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Abstract: A vehicle ad hoc network (VANET) is a solution for road safety, congestion management,
and infotainment services. Integration of cognitive radio (CR), known as CR-VANET, is needed to
solve the spectrum scarcity problems of VANET. Several research efforts have addressed the concerns
of CR-VANET. However, more reliable, robust, and faster spectrum sensing is still a challenge. A
novel segment-based CR-VANET (Seg-CR-VANET) architecture is therefore proposed in this paper.
Roads are divided equally into segments, and they are sub-segmented based on the probability
value. Individual vehicles or secondary users produce local sensing results by choosing an optimal
spectrum sensing (SS) technique using a hybrid machine learning algorithm that includes fuzzy
and naïve Bayes algorithms. We used dynamic threshold values for the sensing techniques. In
this proposed cooperative SS, the segment spectrum agent (SSA) made the global decision using
the tri-agent reinforcement learning (TA-RL) algorithm. Three environments (network, signal, and
vehicle) are learned by this proposed algorithm to determine primary (licensed) users’ activities. The
simulation results indicate that, compared to current works, the proposed Seg-CR-VANET produces
better results in spectrum sensing.

Keywords: spectrum sensing; cognitive radio; VANET; tri-agent reinforcement learning; machine learning

1. Introduction

A vehicular ad hoc network (VANET) enables transmission among smart vehicles
for various purposes, including road safety, entertainment, congestion control, vehicle
safety, etc. [1]. However, the vehicular network is in general composed of a large number
of vehicles. Thus, spectrum availability for vehicles at all times becomes challenging [2].
A huge amount of data sharing is required for the implementation of VANET. According
to Intel, a single smart car will share about 4 terabytes of data a day in the near future [3].
The VANET supports the IEEE 802.11p protocol, also known as dedicated short-range
communications (DSRC), which has a 75 MHz bandwidth within the 5.85 GHz–5.925 GHz
frequency spectrum. However, this spectrum range is not adequate for this massive volume
of data exchange [4]. Therefore, a wider range is required to facilitate such high-volume
data sharing.

Cognitive radio (CR) is a smart radio designed to utilize unlicensed bands known
as spectrum holes [5]. As spectrum scarcity is addressed as the major problem for imple-
menting VANET in recent times, CR becomes an emerging technology. In CR, unlicensed
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users or secondary users (SUs) sense the vacant licensed spectrum used by the primary
users (PUs). The spectrum’s efficient utilization in the automotive environment integrates
CR with VANET, which is termed CR-VANET. The vehicles are the SUs that include the
CR technique by which they can sense the signals and utilize the licensed spectrum if the
unlicensed spectrum is unavailable.

Spectrum sensing is the vital process of CR that identifies spectrum availability by
sensing PU activities [6]. Through spectrum sensing, the available channels can be de-
termined, which are further used for data transmission. Spectrum sensing can be made
individually or cooperatively. Spectrum sensing is composed of conventional techniques,
among which energy detection, cyclostationary feature detection, and matched filter de-
tection are used most for sensing. The spectrum sensing conducted by a single vehicle is
nevertheless vulnerable to multiple challenges, including multipath fading, shadowing,
noise uncertainty, and hidden PU problems [7]. Moreover, vehicles are not familiar with
PU activities in advance, and the PU system is not part of the sensing process. Thus,
the sensing efficiency is not optimum while the individual vehicle performs, resulting in
interference with the PU system. Furthermore, in a non-cooperating sensing system, it is
difficult to model the PU activity pattern correctly. To mitigate these problems, cooperative
spectrum sensing (CSS) has been introduced in the literature.

In CR-VANET, CSS allows all the vehicles to perform sensing at the same time, and
then it reports to the fusion center or to themselves to make the global or the final decision.
Once the sensing is performed, the channels are allocated by the RSU (roadside unit) and
used for transmission. CSS is more accurate than individual sensing, since the global
decision can be made based on multiple sensing reports [8]. In CSS, from the sensing
reports of local information, the global decision is taken using fusion methods that can be
the OR/AND rule and other methods. In CSS, the spatial diversity of the SUs is achieved.
This spatial diversity, which is known as the cooperative gain, increases the spectrum
sensing efficiency. This gain is also seen from a hardware perspective of the detector. The
signal-to-noise ratio (SNR) of the primary signal can be very low, and identifying this
becomes a challenging task due to multipath fading and shadowing. Since the sensitivity
of recipients means the potential to detect the weak signals, it introduces a strict sensitivity
criterion that dramatically raises the sophistication of the program and the related hardware
costs. It is also difficult to increase detection efficiency by raising the sensitivity when the
SNR of PU signals is below a certain threshold called the SNR wall. Fortunately, CSS will
considerably alleviate the sensitivity criteria and hardware constraint problems. It can
solve output deterioration by multipath fading and shadowing [9].

While cooperative gains can be obtained by cooperative sensing, as discussed previ-
ously, several variables can restrict the achievable cooperative gain. For example, when CR
users with the same obstacle are in spatially associated shadows, their observations are
correlated with each other. More collaborative spatially correlated CR users can be harmful
to detection performance [6,10]. This raises the challenge of the user selection for CSS. The
CR-VANET architecture is partitioned using segments or clusters to perform CSS [11]. The
formation of clusters or segmentation of road lanes improves the sensing performance
and results in a higher data delivery ratio. Moreover, cluster formation enables mobility
management support by grouping vehicles with similar behavior, such as speed, direction,
etc. The cluster head (CH) is selected to carry the sensing report to the fusion center in
the clustering approach. There are additional time and resources involved in determining
the CH. Moreover, CSS can also lead to overhead cooperation, in addition to gain-limiting
factors. Overhead refers to any additional time, delay, energy, and operation dedicated
to cooperative sensing compared to the individual (non-cooperative) spectrum sensing
situation [9].

There are three types of CSS. They are centralized, distributed, and relay-assisted [12].
Individual vehicles sense the spectrum in the centralized CSS and then send local sensing
results to a central node termed a fusion center (FC). An FC can be a roadside unit (RSU), a
cluster head (CH), and others. The FC is responsible for deciding on the state of occupation
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of the PU. The FC makes the global sensing reports with the individual vehicles’ local
sensing reports by using hard or soft fusion or other rules.

Although many research efforts have been carried over CR-VANET, the performance
is still affected by many factors. Those critical factors are the following:

• Imperfect spectrum sensing without proper environmental knowledge
• High spectrum sensing errors due to lack of global decision-making
• CSS susceptibility to the overhead issues
• Considerable transmission delay due to improper network management and channel

assignment

Due to the above factors, CR-VANET performance is degraded. Prior research works
have either focused on VANET improvement or CR improvement, which are insufficient
to handle all the above issues. A combined approach is necessary to enhance the overall
performance of spectrum sensing of CR-VANET.

1.1. Motivation and Contributions

In recent times, road safety has become a significant concern due to the growth of
smart vehicles. Hybrid CR-VANET architectures have been widely studied to provide
better efficiency for data transmission. The primary motivation of this research work
is the unsolved research problems that exists in those prior works. The main issue is
that the combination of spectrum sensing and proper network management has not been
focused. Spectrum availability detection alone cannot assure appropriate data transmission
efficiency since it also depends on spectrum management and network management. This
major issue is the primary motivation for this work.

Moreover, existing works have several limitations in spectrum sensing architecture
for CR-VANET. For instance, several critical CR network parameters are not being con-
sidered, using a fixed threshold value for sensing, using a single sensing technique in all
scenarios [6,13,14]. We then formulate our objectives to resolve this unsolved issue. This
proposed architecture’s primary research objective is to design spectrum sensing and make
accurate global decisions using an advanced tri-agent reinforcement learning algorithm for
a dynamic segmentation enabled CR-VANET.

Several advantages can be achieved by carrying out sub-segmentation of the road
segment. They include the following:

• The involvement of the sub-segmentation process makes network management easy
and improves data transmission efficacy.

• Cooperation overhead is reduced.
• Unlike the clustering system, there is no need for CH selection, which saves time,

as selecting CH takes additional time and creates extra delays, which degrade the
network’s performance.

• By carrying out sub-segmentation, synchronization among the SUs is possible without
added complexity.

• It helps to solve bandwidth requirement problems. A large amount of bandwidth is
needed for sending the sensing reports by SUs to the FC.

Some of the significant contributions of this paper are as follows:

• A novel segment-based CR-VANET (Seg-CR-VANET) architecture is designed by
segmenting the road lanes into equal distances. Segments are managed continuously
by a probability-based sub-segment management approach. Each segment is further
divided into sub-segments based on speed, segment size, and node degree. The
proposed work improves VANET in two aspects, namely (i) accurate spectrum sensing
and decision-making, and (ii) stable network management.

• Spectrum sensing accuracy is improved by a dynamically selecting sensing technique
based on signal to noise ratio (SNR) and noise power. Each vehicle first selects
an optimal sensing technique for the current situation by using the fuzzy–naïve
Bayes algorithm.
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• A dynamic threshold value is introduced for spectrum sensing. This novel solution
assures that adaptive sensing results in accurate sensing reports.

• Segment spectrum agents (SSAs) then make a global decision on all vehicles’ collected
sensing reports. To avoid wrong decisions, SSA uses a novel tri-agent reinforcement
learning (TA-RL) algorithm that learns three environments (signal, network, and
vehicle behavior) by three agents. If channels are available, RSU allocates the available
channels to the vehicles.

1.2. Paper Layout

The rest of this paper is organized as follows: Section 2 surveys significant research
works carried out on CR-VANERT. The section also includes the primary and sub-research
problems that are solved in this paper. Section 3 details the proposed architecture with the
proposed algorithms. Section 4 discusses the simulation set up and the theoretical compari-
son with prior works. Section 5 discusses the obtained results with comparative analysis.
In Section 6, we conclude our contributions and highlight future research directions.

2. Related Works

This section reviews the current research work and summarizes the research gap, and
it is focused on improving the efficiency of CR-VANET.

Spectrum sensing and management, which are the crucial processes of CR-VANET,
are widely studied in the literature. A vehicular cognitive small cell network is presented
to solve spectrum sharing problems using a game-theoretic approach [15]. A Bertrand
competition model is proposed for optimal utilization of spectrum efficiency using a genetic
simulated annealing algorithm. This algorithm determines the Nash equilibrium, and
then the spectrum price is optimized using mutation and crossover operators. A genetic
simulated annealing algorithm’s high time complexity increases spectrum sensing and
assignment time, which is not suitable for dynamic vehicular networks.

