4688 2.47
The single method with input data class 2 LSTM 0.7911 72.92
The single method with input data class 1 LSTM 0.8029 75.50

Figure 13. Collective set of best results with respect to MAE for each class of method.
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Figure 14 provides a forecast from 1 to 48 h made by using method MLP_INT
[PHM+LSTM, PHM+MLPPSO, PHM+KNNR] for 2 following days of an autumn month
(October). The forecast curve smoothing effect is clearly visible. Figure 15 demonstrates
a forecast from 1 to 48 h made by using the above method for two following days of a
spring month (April). For the spring forecast, the curve smoothing effect is slightly less
visible and prediction is less accurate, particularly for the second day, which is normal,
because the accuracy of wind speed forecasts used as input data decreases with increasing
time horizon.

Figure 14. Forecast of electric energy generation from 1 to 48 h made by MLP_INT [PHM+LSTM,
PHM+MLPPSO, PHM+KNNR] method for two following days of an autumn month (October).

Figure 15. Forecast of electric energy generation from 1 to 48 h made by MLP_INT [PHM+LSTM,
PHM+MLPPSO, PHM+KNNR] method for two following days of the spring month (April).

6. Conclusions

The results of the study can be summarized as follows:

(1) Original hybrid methods and ensemble methods based on hybrid methods, developed
for researching specific implementations, have reduced errors of energy generation
forecasts for a small wind turbine as compared to single methods.

(2) The best integration system for ensemble methods based on hybrid methods for
accuracy measures MAE, R, PCTL75AE and PCTL99AE is a new, original integrator
developed for predictions called “averaging ensemble based on hybrid methods
without extreme forecasts” (method code MIN&MAX_SKIP) with 3 hybrid methods
in the ensemble. This method is notable for its simplicity, especially in contrast with
MLP integrator which requires tuning parameters and hyperparameters.

(3) The best integration system in ensemble methods based on hybrid methods for
accuracy measure MAE is the MLP integrator.

(4) “An ensemble based on hybrid methods with weight optimization for each predictor”
performs better than the method with equal weights for each predictor.

(5) Our research has demonstrated the merits of using ensemble methods based on hybrid
methods instead of hybrid methods. Especially, high accuracy gain was achieved as
compared to single methods.

(6) Deep neural network LSTM is the best single method, MLP is the second best, while
using SVR, KNNR and especially LR is less favorable.

(7) An increase in valuable information in input data (from class 1 to class 5) decreases
prediction errors. In particular, wind speed forecasts are the most important input
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data. Using lagged values of forecast time series proved to slightly increase prediction
accuracy. The same applies to using seasonal and daily variability markers.

(8) If lagged values of actual wind velocities can be used as additional input data, the
quality of forecasts should slightly improve.

(9) More research is needed to verify, among other things, the following:

• Is prediction accuracy affected by using forecasts from more than one source?
• Does using greater amount of input data, especially wind speed forecasts from

periods directly neighboring the forecast period, affect prediction accuracy?
• Will the proposed, original method of “averaging ensemble based on hybrid

methods without extreme forecasts” be equally good for different RES predictions
from different locations and 1 to 72 h ahead horizons?
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Abbreviations
The following abbreviations are used in this manuscript:
ACF Autocorrelation function
AE Absolute Error
AM Attention Mechanism
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
ARIMA-FFNN Autoregressive Integrated Moving Average—Feedforward Neural Network
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
BiLSTM-CNN Bidirectional Long Short Term Memory–Convolutional Neural Network
BNN Bayesian Neural Network
DCNN Deep Convolutional neural network
DFFNN Deep Feed Forward Neural Network
DWT Discrete Wavelet Transform
FFT Fast Fourier Transform
GBT Gradient Boosting Trees
KDE Kernel Density Estimation
KNNR K-Nearest Neighbours Regression
LR Linear Regression
LSTM Long Short-Term Memory
LSTM-SARIMA Long Short-Term Memory–Seasonal Autoregressive Integrated Moving Average
MAE Mean Absolute Error
MBE Mean Bias Error
ML Machine Learning
MLP Multi-Layer Perceptron
NWP Numerical Weather Prediction
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PCTL75AE The 75th percentile
PCTL99AE The 99th percentile
p.u. Per unit
PV Photovoltaic System
R Pearson linear correlation coefficient
R2 Determination coefficient
RES Renewable Energy System
RF Random Forests
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RSM Response Surface Method
SVR Support Vector Regression
UM Unified Model

Appendix A

Table A1. The results of hyperparameters tuning for hybrid methods and ensemble methods based on hybrid methods.

Method Code Description of Method, the Name and the Range of Values of Hyperparameters Tuning
and Selected Values

PHM+LSTM

The number of hidden layers:1–2, selected:2, the number of neurons in hidden layer: 3–15,
selected: 5–5,
the activation function in hidden layer: ReLU/ELU/PReLU/LeakyReLU/sigmoid/tanh,
selected ReLU,
the activation function in output layer: ReLU/sigmoid/tanh/linear, selected tanh, learning
algorithm: ADAM, lr = 0.001, decay = 1 × 10−5, epochs: 2000, patience: 100–500, selected:
100, batch size: 128; shuffle:True.

PHM+SVR
Regression SVM: Type-1, Type 2, selected: Type-1, kernel type: Gaussian (RBF), the width
parameter σ: 0.333, the regularization constant C, range: 1–20 (step 1), selected: 3, the
tolerance ε, range: 0.05–2 (step 0.05), selected: 0.1.

PHM+KNNR Distance metrics: Euclidean, Manhattan, Minkowski, selected: Euclidean, the number of
nearest neighbors k, range: 1–200, selected: 42.

PHM+MLPPSO

The number of neurons in hidden layers: 5–20, selected 2 hidden layers 10–8, learning
algorithm: PSO, the activation function in hidden layer: linear, hyperbolic tangent, selected:
hyperbolic tangent, the activation function in output layer: hyperbolic tangent. The number
of particles in swarm (20, 50, 100, 150), selected 50, number of algorithm iterations (100,
1000) selected 50, values of coefficients in formula for particles movements (0.7, 1.0, 1.4),
selected 1.4 for first coef and 0.7 for the rest, number of iterations between subsequent
disturbances in swarm (50, 100, 400), selected 400, neighborhood width (2, 5, 10), selected 5.

PHM+MLPBFGS

The number of neurons in hidden layer: 5–20, selected: 13, learning algorithm: BFGS, the
activation function in hidden layer: linear, hyperbolic tangent, selected: hyperbolic tangent,
the activation function in output layer: linear.

MLP_INT [PHM+LSTM,
PHM+MLPPSO,PHM+KNNR]

The number of neurons in hidden layer: 3–10, selected: 4, learning algorithm: BFGS, the
activation function in hidden layer: linear, hyperbolic tangent, selected: hyperbolic tangent,
the activation function in output layer: linear.
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