Cooperative spectrum sensing is performed by the RL algorithm with dynamic spec-
trum access (DSA) [14]. The problem in this work is that it is not suitable for dense vehicle
environments, including urban scenarios, since the segments are maintained at a fixed
size. Further, RL learns only the channel environment, and the decision is made based on a
static threshold value, which is not suitable for a dynamic vehicular environment.

A regional cluster-based approach is utilized by using a linear programming model [16].
This work fails to balance the density among various RSUs, and the involvement of linear
programming introduces difficulties in defining the objective function. Moreover, chan-
nel estimation is performed a priori, which is unsuitable for VANET. In CSS, a binary
decision-making approach is used on the aggregated local sensing reports [4]. All local
reports are generated using an energy detection method with a static threshold value and
are ineffective in a dynamic environment. Binary decision-making is also inaccurate since
it only relies on the collected reports without knowledge of the channel and the current
network environment.

A channel slotted contention protocol is designed with random single-channel sensing,
slotted contention, and aggregation for high-density vehicle scenarios [17]. First, the vehicle
selects one channel at random from all the channels, and then the sensing information
is sent to RSU for decision-making. The OR rule is then applied for a decision and the
PU signals are used and the data transmission is performed. A cooperative mechanism is
presented with adjustable double thresholds that aim to reduce false alarm probability [18].
For sensing, the energy detection method is used, and it determines the decision-variant
and independent threshold. Here the sensing decision is given using the OR fusion rule
defined from the threshold value. The threshold value is determined concerning the
probability of the detection of the signals.

CSS can also be performed using historical data information [19]. It focuses on
the development of an attack model that has two different attacks, namely selfish and
malicious. Based on the sensing results, it can differentiate the sensing of attackers and
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normal SUs. The speed adjustment is also performed for the nodes in the network, which
is suitable for highway scenarios. Hybrid cooperative spectrum sensing is performed by
spatial–temporal correlation [20]. Here the historical sensing information is collected by
the SUs that define temporal correlation, and it is combined with spatial correlation. The
proposed scheme uses two steps: user selection and CSS. With the combination of spatial
and temporal measurements, the optimal probability is predicted. With these methods,
historical data collection and maintenance is a challenging issue, and it can be affected by
many environmental factors such as noise.

In terms of spectrum allocation, quality of service (QoS) provisioning is the main
focus [21]. Channel allocation is incorporated using the semi-Markov decision process
(SMDP). The collision probability is determined and followed by the vehicle model. Here,
the QoS is one of the significant constraints that is attained from proper channel assignment.
Channel assignment follows the QoS factor but is not clearly described. Consideration of
all QoS factors relatively increases delay.

From these recent works, two main problems were formulated. Those problems are
the following:

Lack of Spectrum Management: The vehicles as SUs in CR-VANET use the conven-
tional spectrum sensing technique, which is subject to limitations. Hence, each technique is
suitable only for environmental features. Therefore, the use of a spectrum sensing tech-
nique for all conditions leads to a degraded spectrum sensing decision that increases the
false alarm rate.

Lack of Network Management: In CR-VANET, the road lane is segmented concerning
its length. The road lane segmentation is fixed and uneven, so vehicle traffic density differs
from time to time, impacting abnormal detection of the spectrum and channel allocation.

3. Proposed CR-VANET Model

In this section, we explain the proposed work in detail with the proposed algorithms.

3.1. Network Model and Assumptions

The proposed CR-VANET model is comprised of N number of vehicles as V1, V2, . . . , VN .
From here, SUs and vehicles represent the same thing since the vehicles are the SUs in
our work. The SUs sense the vacant spectrum of PUs. The network model also consists of
RSU. The proposed network is disjointed into multiple segments as S1, S2, . . . , Ss. In each
segment, we introduce a new segment sensing agent (SSA), i.e., the overall network has
s number of SSAs for performing sensing and decision-making. Spectrum sensing and
decision-making are managed by SSAs and SUs cooperatively.

The overall architecture is represented in Figure 1. As shown in the network model,
we performed spectrum sensing, decision-making, and channel allocation.

At the same time, segment management and channel allocation management are
carried by RSUs. Each entity in the designed network architecture has its work process.
The entities and their responsibilities are illustrated in Figure 2 and described here:

(1) The vehicles decide the sensing technique and sense the signal, and then report to the
spectrum agent.

(2) The SSA collects local sensing information and makes a decision using reinforcement
learning and reports to CR-RSU.

(3) The CR-RSU manages the segments, and it assigns channels to vehicles.
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3.2. Dynamic Road Segmentation

In this proposed work, the network is considered with segments of equal length.
However, it is not realistic that vehicle density will be the same all the time. Each time
the segment’s vehicle density varies, there may be a high density in a particular seg-
ment, leading to ineffectual network management. This paper proposes dynamic segment
management to manage density variation through a probability value update. Here, the
segment is further sub-segmented based on the probability value.

The probability value is formulated using multiple criteria including speed of vehicles
(S), segment size (φ), and node degree (Θ). The probability value for sub-segmentation can
be obtained by normalizing the following value:

Ψ = ∑ S, φ, Θ (1)

Let us assume that a segment can be divided into a maximum nsub number of sub-
segments. We assume that there is the same number of sensors available, i.e., every segment
has a sensor. Each sensor is used to determine the speed of the vehicle, the number of the
vehicle, and the direction.

Here, the speed value is computed as the average speed of all vehicles in the sub-
segment, i.e.,

S =
∑ S1,S2, . . . ,Sm

m
(2)

where m is the number of vehicles in that sub-segment. Ψ is normalized (denoted as Ψnorm)
to compute the probability value. If the probability value is higher than the threshold value
(Thseg), the sub-segmentation process is initiated and enabled, i.e.,

Ψnorm > Thseg (3)

Whenever any sub-segment’s probability value Ψ is greater than the threshold value
(Thseg), that sub-segment will be treated as a separate sub-segment. Let us assume our
operational segment is the ith segment. In this segment, for example, if only the jth sub-
segment follows Ψj > Thseg, then jth sub-segment will be considered as a separate sub-
segment, and the rest of the sub-segments (nsub−1) will be treated as another sub-segment.
This means that nsub number of physical sub-segments will be considered as two logical
sub-segments. If another kth sub-segment’s Ψk fulfills Equation (3), then the kth sub-segment
will be considered to be another group or coalition. In this case, there will be three sub-
segments, namely the jth, kth, and the rest of the sub-segments (nsub−2). Figure 3 depicts
the scenario discussed above.

Let us consider that the ith segment’s jth sub-segment has n number of vehicles. The
participating SUs can be expressed as

SUij = {SUij1, SUij2, . . . SUijn}. (4)

Similarly, for the kth sub-segment, if there are q number of vehicles, then it can be expressed
as

SUik = {SUik1, SUik2, . . . SUikq}. (5)

SSA will consider these sub-segments as the clusters or the coalitions. For each
sub-segment, different channels or the bands of interest will be different.
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Figure 3 shows that SSA treats each sub-segment separately. The processes include
the following:

(1) SSA provides the channel or the band of interest to the SUs for spectrum sensing.
Different channels or bands of interest will be provided to the different sub-segments.

(2) All the vehicles of that sub-segment will send the local sensing results to the fusion
center, i.e., SSA, in our case. SSA will combine its learning results and the local sensing
reports of that sub-segment to make the global decision, i.e., the final decision of the
PU’s presence or absence.

(3) After making the SSA’s global decision, it sends the individual (each sub-segment)
reports to the RSU.

(4) RSU assigns the detected channel to the optimal vehicle.

3.3. Local Sensing and Dynamic Threshold Value

In CR-based networks, spectrum sensing plays a pivotal role in determining the
available channels and in supporting data transmission through available channels. There
are many conventional methods available for spectrum sensing [22]. However, the dynamic
network and channel environment affect the spectrum sensing report. Thus, we presented
a novel methodology to select the spectrum sensing method with the awareness of the
current network situation.

In this work, SSA acts as an FC. SSA will send the spectrum or the band of interest
to the SUs of a particular sub-segment for local sensing. We have concentrated on energy
detection (ED) [23] and matched filter (MF) [24] as local sensing techniques, which can
be denoted as ST1 and ST2 respectively. To select an optimal sensing technique for the
current situation, we present the fuzzy–naïve-Bayes machine learning (ML) algorithm.
The proposed algorithm computes SNR and noise power ranges for selecting the optimal
sensing technique. The naïve Bayes algorithm is a classification technique that is used in
many applications. In this paper, we improved the naïve Bayes algorithm by incorporating
a fuzzy algorithm that fuzzifies the attributes before classification. In this work, the class
denotes the optimal sensing technique. That is, the first class of signals belongs to ST1 and
the second class of signals belongs to ST2. Each class has multiple possible values, and the
current technique is selected based on two major attributes: SNR and noise power. Further,
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the ML technique is modelled as a combination of the Bayesian probabilistic model and
the maximum a posteriori (MAP) rule. It can be given as

NB(a) = argmaxc∈CP(c)
na

∏
i=1

P(xi|c) (6)

Here, a is the complete set of attributes, xi is the attribute that belongs to Xi, and c
represents the corresponding class. In this work, na (i.e., the number of attributes) is 2 (SNR
and noise power). The above equation models the conventional naïve Bayes algorithm.
When it is combined with a fuzzy approach, the attributes are converted to crisp values to
overcome the issue of information loss that occurs in naïve Bayes. In the hybrid ML, the
degree of truth is considered as probabilities as P(xi|a) = µxi and P(c|a) = µc. Thus, the
fuzzy–naïve Bayes model is computed as follows:

NB(a) = argmaxc∈CP(c) ∑
x1j∈X1

P
(
x1j
∣∣c)

P
(
x1j
) µx1j . . . ∑

xnaj∈X1

P
(
xnaj

∣∣c)
P
(

xnaj
) µxnaj (7)

For each attribute, the probability value is computed as in the naïve Bayes algorithm.
The probability computation can be performed as follows [25]:

P(C = c) =

(
∑
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rithm. When it is combined with a fuzzy approach, the attributes are converted to crisp 
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Here, 𝑂 denotes the number of samples considered for classification, 𝐷(𝑋 ) is the 
finite domains dom (𝑋 ) of the attributes 𝑥 , and ℴ is the training sample set. In this way, 
the current network situation is classified based on a reference signal. The probability de-
pends upon the attributes, including SNR and noise power. If SNR is high and noise 
power is low, then energy detection (i.e., 𝑆𝑇 ) is performed.  

We used the Neyman–Pearson (NP) binary hypothesis testing [26] in our scheme. 
The energy detection method senses the spectrum based on two hypotheses as follows: 𝑅(𝑛) = 𝓌(𝑛) ,                          𝐻𝓌(𝑛) + 𝕡(𝑛),           𝐻  (11) 

Here, 𝑅(𝑛) is the signal sample received by SU, n = 1, 2, …, N, N is the number of 
samples. 𝐻  denotes the absence of PU signal and presence of noise signal (𝓌(𝑛) ), which 
is the additive white Gaussian noise (AWGN) with zero mean and variance of 𝜎𝓌, and 𝐻  denotes the presence of PU signal 𝕡(𝑛) with the noise signal. The hypothesis is com-
puted from the energy level computed from the sensed signal as follows: 

𝐸 = 𝑅(𝑛) . (12) 

If the computed energy level is higher than the threshold value 𝜆  in Equation (13) 
[14], then it is 𝐻 ; otherwise, it is denoted as 𝐻 .  𝜆 = 𝜎𝓌(ℚ 𝑃 √2𝑁 + 𝑁 (13) 

Here, 𝑃 is the probability of false alarm, and ℚ  is the inverse Marcum ℚ func-
tion. In this way, 𝑆𝑇  determines the presence/absence of PU activity on the sensed chan-
nel. As the energy value is affected by SNR and noise power, the 𝑆𝑇  is unsuitable for low 
SNR scenarios. This decision can be made from a hybrid ML algorithm a priori and based 
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rithm. When it is combined with a fuzzy approach, the attributes are converted to crisp 
values to overcome the issue of information loss that occurs in naïve Bayes. In the hybrid 
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finite domains dom (𝑋 ) of the attributes 𝑥 , and ℴ is the training sample set. In this way, 
the current network situation is classified based on a reference signal. The probability de-
pends upon the attributes, including SNR and noise power. If SNR is high and noise 
power is low, then energy detection (i.e., 𝑆𝑇 ) is performed.  
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Here, 𝑃 is the probability of false alarm, and ℚ  is the inverse Marcum ℚ func-
tion. In this way, 𝑆𝑇  determines the presence/absence of PU activity on the sensed chan-
nel. As the energy value is affected by SNR and noise power, the 𝑆𝑇  is unsuitable for low 
SNR scenarios. This decision can be made from a hybrid ML algorithm a priori and based 

∈O µ

Energies 2021, 14, 1169 9 of 28 
 

 

Further, the ML technique is modelled as a combination of the Bayesian probabilistic 
model and the maximum a posteriori (MAP) rule. It can be given as 

𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃(𝑥 |𝑐) (6) 

Here, 𝔞 is the complete set of attributes, 𝑥  is the attribute that belongs to 𝑋 , and 𝑐 
represents the corresponding class. In this work, 𝑛𝑎 (i.e., the number of attributes) is 2 
(SNR and noise power). The above equation models the conventional naïve Bayes algo-
rithm. When it is combined with a fuzzy approach, the attributes are converted to crisp 
values to overcome the issue of information loss that occurs in naïve Bayes. In the hybrid 
ML, the degree of truth is considered as probabilities as 𝑃(𝑥 |𝔞) = 𝜇  and 𝑃(𝑐|𝔞) = 𝜇 . 
Thus, the fuzzy–naïve Bayes model is computed as follows: 𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃 𝑥1 𝑐𝑃 𝑥1 𝜇 …∈

𝑃 𝑥𝑛 𝑐𝑃 𝑥𝑛𝑎 𝜇∈  (7) 

For each attribute, the probability value is computed as in the naïve Bayes algorithm. 
The probability computation can be performed as follows [25]: 𝑃(𝐶 = 𝑐) = (∑ 𝜇ℴℴ∈ ) + 1|𝑂| + |𝐷(𝐶)|  (8)

𝑃(𝑋 = 𝑥 ) = ∑ 𝜇ℴℴ∈ + 1|𝐿| + |𝐷(𝑋 )|  (9)

𝑃(𝑋 = 𝑥 |𝐶 = 𝑐) = ∑ 𝜇ℴ 𝜇ℴℴ∈ + 1(∑ 𝜇ℴℴ∈ ) + |𝐷(𝑋 )| (10)

Here, 𝑂 denotes the number of samples considered for classification, 𝐷(𝑋 ) is the 
finite domains dom (𝑋 ) of the attributes 𝑥 , and ℴ is the training sample set. In this way, 
the current network situation is classified based on a reference signal. The probability de-
pends upon the attributes, including SNR and noise power. If SNR is high and noise 
power is low, then energy detection (i.e., 𝑆𝑇 ) is performed.  

We used the Neyman–Pearson (NP) binary hypothesis testing [26] in our scheme. 
The energy detection method senses the spectrum based on two hypotheses as follows: 𝑅(𝑛) = 𝓌(𝑛) ,                          𝐻𝓌(𝑛) + 𝕡(𝑛),           𝐻  (11) 

Here, 𝑅(𝑛) is the signal sample received by SU, n = 1, 2, …, N, N is the number of 
samples. 𝐻  denotes the absence of PU signal and presence of noise signal (𝓌(𝑛) ), which 
is the additive white Gaussian noise (AWGN) with zero mean and variance of 𝜎𝓌, and 𝐻  denotes the presence of PU signal 𝕡(𝑛) with the noise signal. The hypothesis is com-
puted from the energy level computed from the sensed signal as follows: 

𝐸 = 𝑅(𝑛) . (12) 

If the computed energy level is higher than the threshold value 𝜆  in Equation (13) 
[14], then it is 𝐻 ; otherwise, it is denoted as 𝐻 .  𝜆 = 𝜎𝓌(ℚ 𝑃 √2𝑁 + 𝑁 (13) 

Here, 𝑃 is the probability of false alarm, and ℚ  is the inverse Marcum ℚ func-
tion. In this way, 𝑆𝑇  determines the presence/absence of PU activity on the sensed chan-
nel. As the energy value is affected by SNR and noise power, the 𝑆𝑇  is unsuitable for low 
SNR scenarios. This decision can be made from a hybrid ML algorithm a priori and based 

xi
µ

Energies 2021, 14, 1169 9 of 28 
 

 

Further, the ML technique is modelled as a combination of the Bayesian probabilistic 
model and the maximum a posteriori (MAP) rule. It can be given as 

𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃(𝑥 |𝑐) (6) 

Here, 𝔞 is the complete set of attributes, 𝑥  is the attribute that belongs to 𝑋 , and 𝑐 
represents the corresponding class. In this work, 𝑛𝑎 (i.e., the number of attributes) is 2 
(SNR and noise power). The above equation models the conventional naïve Bayes algo-
rithm. When it is combined with a fuzzy approach, the attributes are converted to crisp 
values to overcome the issue of information loss that occurs in naïve Bayes. In the hybrid 
ML, the degree of truth is considered as probabilities as 𝑃(𝑥 |𝔞) = 𝜇  and 𝑃(𝑐|𝔞) = 𝜇 . 
Thus, the fuzzy–naïve Bayes model is computed as follows: 𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃 𝑥1 𝑐𝑃 𝑥1 𝜇 …∈

𝑃 𝑥𝑛 𝑐𝑃 𝑥𝑛𝑎 𝜇∈  (7) 

For each attribute, the probability value is computed as in the naïve Bayes algorithm. 
The probability computation can be performed as follows [25]: 𝑃(𝐶 = 𝑐) = (∑ 𝜇ℴℴ∈ ) + 1|𝑂| + |𝐷(𝐶)|  (8)

𝑃(𝑋 = 𝑥 ) = ∑ 𝜇ℴℴ∈ + 1|𝐿| + |𝐷(𝑋 )|  (9)

𝑃(𝑋 = 𝑥 |𝐶 = 𝑐) = ∑ 𝜇ℴ 𝜇ℴℴ∈ + 1(∑ 𝜇ℴℴ∈ ) + |𝐷(𝑋 )| (10)

Here, 𝑂 denotes the number of samples considered for classification, 𝐷(𝑋 ) is the 
finite domains dom (𝑋 ) of the attributes 𝑥 , and ℴ is the training sample set. In this way, 
the current network situation is classified based on a reference signal. The probability de-
pends upon the attributes, including SNR and noise power. If SNR is high and noise 
power is low, then energy detection (i.e., 𝑆𝑇 ) is performed.  

We used the Neyman–Pearson (NP) binary hypothesis testing [26] in our scheme. 
The energy detection method senses the spectrum based on two hypotheses as follows: 𝑅(𝑛) = 𝓌(𝑛) ,                          𝐻𝓌(𝑛) + 𝕡(𝑛),           𝐻  (11) 

Here, 𝑅(𝑛) is the signal sample received by SU, n = 1, 2, …, N, N is the number of 
samples. 𝐻  denotes the absence of PU signal and presence of noise signal (𝓌(𝑛) ), which 
is the additive white Gaussian noise (AWGN) with zero mean and variance of 𝜎𝓌, and 𝐻  denotes the presence of PU signal 𝕡(𝑛) with the noise signal. The hypothesis is com-
puted from the energy level computed from the sensed signal as follows: 

𝐸 = 𝑅(𝑛) . (12) 

If the computed energy level is higher than the threshold value 𝜆  in Equation (13) 
[14], then it is 𝐻 ; otherwise, it is denoted as 𝐻 .  𝜆 = 𝜎𝓌(ℚ 𝑃 √2𝑁 + 𝑁 (13) 

Here, 𝑃 is the probability of false alarm, and ℚ  is the inverse Marcum ℚ func-
tion. In this way, 𝑆𝑇  determines the presence/absence of PU activity on the sensed chan-
nel. As the energy value is affected by SNR and noise power, the 𝑆𝑇  is unsuitable for low 
SNR scenarios. This decision can be made from a hybrid ML algorithm a priori and based 

c

)
+ 1(

∑

Energies 2021, 14, 1169 9 of 28 
 

 

Further, the ML technique is modelled as a combination of the Bayesian probabilistic 
model and the maximum a posteriori (MAP) rule. It can be given as 

𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃(𝑥 |𝑐) (6) 

Here, 𝔞 is the complete set of attributes, 𝑥  is the attribute that belongs to 𝑋 , and 𝑐 
represents the corresponding class. In this work, 𝑛𝑎 (i.e., the number of attributes) is 2 
(SNR and noise power). The above equation models the conventional naïve Bayes algo-
rithm. When it is combined with a fuzzy approach, the attributes are converted to crisp 
values to overcome the issue of information loss that occurs in naïve Bayes. In the hybrid 
ML, the degree of truth is considered as probabilities as 𝑃(𝑥 |𝔞) = 𝜇  and 𝑃(𝑐|𝔞) = 𝜇 . 
Thus, the fuzzy–naïve Bayes model is computed as follows: 𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃 𝑥1 𝑐𝑃 𝑥1 𝜇 …∈

𝑃 𝑥𝑛 𝑐𝑃 𝑥𝑛𝑎 𝜇∈  (7) 

For each attribute, the probability value is computed as in the naïve Bayes algorithm. 
The probability computation can be performed as follows [25]: 𝑃(𝐶 = 𝑐) = (∑ 𝜇ℴℴ∈ ) + 1|𝑂| + |𝐷(𝐶)|  (8)

𝑃(𝑋 = 𝑥 ) = ∑ 𝜇ℴℴ∈ + 1|𝐿| + |𝐷(𝑋 )|  (9)

𝑃(𝑋 = 𝑥 |𝐶 = 𝑐) = ∑ 𝜇ℴ 𝜇ℴℴ∈ + 1(∑ 𝜇ℴℴ∈ ) + |𝐷(𝑋 )| (10)

Here, 𝑂 denotes the number of samples considered for classification, 𝐷(𝑋 ) is the 
finite domains dom (𝑋 ) of the attributes 𝑥 , and ℴ is the training sample set. In this way, 
the current network situation is classified based on a reference signal. The probability de-
pends upon the attributes, including SNR and noise power. If SNR is high and noise 
power is low, then energy detection (i.e., 𝑆𝑇 ) is performed.  

We used the Neyman–Pearson (NP) binary hypothesis testing [26] in our scheme. 
The energy detection method senses the spectrum based on two hypotheses as follows: 𝑅(𝑛) = 𝓌(𝑛) ,                          𝐻𝓌(𝑛) + 𝕡(𝑛),           𝐻  (11) 

Here, 𝑅(𝑛) is the signal sample received by SU, n = 1, 2, …, N, N is the number of 
samples. 𝐻  denotes the absence of PU signal and presence of noise signal (𝓌(𝑛) ), which 
is the additive white Gaussian noise (AWGN) with zero mean and variance of 𝜎𝓌, and 𝐻  denotes the presence of PU signal 𝕡(𝑛) with the noise signal. The hypothesis is com-
puted from the energy level computed from the sensed signal as follows: 

𝐸 = 𝑅(𝑛) . (12) 

If the computed energy level is higher than the threshold value 𝜆  in Equation (13) 
[14], then it is 𝐻 ; otherwise, it is denoted as 𝐻 .  𝜆 = 𝜎𝓌(ℚ 𝑃 √2𝑁 + 𝑁 (13) 

Here, 𝑃 is the probability of false alarm, and ℚ  is the inverse Marcum ℚ func-
tion. In this way, 𝑆𝑇  determines the presence/absence of PU activity on the sensed chan-
nel. As the energy value is affected by SNR and noise power, the 𝑆𝑇  is unsuitable for low 
SNR scenarios. This decision can be made from a hybrid ML algorithm a priori and based 

∈O µ

Energies 2021, 14, 1169 9 of 28 
 

 

Further, the ML technique is modelled as a combination of the Bayesian probabilistic 
model and the maximum a posteriori (MAP) rule. It can be given as 

𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃(𝑥 |𝑐) (6) 

Here, 𝔞 is the complete set of attributes, 𝑥  is the attribute that belongs to 𝑋 , and 𝑐 
represents the corresponding class. In this work, 𝑛𝑎 (i.e., the number of attributes) is 2 
(SNR and noise power). The above equation models the conventional naïve Bayes algo-
rithm. When it is combined with a fuzzy approach, the attributes are converted to crisp 
values to overcome the issue of information loss that occurs in naïve Bayes. In the hybrid 
ML, the degree of truth is considered as probabilities as 𝑃(𝑥 |𝔞) = 𝜇  and 𝑃(𝑐|𝔞) = 𝜇 . 
Thus, the fuzzy–naïve Bayes model is computed as follows: 𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃 𝑥1 𝑐𝑃 𝑥1 𝜇 …∈

𝑃 𝑥𝑛 𝑐𝑃 𝑥𝑛𝑎 𝜇∈  (7) 

For each attribute, the probability value is computed as in the naïve Bayes algorithm. 
The probability computation can be performed as follows [25]: 𝑃(𝐶 = 𝑐) = (∑ 𝜇ℴℴ∈ ) + 1|𝑂| + |𝐷(𝐶)|  (8)

𝑃(𝑋 = 𝑥 ) = ∑ 𝜇ℴℴ∈ + 1|𝐿| + |𝐷(𝑋 )|  (9)

𝑃(𝑋 = 𝑥 |𝐶 = 𝑐) = ∑ 𝜇ℴ 𝜇ℴℴ∈ + 1(∑ 𝜇ℴℴ∈ ) + |𝐷(𝑋 )| (10)

Here, 𝑂 denotes the number of samples considered for classification, 𝐷(𝑋 ) is the 
finite domains dom (𝑋 ) of the attributes 𝑥 , and ℴ is the training sample set. In this way, 
the current network situation is classified based on a reference signal. The probability de-
pends upon the attributes, including SNR and noise power. If SNR is high and noise 
power is low, then energy detection (i.e., 𝑆𝑇 ) is performed.  

We used the Neyman–Pearson (NP) binary hypothesis testing [26] in our scheme. 
The energy detection method senses the spectrum based on two hypotheses as follows: 𝑅(𝑛) = 𝓌(𝑛) ,                          𝐻𝓌(𝑛) + 𝕡(𝑛),           𝐻  (11) 

Here, 𝑅(𝑛) is the signal sample received by SU, n = 1, 2, …, N, N is the number of 
samples. 𝐻  denotes the absence of PU signal and presence of noise signal (𝓌(𝑛) ), which 
is the additive white Gaussian noise (AWGN) with zero mean and variance of 𝜎𝓌, and 𝐻  denotes the presence of PU signal 𝕡(𝑛) with the noise signal. The hypothesis is com-
puted from the energy level computed from the sensed signal as follows: 

𝐸 = 𝑅(𝑛) . (12) 

If the computed energy level is higher than the threshold value 𝜆  in Equation (13) 
[14], then it is 𝐻 ; otherwise, it is denoted as 𝐻 .  𝜆 = 𝜎𝓌(ℚ 𝑃 √2𝑁 + 𝑁 (13) 

Here, 𝑃 is the probability of false alarm, and ℚ  is the inverse Marcum ℚ func-
tion. In this way, 𝑆𝑇  determines the presence/absence of PU activity on the sensed chan-
nel. As the energy value is affected by SNR and noise power, the 𝑆𝑇  is unsuitable for low 
SNR scenarios. This decision can be made from a hybrid ML algorithm a priori and based 

c
)
+ |D(Xi)|

(10)

Here, O denotes the number of samples considered for classification, D(Xi) is the
finite domains dom (Xi) of the attributes xi, and

Energies 2021, 14, 1169 9 of 28 
 

 

Further, the ML technique is modelled as a combination of the Bayesian probabilistic 
model and the maximum a posteriori (MAP) rule. It can be given as 

𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃(𝑥 |𝑐) (6) 

Here, 𝔞 is the complete set of attributes, 𝑥  is the attribute that belongs to 𝑋 , and 𝑐 
represents the corresponding class. In this work, 𝑛𝑎 (i.e., the number of attributes) is 2 
(SNR and noise power). The above equation models the conventional naïve Bayes algo-
rithm. When it is combined with a fuzzy approach, the attributes are converted to crisp 
values to overcome the issue of information loss that occurs in naïve Bayes. In the hybrid 
ML, the degree of truth is considered as probabilities as 𝑃(𝑥 |𝔞) = 𝜇  and 𝑃(𝑐|𝔞) = 𝜇 . 
Thus, the fuzzy–naïve Bayes model is computed as follows: 𝑁𝐵(𝔞) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑃(𝑐) 𝑃 𝑥1 𝑐𝑃 𝑥1 𝜇 …∈

𝑃 𝑥𝑛 𝑐𝑃 𝑥𝑛𝑎 𝜇∈  (7) 

For each attribute, the probability value is computed as in the naïve Bayes algorithm. 
The probability computation can be performed as follows [25]: 𝑃(𝐶 = 𝑐) = (∑ 𝜇ℴℴ∈ ) + 1|𝑂| + |𝐷(𝐶)|  (8)

𝑃(𝑋 = 𝑥 ) = ∑ 𝜇ℴℴ∈ + 1|𝐿| + |𝐷(𝑋 )|  (9)

𝑃(𝑋 = 𝑥 |𝐶 = 𝑐) = ∑ 𝜇ℴ 𝜇ℴℴ∈ + 1(∑ 𝜇ℴℴ∈ ) + |𝐷(𝑋 )| (10)

Here, 𝑂 denotes the number of samples considered for classification, 𝐷(𝑋 ) is the 
finite domains dom (𝑋 ) of the attributes 𝑥 , and ℴ is the training sample set. In this way, 
the current network situation is classified based on a reference signal. The probability de-
pends upon the attributes, including SNR and noise power. If SNR is high and noise 
power is low, then energy detection (i.e., 𝑆𝑇 ) is performed.  

We used the Neyman–Pearson (NP) binary hypothesis testing [26] in our scheme. 
The energy detection method senses the spectrum based on two hypotheses as follows: 𝑅(𝑛) = 𝓌(𝑛) ,                          𝐻𝓌(𝑛) + 𝕡(𝑛),           𝐻  (11) 

Here, 𝑅(𝑛) is the signal sample received by SU, n = 1, 2, …, N, N is the number of 
samples. 𝐻  denotes the absence of PU signal and presence of noise signal (𝓌(𝑛) ), which 
is the additive white Gaussian noise (AWGN) with zero mean and variance of 𝜎𝓌, and 𝐻  denotes the presence of PU signal 𝕡(𝑛) with the noise signal. The hypothesis is com-
puted from the energy level computed from the sensed signal as follows: 

𝐸 = 𝑅(𝑛) . (12) 

If the computed energy level is higher than the threshold value 𝜆  in Equation (13) 
[14], then it is 𝐻 ; otherwise, it is denoted as 𝐻 .  𝜆 = 𝜎𝓌(ℚ 𝑃 √2𝑁 + 𝑁 (13) 

Here, 𝑃 is the probability of false alarm, and ℚ  is the inverse Marcum ℚ func-
tion. In this way, 𝑆𝑇  determines the presence/absence of PU activity on the sensed chan-
nel. As the energy value is affected by SNR and noise power, the 𝑆𝑇  is unsuitable for low 
SNR scenarios. This decision can be made from a hybrid ML algorithm a priori and based 

is the training sample set. In this way,
the current network situation is classified based on a reference signal. The probability
depends upon the attributes, including SNR and noise power. If SNR is high and noise
power is low, then energy detection (i.e., ST1) is performed.

We used the Neyman–Pearson (NP) binary hypothesis testing [26] in our scheme. The
energy detection method senses the spectrum based on two hypotheses as follows:

R(n) =
{

w(n)j, H0

w(n) + p(n), H1
(11)

Here, R(n) is the signal sample received by SU, n = 1, 2, . . . , N, N is the number of
samples. H0 denotes the absence of PU signal and presence of noise signal (w(n)j), which
is the additive white Gaussian noise (AWGN) with zero mean and variance of σ2

w, and H1
denotes the presence of PU signal p(n) with the noise signal. The hypothesis is computed
from the energy level computed from the sensed signal as follows:

EST1 =
N

∑
q=1

R(n)2. (12)

If the computed energy level is higher than the threshold value λ1 in Equation (13) [14],
then it is H1; otherwise, it is denoted as H0.

λ1 = σ2
w(Q−1

(
Pf

)√
2N + N (13)



Energies 2021, 14, 1169 10 of 30

Here, Pf is the probability of false alarm, and Q−1 is the inverse Marcum Q function.
In this way, ST1 determines the presence/absence of PU activity on the sensed channel. As
the energy value is affected by SNR and noise power, the ST1 is unsuitable for low SNR
scenarios. This decision can be made from a hybrid ML algorithm a priori and based on
the decision, and the SUs sense the spectrum. The test statistic for the ST2 can be expressed
as follows [27]:

EST2 =
1
N

N

∑
n=1

X(n)x∗p(n) (14)

Here, X(n) is the SU received signal and the x∗p(n) is the pilot samples.
According to the Neyman–Pearson criteria [26], probability of detection, Pd, and

probability of false alarms, Pf of ST2, can be expressed as

Pd = Q
(

λ2 − E√
Eσ2

w

)
(15)

Pf = Q
(

λ2√
Eσ2

w

)
. (16)

Here, E is the PU signal energy. For the fixed Pf, the threshold value for ST2 is computed
from Equation (11) as [27]

λ2 = Q−1
(

Pf

)√
Eσ2

w (17)

If EST2 is higher than the value of λ2, then it is H1 (presence of PU); otherwise, it is
H0 (absence of PU).

The spectrum availability decision is made based on these threshold values. Sensing
accuracy depends on both threshold values; the fixed threshold value is unsuitable for a
dynamic network environment. The threshold value depends on the value of false alarm
(fa), the PU signal energy, and noise variance. Because of the channel’s uncertainty and
noise aspect, for realistic situations, the traditional threshold value estimation is not optimal.
Therefore, a dynamic threshold value is needed that considers both the noise factor and
the channel’s uncertainty. A dynamic threshold value can be estimated as

λdyn =
λ

∑ $i, Pe
. (18)

Here, λ is the predefined threshold value (λ1 and λ2 in our case), $i is the noise uncertainty
factor for the ith SU, and Pe is the probability of sensing error.

Pe can be written as
Pe = ω1Pf + ω2Pm. (19)

Here, ω1and ω2 are the weighting factors, where, ω1 + ω2 = 1, Pf is the probability of
false alarm, and Pm is the probability of missed detection.

Noise uncertainty factor $i can be estimated using Tsallis entropy [28] as

$i =
1

q− 1

(
1−

k

∑
i=1

pq
i

)
(20)

where pi is the probability of the frequency of occurrences in the ith bin, q is the Tsallis
parameters or entropic index (q > 1 or q < 1), and k is the total number of possibilities of the
system (total number of the bin).

pi =
mi
N

(21)

where mi is the total number of occurrences in the ith bin, i = 1, 2, . . . , k, N is the total
number of occurrences in all the bins.
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As the noise uncertainty for each channel varies over time, this dynamic threshold is
used in this paper for the optimal spectrum sensing.

Based on the Neyman–Pearson (NP) binary hypothesis testing,

EST1, EST2

{
> λdyn H1
≤ λdyn H0

(22)

3.4. Global Sensing and Final Sensing Result

In this work, SSA acts as an FC. SUs in particular sub-segments will send their local
sensing reports to the corresponding SSA. Individual statistics EST1 or EST2 are quantized
to one bit with LSjn ∈ {0,1}. SUs send their individual local sensing as LSj1 ∈ {0,1}, LSj2 ∈
{0,1}, . . . ., LSjn ∈ {0,1}. Here “1” and a “0” represent PU’s presence (H1) and absence (H0),
respectively. In summary we write, based on Equation (22),

LSjn =

{
1; EST1, EST2 > λdyn i.e. (H1)
0; EST1, EST2 ≤ λdyn i.e. (H0)

(23)

For the data fusion for the local sensing results of the SUs, we followed Hard fusion
with majority or voting rules. In majority rule, the decision is taken from the k out of N rule if
it follows k ≥ N/2.

For the jth sub-segment, for example,

GS(LSj) = 1 (H1) when
n

∑
l=1

LSjl ≥
n
2

(24)

GS(LSj) = 0 (H0) when
n

∑
l=1

LSjl <
n
2

(25)

where n is the total number vehicle in jth sub-segment, and GS(LSj) is the global sensing
result based on the local sensing LSj.

However, this GS(LSj) is not the final decision. The next phase is making the decision
of SSA by its own by using tri-agent reinforcement learning. These dual checking sensing
results provide more reliability, are error free, and have enhanced performance.

Let GS(SSAj) be the global sensing result of SSA based on TA-RL for the jth sub-
segment. Here, GS(SSAj) ∈ {0,1}. Now, GS(LSj) and GS(SSAj) together make the final
decision regarding PU’s presence (H1) and absence (H0). For the final sensing result, we
used OR hard rule. For the jth sub-segment, the final result is

FSj = GS
(

LSj
)
OR GS

(
SSAj

)
∈ {0, 1} (26)

Now, we focus on how GS(SSAj) can be achieved through SSA by using TA-RL.
In our proposed solution, we considered SSA instead of RSU as the RL agent; this is

because of the proper management of the spectrum as well as for faster sensing. The RSU
will communicate with the vehicles for the data transmission and for the final spectrum
assignment (after the getting the confirmed sensing result from SSA). In other works, for
instance in [14], RSU acts as an RL agent that deals all the spectrum sensing jobs and data
transmission and other tasks. Therefore, there is a huge chance of network overhead that
degrades the overall network performance.

The SSA is the intelligent agent [29] that continuously senses the spectrum and make
the decision by considering all SUs sensing reports. Deployment of SSA improves the
sensing accuracy. However, managing all SU reports in a single SSA becomes complex.
Thus, we deployed SSA at each segment that collects the reports from all SUs presented
in that segment. For optimal spectrum decision-making, the reinforcement learning (RL)
approach is presented. We propose a novel TA-RL algorithm that learns the environ-
ment through three agents. The proposed novel decision-making methodology improves
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decision-making by using three different agents. The detailed flow of the proposed work is
shown in Figure 4.
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Reinforcement learning is one of the branches of AI techniques. In RL, the agent is
deployed to learn the environment and decide based on the current environment. However,
single environment learning is slightly ineffective in our work. Thus, three environments
are considered, and three agents are deployed. The considered environments are Signal
Environment (SE) as environment 1, Network Environment (NE) as environment 2, and
Vehicle Behavior (VB) as environment 3, which are learned by three agents: A1, A2, and
A3, respectively. In our work, each agent has different responsibilities that are illustrated
in Table 1.

Table 1. Tri-agents and responsibilities.

Agent Responsibilities

A1
Learns the SE

Metrics Learned: {SNR, time (t), Channel Quality (CQ)}

A2

Learns the NE
Metrics Learned: {Global sensing result

(
GS
(

LSj

))
, Sub-segment number

(SN), number of vehicles in that sub-segment (N)}

A3
Learns the VB

Metrics Learned: {Mobility (M), Vehicle ID ()}

In the proposed TA-RL, spectrum availability is made based on these agents and
sensing reports from SUs. The three agents are to achieve accurate sensing decisions since
the sensing signal can be affected by all these three environments. Here, the state action
pairs (S− A) define the decision on spectrum availability. The proposed TA-RL algorithm
involves the following steps:

Q-value Initialization—Initially, the proposed algorithm defines the Q-table for the
(st, at) pairs. Each pair in the table is denoted as Q(st, at), and it is defined as per the target
application.

At each step t, the SSA observes the states of its surrounding environment by using
its three agents. Let us consider that S is a set of all possible states. Based on knowledge
gained at st, the SSA selects an action at ε A, where A is a set of actions. Here, action
refers to the declaration of the absence or presence of PUs. At the next step, t + 1, the
environment transits to a new state st+1, and the agent gets a reward of rt. Based on the
reward table, the agent chooses the next action (it may be beneficial or may be harmful),
and then they update a new value called Q-value mapping of state–action pairs Q (st, at).
Several Q-values are stored in the Q-table.
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Perform Action—In this stage, the action is made by considering three environments
that are learned by three agents. In contrast to fusing the sensing reports, this work
considers the environmental parameters and the sensing reports. Each agent uses a ε-
greedy exploration policy to update the Q-table. There are three states that are considered
as SA1, SA2, SA3, and each state is learned by each agent. For instance, the three states are
as follows:

SA1 → {SNR, t, CQ} (27)

SA2 →
{

GS
(

LSj
)
, SN,N

}
(28)

SA3 → {M,0} (29)

For agent A1, the states are considered as the state of the channels’ SNR, the time
stamp, and the channel quality (congested or free). Similarly, for A2, the states are the
global result of each sub-segment and how many participating vehicles there are. For A3,
the states are the vehicle speed and the ID of the vehicle. In other words, overall TA-RL
learns for a particular sub-segment its global sensing results, how many vehicles there are,
what are their speeds and IDs, at what time the sensing result is created, and the what the
channel condition is at that time.

The action is taken based on the above learning. Action either declares the band of
interest as PU free or not. For instance,

GS
(
SSAj

)
∈ {0, 1} (30)

Based on the action, the reward function (rt) is updated for each action. The reward can be
given as in Table 2.

Table 2. Reward table.

Value of GS(LSj) Value of GS(SSAj) Reward (rt)

{0} {0} + rt1
{0} {1} − rt2
{1} {0} − rt3
{1} {1} +rt4

Here “1” and a “0” represent PU’s presence (H1) and absence (H0), respectively;
rt1, rt2, rt3, and rt4 are real integers values. When both global sensing and TA-RL’s own
estimated result is the same, it would be given a “+” (positive) reward; otherwise, it would
be a “−” negative reward (punishment).

The current state of three states can be written as

st = ∑ SA1t, SA2t, SA3t (31)

After every action, the agent gets the reward and updates its Q-value based on the
following equation:

Qnew (state, action)← (1 − α) Qold (state, action) + α (reward + γ max Qold (next state, all actions)) (32)

Qt+1(st, at)← (1− α)Qt(st, at) + α

[
rt+1(st+1, at) + γmax

a∈A
Qt(st+1, a)

]
(33)

Here, α is the learning rate, which determines how much the new Q-value overrides the
previous Q-value. The α ranges from 0 to 1; γ is the discount factor, which implies how
much importance is given to future rewards; and r is the reward received by the agent.
The short-term reward is called the delayed reward, and the future reward is called the
discounted reward.

Here, the action is to decide on spectrum availability as PU is presented, or PU is
absent on the corresponding channel. The action is taken in a state where the reward is
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the maximum for that action found in the past state–action pair. There are two policies
for action. When an agent chooses to be exploited (using current knowledge to choose
the best action), it uses an optimal policy, and it uses a random policy when deciding to
be explored (needs more knowledge). The agent shall receive positive delayed rewards
when choosing the required action for a specific state. The positive value increases and the
respective Q-value increases and vice versa. Therefore, Q-learning aims to get an optimal
policy (agent behavior) π: S→A, which can maximize the reward at state S [30].

The optimal Q-value for a particular state can be written as

Vπ∗(st) = max
a∈A

Qt(st, a) (34)

Therefore, the optimal policy can be written as

π∗(st) = arg max
a∈A

Qt(st, a) (35)

It is evident from the discussions above that the convergence rate depends on the
Q-table consistency and the values of α and γ. The more incentive the agent accumulates,
the better the Q-table will be, and thus the convergence will be faster.

Based on the learning environment and the cooperative decision, the final decision
is made by SSA, i.e., the spectrum is available or not. Then, this decision is exchanged
with the corresponding segment RSU to support effective network management. The RSU
assigns the available channels to the segment SUs to perform data transmission. On the
allocated channels, the vehicles are allowed to transmit data.

The proposed solution discussed above is represented in the algorithms given be-
low. Here, Algorithm 1 represents the complete solution while Algorithm 2 represents
TA-RL algorithm.

Algorithm 1: Complete algorithm for the solution

1: Start
2: Initialize S, φ, Θ, nsub, Thseg;
3: //Sub-segmentation
4: ith segment;
5: For (j ≤ nsub)
6: Compute Ψjnorm; //by Equation (2)
7: If (Ψjnorm> Thseg)
8: Consider jth as segment#1;
9: Count ++;

10: total_segment = nsub − count+1
11: //Local sensing and hypothesis testing
12: For (j ≤ total_segment)
13: number_vehicle=n;
14: SUij = {SUij1, SUij2, . . . , SUijn}; //Equation (4)
15: For (r ≤ n)
16: Classify signal as low SNR or high SNR; //Equation (10)
17: If (SNR==low)
18: MFD is used;
19: Compute EST2; //Equation (14)
20: Compute λ2 and λdyn; //Equations (17) and (18)
21: If (EST2 > λdyn)
22: LSjn = 1;
23: Else
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24: LSjn = 0;
25: If (SNR == high)
26: ED is used;
27: Compute EST1; //Equation (12)
28: Compute λ1 and λdyn; //Equation (13), Equation (18)
29: If (EST1 > λdyn)
30: LSjn = 1;
31: Else
32: LSjn = 0;
33: Return LSjn;
34: //Data fusion
35: Compute GS(LSj) based on Equation (24) and (25);
36: //TA-RL
37: Compute GS

(
SSAj

)
by running Algorithm 2;

38: //Final sensing result
39: Return FSj based on Equation (26);
40: End

Algorithm 2: TA-RL Algorithm

1: Start
2: Initialize SA1, SA2, SA3 based on Equations (27)–(29);
3: Initialize Q(s,a) arbitrarily;
4: For t: =1 to T do
5: Observe current state st based on Equation (31);
6: Determine exploration or exploitation
7: If (exploration)
8: choose a random action at
9: Else if (exploitation)

10: Choose the best-known action at using Equation (35); // i.e., GS
(

SSAj

)
11: Receive reward: rt+1(st+1) based on Table 2;
12: Update Q table Qt+1 (st, at) using Equation (33) for state–action pair (st, at);
13: Return GS

(
SSAj

)
;

14: End

3.5. Other Elements of CSS

There are other elements needed to perform CSS [12]. This sub-section discusses these
elements aligned with our proposed solutions.

3.5.1. Cooperation Models

The collaboration of CR users for spectrum sensing can be modelled on various
approaches. Cooperative sensing modelling is mainly concerned with how CR users work
together to perform spectrum sensing and achieve optimum detection efficiency. The
most common and dominant approaches are the parallel fusion (PF) model for distributed
detection and data fusion and the game theory approach. In this paper, PF model is used
as the model of SU cooperation. In PF, SUs observe the physical phenomena H through the
sensing observation and report to the central unit or FC. There are three steps in FC: local
sensing, data reporting, and data fusion. All CR users are synchronized by the FC to sense
the channel or frequency band of interest and to record the sensing data. The FC combines
the local sensing data recorded and takes a global cooperative decision.

3.5.2. Control Channel and Reporting

In our CSS architecture, a common control channel (CCC) is used by the SUs to
report local sensing results to the SSAs. There are three requirements to fulfil successful
reporting: bandwidth, reliability, and security. Due to sub-segmentation, managing these
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requirements is much easier. We assumed that SUs use dedicated CCC, which is not
imperfect. However, focusing on improvement to these issues is beyond the scope of
this work.

3.5.3. Knowledge Base

The efficiency of CSS schemes depends mostly on the knowledge of PU characteristics,
including traffic flows, location and transmission of power, SNR, channel quality, etc. PU
details, if available in a database, can facilitate the detection of PU. The database that holds
all knowledge of the RF environment is called the knowledge base. It is an essential feature
of CSS since it can support, supplement, or even substitute CSS to detect PU signals and
classify the available spectrum. Our SSA acts like a knowledge database that maps the
PU activities with the parameters shown in Table 2. After the convergence, the TA-RL
agent can retrieve the PU information from its database (Q-table with the best reward). This
retrieval of information saves time in spectrum sensing.

Table 3 shows the elements of CSS that we used in our proposed solution.

Table 3. Elements of proposed CSS.

Elements of CSS [12] Used in our solution

Cooperation Models Parallel fusion model

User Selection Sub-segmentation of the segment

Sensing Techniques Fuzzy–naïve Bayes algorithm chooses ED or MFD

Hypothesis Testing Neyman–Pearson (NP) binary hypothesis testing

Control Channel and Reporting Sub-segmented SUs via control channels

Data Fusion Hard combining, majority rule, OR rules

Knowledge Base SSA, TA-RL

4. Experimental Evaluation

This section discusses the simulation and parameter settings and the theoretical
comparisons with prior works.

4.1. Simulation Setup

For evaluating the proposed concept, we modeled our proposed vehicular network
using a network simulation tool, namely OMNeT++ with the SUMO framework. OMNeT
is a C++-based simulation tool that supports the productive simulation of vehicular-based
networks and many other network protocols. We used Veins, INET, and crSimulator
frameworks in the OMNeT++ platform. Vehicle mobility type is considered based on
Veins’ submodule, TraCIMobility. In this work, a Rayleigh multi-path propagation model
was considered. The channel vector was modeled as a zero-mean and complex Gaussian
random vector. We considered the network area of 2750 m × 250 m with 100 vehicles
as SUs, 10 static PUs, 2 RSUs, and 2 SSAs. We also considered a maximum of 4 sub-
segments (nsub = 4) per segment. In general, vehicles in non-congested network use DSRC
channels (6 service channels or SCH) of 10 MHz bandwidth in the range of 5.9 GHz. For
communication in the MAC/PHY layer, the WAVE/IEEE802.11p standard was used for
the DSRC channel. TV channels of 6 MHz bandwidth in the range of 500 MHz–524 MHz
were considered as CR bands. For the purpose of CR, we used 4 channels, which means
that with DSRC and TV, we had a total of 10 channels.

Other parameter values used for the simulation are depicted in Table 4.
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Table 4. Simulation and parameters settings.

Parameter Value/Range Parameter Value/Range

Vehicle Speed 0–30 m/s Vehicle acceleration 2.5 m/s2

Number of Packets 10,000 (approx.) WAVE Tx power 13 dBm
MAC Header Length 256 Bit SNR −20 to 5 dB

Packet Size 512 KB Packet interval 0.1 s
Data Rate 20 Mbps Simulation time 500 seconds

Sensing Duration ~6 ms Transmission duration ~12 ms
Noise Power −110 dBm TV modulation 8 VSB
False Alarm 0.1 TV Tx power 21 dBm/Hz

Delay 0–18 ms Learning rate and discount
factor for RL 0.1 and 0.9

Jitter 10 ms Number of signal samples 300

We first created a CR-VANET environment with the above configuration. We consid-
ered TV channels of 500 MHz–524 MHz for the CR usage. PUs were considered to be static,
and they followed simple ON/OFF PU activity. SUs were equipped with two antennas,
one for DSRC and another for CR usage. Then, we performed data transmission to test
the proposed work performance. We then implemented segmentation, spectrum sensing,
decision-making, and route selection processes on the created environment to measure the
performance. The performance was measured in terms of performance metrics.

4.2. Comparative Analysis

This section evaluates the proposed work with existing works to prove our proposed
approach’s efficacy. We compared our work (Seg-CR-VANET) with existing works in-
cluding RL-DSA [14], regional clustering [16], and binary decision-making [4]. A detailed
comparison of the existing works is presented in Table 5. =

Table 5. Comparison of existing works.

Previous Work Research Purpose Spectrum
Sensing Limitations of the Work

Comparative
Improvements Made in

Our Work
(Seg-CR-VANET)

RL-DSA [14]

To improve
spectrum

management by a
dynamic spectrum

access

Energy
detection,

cyclostationary

• In the spectrum sensing, the
threshold, λ is set fixed based on
the probability of energy
detection and noise power
variance. However, the power
variance-based fixed threshold
for sensing decision is not
optimal since the power differs
based on the environment. Based
on the threshold validation, two
sensing methods are applied
simultaneously that take time to
report to RSU regarding
a channel.

• The use of reinforcement
learning in this work is used to
learn only the channel
environment and decide;
however, the channel
characteristics differ based on the
network environment.

• We used dynamic
threshold values.

• We used TA-RL that
learns three
environments
(network, signal,
and vehicle).
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Table 5. Cont.

Previous Work Research Purpose Spectrum
Sensing Limitations of the Work

Comparative
Improvements Made in

Our Work
(Seg-CR-VANET)

Regional
clustering [16]

To improve data
transmission

through
region-based

clustering

Linear
programming-

based
sensing

• This work fails to balance the
density among various RSUs.

• The involvement of linear
programming introduces
difficulty in defining the
objective function.

• Channel estimation is performed
priory, which is unsuitable for
VANET.

• We used density
aware segmentation
and sub-
segmentation-based
network architecture.

• We used
reinforcement
learning-based
channel estimation
(learning) that does
not need prior
information.

Binary decision-
making

[4]

To support
CSS-based sensing

and
decision-making

Hard and soft
fusion

• The energy detection method’s
local decision cannot detect PU’s
presence when the signal’s SNR
is low. The channel
characteristics often change, so
this technique is not suitable for
accurate prediction of the
PU signals.

• Static threshold value was used.

• We used dynamic
machine learning
approaches (fuzzy–
naïve Bayes to choose
the appropriate
sensing technique).

• In low SNR, MFD is
used and in high SNR,
ED is used.

• We used dynamic
threshold values.

The theoretical comparison shows that each existing work has some limitations and
drawbacks. This can be tested through brief performance measures as shown in the
following section.

5. Results, Discussion, and Highlights

This section discusses results obtained through the simulations. We compared our pro-
posed solution with other works for evaluation purposes. We used several performance metrics.

5.1. Analysis of the Probability of Detection

The probability of detection metric measures a vehicle’s probability of sensing the
channel and accurately detecting the PU activity. This metric measures the effectiveness of
the involved sensing technique.

The probability of a false alarm is the probability that a SU mistakenly detects the
presence of a PU, where in reality, there is no PU present at that time. This means that
a SU detects H1 as true, but in reality, H0 is true. On the other hand, the probability of
missed detection is the opposite of a false alarm, and it is the probability that SU senses the
channel as idle (absence of PU), but in actuality, the channel is not idle (occupied by the
PU). In Figure 5, the proposed work is compared with the existing works regarding the
probability of detection.



Energies 2021, 14, 1169 19 of 30

Energies 2021, 14, 1169 19 of 29 
 

 

The theoretical comparison shows that each existing work has some limitations and 

drawbacks. This can be tested through brief performance measures as shown in the fol-

lowing section.  

5. Results, Discussion, and Highlights 

This section discusses results obtained through the simulations. We compared our 

proposed solution with other works for evaluation purposes. We used several perfor-

mance metrics. 

5.1. Analysis of the Probability of Detection 

The probability of detection metric measures a vehicle’s probability of sensing the 

channel and accurately detecting the PU activity. This metric measures the effectiveness 

of the involved sensing technique.  

The probability of a false alarm is the probability that a SU mistakenly detects the 

presence of a PU, where in reality, there is no PU present at that time. This means that a 

SU detects H1 as true, but in reality, H0 is true. On the other hand, the probability of missed 

detection is the opposite of a false alarm, and it is the probability that SU senses the chan-

nel as idle (absence of PU), but in actuality, the channel is not idle (occupied by the PU). 

In Figure 5, the proposed work is compared with the existing works regarding the prob-

ability of detection. 

 

Figure 5. Comparison on probability of detection. 

The analysis shows that the proposed work achieves a better probability of detection, 

i.e., the proposed work detects PU’s presence on the sensing channel accurately. In gen-

eral, sensing accuracy is significant in any CR-based network. Spectrum sensing in CR-

VANET is much more challenging due to the dynamic movement of vehicles and the ran-

domness of the network environment. Thus, the existing works have not yet achieved 

better results, since those work could not handle the dynamicity of the VANET environ-

ment effectively. As we focused on dynamic sensing technique selection by the hybrid ML 

algorithm, we achieved better detection accuracy. We attained a probability of detection 

in the range of 0.95 to 1, which is nearly 50% higher than in the previous works. This better 

result was achieved because sensing accuracy is greatly affected by channel and network 

errors, which were not considered in the existing works, but we considered them. A dy-

namic sensing technique is proposed with a dynamic threshold update in our work. More-

over, deployment of SSA in each segment assures high sensing accuracy.  

As seen in Figure 6, we compared the proposed hybrid ML-based spectrum sensing 

method with the base spectrum sensing techniques such as energy detection and matched 

filter with static threshold values. The analysis shows that the base algorithms lack the 

Figure 5. Comparison on probability of detection.

The analysis shows that the proposed work achieves a better probability of detection,
i.e., the proposed work detects PU’s presence on the sensing channel accurately. In general,
sensing accuracy is significant in any CR-based network. Spectrum sensing in CR-VANET
is much more challenging due to the dynamic movement of vehicles and the randomness
of the network environment. Thus, the existing works have not yet achieved better results,
since those work could not handle the dynamicity of the VANET environment effectively.
As we focused on dynamic sensing technique selection by the hybrid ML algorithm, we
achieved better detection accuracy. We attained a probability of detection in the range
of 0.95 to 1, which is nearly 50% higher than in the previous works. This better result
was achieved because sensing accuracy is greatly affected by channel and network errors,
which were not considered in the existing works, but we considered them. A dynamic
sensing technique is proposed with a dynamic threshold update in our work. Moreover,
deployment of SSA in each segment assures high sensing accuracy.

As seen in Figure 6, we compared the proposed hybrid ML-based spectrum sensing
method with the base spectrum sensing techniques such as energy detection and matched
filter with static threshold values. The analysis shows that the base algorithms lack the
probability of detection. When the vehicle speed is increased, then the probability of
detection is decreased. We achieved better result than these base sensing techniques.
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This better result is because energy detection fails to sense the spectrum in low SNR,
and the matched filter fails to sense the spectrum in high SNR scenarios. Thus, both
methods achieve less than 0.3 as the probability of detection. In our work, the involvement
of hybrid ML-based dynamic spectrum sensing improved detection probability up to 0.98.

In Figure 7, the average probability of detection is compared by varying mean de-
tection time. This analysis was carried out to assure that the proposed work attained
better accuracy, even with lower detection time. Here, detection denotes the sensing time
allotted to the SUs for spectrum sensing. Although high sensing time improves detection
probability, it degrades the data transmission ability. Thus, an optimal sensing technique
must use minimum sensing time to achieve higher detection accuracy. The increase was
encountered in the proposed curve, which varied from around 0.7 to 1, thus increasing
sensing time. Simultaneously, the previous works have a sensing accuracy of 0.2 when the
sensing time is low.
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This analysis shows that the proposed work can assure better sensing and trans-
mission efficiency in a dynamic CR-VANET environment. Due to the use of TA-RL, SU
adapts the environment very quickly, and as a result, it takes much less time to detect the
spectrum hole.

Figure 8 shows receiver operating characteristics (ROC) curves, where the average
probability of detection is compared by varying values of the average probability of a
false alarm.

We considered the SNR value as −10dB. The figure shows that the value of the
probability of detection is increased as the value of the probability of false alarm is increased.
The proposed Seg-CR-VANET showed a better result than the previous works. Our sensing
scheme could maintain a probability of detection of 0.9 (i.e., 90%), compared to RL-DSA
with 0.8 (i.e., 80%); and regional-clustering, and binary decision-making with 0.7–0.75 (i.e.,
70%–75%) based on a probability of false alarm of 0.2. However, the higher value of the
probability of a false alarm makes the SUs limit the reuse of the radio spectrum.

Figure 9 shows the probability of missed detection with the varying values of the
false alarm.
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Figure 9. Probability of missed detection vs. probability of false alarm.

The probability of missed detection value should be kept low for better sensing
performance, which causes interference, while the probability of false alarm causes losses
of spectral opportunities. For best performance, both values should be at a minimum level,
while the probability of detection should be at the maximum level. Figure 9 shows that
our proposed scheme provides lower missed detection compared with the previous works.
Achieving a better result is due to the spectrum’s proper management by using the segment
and sub-segment concept and the TA-RL algorithm as it deals with three environments.

5.2. Analysis of Throughput

Throughput is defined as the amount of data transmitted over the network over the
given time slot. In the case of CR-VANET, it depends greatly on the channel availability.
Thus, we compared throughput with varying sensing time.

In Figure 10, a comparison of throughput and sensing time is shown.
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The analysis shows that all works decrease the throughput with an increase in sensing
time. As the vehicles use more time for sensing, they have less time for data transmission,
which is why throughput is decreased as sensing time is increased. Our work maintains
throughput within a better range and achieves up to 20 Mbps, which is relatively more than
prior works. The primary reason for this achievement is that the proposed work considered
several significant parameters including noise power, vehicle density, vehicle behavior and
speed, network quality, etc. As a result, we achieved a stable spectrum sensing and stable
channel allocation scheme. For these reasons, we obtained good throughput, while other
works’ throughput is minimized to 2.5 Mbps. Moreover, using dynamic threshold values
provide more accurate and stable spectrum sensing results. If the spectrum is available,
then the spectrum must be utilized efficiently to achieve better throughput. In RL-DSA, the
spectrum sensing is performed by the energy detection method, and the road is segmented
into an equal length of segments. Here, maintaining a fixed segment increases data loss.

Similarly, regional cluster-based CSS is presented with binary decision-making. In this
method, the sensing decision is made inaccurate, and it lacks the throughput range. Due to
inaccurate sensing and improper network management, throughput is very minimal in
these prior works.

5.3. Analysis of Packet Delivery Ratio

Packet delivery ratio (PDR) is defined as the ratio between the total number of packets
generated to the number of packets successfully transmitted to the destination.

In Figure 11, PDR is compared with a varying number of vehicles. The PDR decreases
with a varying number of vehicles. We achieved PDR up to 96%–99%, which is around
10% better than RL-DSA, which provides the closest results to ours. PDR is decreased with
the increase in the number of vehicles. This is due to contention in the wireless channel,
as the number of nodes in connection grows. As a consequence, several packets are lost
due to a collision. However, our proposed algorithm maintains a good PDR due to the
adaptive spectrum sensing technique, dynamic threshold values, and proper learning
of the network using the TA-RL algorithm. Thus, the PDR is achieved between 96% to
99%, since we have performed optimal spectrum sensing based on the current network
environment, and decision-making is also performed based on three environments. Unlike
the proposed work, the existing results have achieved lower PDR. For achieving data
transmission successfully, accurate spectrum availability is mandated. This analysis shows
that the proposed approach, which focuses on both spectrum and road segmentation,
improves PDR effectively.
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5.4. Analysis of Average Delay

Delay is defined as the time taken by a data packet to reach the destination from the
source. The delay is measured as the function of propagation time, waiting time, and
transmission time. In Figure 12, the delay is compared concerning the number of vehicles.
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Delay is an important performance measure that shows the efficacy of the proposed
spectrum sensing and network management. In the proposed work, the delay is minimized
to 5 ms since the available spectrum is utilized by the proposed algorithm effectually. In
the proposed work, the available spectrum is determined by the hybrid ML technique.
The road is segmented and sub-segmented using a probabilistic approach considering
vehicle density, mobility, and node degree. In the prior research, the delay is increased
up to 17 ms due to a lack of optimal spectrum sensing and network management, since
inaccurate spectrum sensing decision-making decreases the availability of the spectrum for
vehicular nodes.

5.5. Analysis of Packet Loss Ratio

Packet loss rate (PLR) is defined as the ratio of the number of packets lost and the total
number of packets transmitted over the network. In Figure 13, PLR is compared based on
the number of vehicles.
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In this work, PLR is nearly 20%, i.e., 0.2, which is relatively lower than that of previous
research works. In the proposed work, the sensing technique is chosen based on the
environment, a dynamic threshold is used, and clusters are made based on the road
segmentation and sub-segmentation. Thus, the PLR is reduced even with an increase in the
number of vehicles. On the other hand, spectrum-based RL-DSA works focus on spectrum
allocation, the regional clustering method concentrates on CSS, and binary decision-making
uses OR rule-based decision-making. The spectrum is underutilized in all these works,
which leads to a PLR of up to 30% to 50%. From this analysis, it is clear that the proposed
work, which includes multiple sensing techniques and adaptive threshold values, improves
the PLR by transmitting most of the packets successfully. The more accurate the sensing
results, the less the PLR.

In Table 6, the obtained results are summarized with mean and standard deviation
(SD) values. It can be noted that the proposed Seg-CR-VANET achieves better results in all
metrics due to the involvement of optimum spectrum management and road management.
Thus, the results confirmed our problems, including lack of spectrum and road segment
management. In particular, we also achieved better probability detection, which assures
that the sensing technique selection must rely on the current network environment. Optimal
spectrum decision-making with dynamic threshold and proper network management by
using a probabilistic approach improves data transmission performance effectually.

Table 6. Numerical comparison of obtained results.

Work
PDR (%) Delay (ms) PLR (%)

Mean SD Mean SD Mean SD

RL-DSA 88 ±1.5 4.1 ±2.4 13.6 ±0.1
Regional Clustering 75.4 ±2.7 8 ±4.1 23.2 ±0.11

Binary Decision-making 70.2 ±1.1 11.8 ±4.6 26 ±0.13
Seg-CR-VANET 97.4 ±1.0 2.76 ±1.1 11 ±0.07

The performance of throughput, PDR, PLR, and delay can be further improved by
optimizing the route properly. For simplicity, we used the AODV (ad hoc on demand
distance vector) routing protocol in our simulations. Although we used this simple routing
protocol, we achieved very good results in all aspects. However, there is scope to improve
these performances by incorporating the proper routing method, which is beyond the
scope of this paper, but we will address this issue in future work.
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5.6. Detection Performance Measures

To compare the performance of proposed Seg-CR-VANET sensing with the mentioned
prior works, we used the performance metrics shown in Table 7) [31,32].

Table 7. Performance metrics and definition and formula.

No. Performance Metrics Definition Formula

1 Accuracy
It represents the proportion of

correctly identified results, both
positives and negatives.

accuracy =
Tp+TN

Tp+FP+FN+TN

2 Recall (also known as sensitivity or true
positive rate (TPR))

It represents the fraction of correctly
identified positives. recall = Tp

Tp+FN

3 Precision (also known as positive
predictive value (PPV))

It is fraction of positive results that
are true positives. precision =

Tp
Tp+FP

4 Specificity (also known as true negative
rate (TNR))

It measures the proportion of
negatives that are correctly identified speci f icity = TN

FP+TN

5 Negative predictive value (NPV) It is the fraction of negative results
that are true negatives. NPV = TN

FN+TN

6 False positive rate (FPR) (also known as
fall-out)

It is the proportion of negatives that
are incorrectly identified. FPR = 1− speci f icity = FP

FP+TN

7 False negative rate (FNR) or miss rate It is the proportion of positives that
are incorrectly identified. FNR = 1− recall = FN

FN+TP

8 F1 Score It is needed when we want to make a
balance between precision and recall. F1 = 2x precision ∗ recall

precision+recall

Where:

• TP (true positives): These are cases in which the sensing technique detected the
presence of a PU signal, and an actual PU signal is there in the environment.

• TN (true negative): These are cases in which the sensing technique detected the absence
of a PU signal, and there is in actuality no PU signal in the environment.

• FP (false positive): In this case, the sensing technique detected the presence of a PU
signal; however, there is actually no PU signal in the environment.

• FN (false negative): In this case, the sensing technique detected the absence of a PU
signal; however, there is actually a PU signal in the environment.

The confusion matrix is a matrix in which the number of correct and incorrect de-
tections are summarized. Table 2 shows the confusion matrix for our proposed solution
(Seg-CR-VANET) along with the three other works compared in the previous subsection.

We took 600 samples of the signals, out of which 300 samples contained PU signals
along with noise signals, and the other 300 samples contained only noise signals. We
considered the SNR vale of −10 for all cases. Our proposed Seg-CR-VANET sensing
correctly detected 268 signals as PU signals out of 300 PU signal samples, whereas out
of 300 noise samples, it detected 274 correctly. In the above matrix, we also included the
corresponding values for the benchmark works.

After using the formulas mentioned in Table 1 and the values provided in Table 3, we
achieved the results shown in Table 8.
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Table 8. Confusion matrix.

Actual

Presence of PU Signal (1) Absence of PU Signal (0)
(i.e. Only Noise Signal)

Detected/Predicted

[Presence of PU signal (1)]

TP
281 (Seg-CR-VANET)

242 (RL-DSA)
224 (Regional clustering)

213 (Binary decision)

FP
19 (Seg-CR-VANET)

58 (RL-DSA)
76 (Regional clustering)

87 (Binary decision)

Absence of PU signal (0)
(i.e. only noise signal)

FN
17 (Seg-CR-VANET)

41 (RL-DSA)
72 (Regional clustering)

83 (Binary decision)

TN
283 (Seg-CR-VANET)

259 (RL-DSA)
228 (Regional clustering)

217 (Binary decision)

Based on these performance measures, our proposed solutions performed significantly
better than other prior works (Table 9). We achieved an accuracy of 0.940: RL-DSA had
0.835, regional clustering had 0.7533, and binary decision had 0.7167. We also achieved
very low FPR and FNR compared to the other works. Higher values of accuracy, precision,
recall, and F1 scores confirmed the better performance of our proposed solutions.

Table 9. Performance comparison.

No. Measure Seg-CR-VANET RL-DSA Regional
Clustering Binary Decision

1 Accuracy 0.9400 0.8350 0.7533 0.7167
2 Recall (Sensitivity) 0.9430 0.8551 0.7568 0.7196
3 Precision 0.9367 0.8067 0.7467 0.7100
4 Specificity (True Negative Rate (TNR)) 0.9371 0.8170 0.7500 0.7138
5 Negative Predictive Value (NPV) 0.9433 0.8633 0.7600 0.7233
6 False Positive Rate (FPR) 0.0629 0.1830 0.2500 0.2862
7 False Negative Rate (FNR) 0.0570 0.1449 0.2432 0.2804
8 F1 Score 0.9398 0.8302 0.7517 0.7148

5.7. Performance of TA-RL

In this subsection, we evaluated our TA-RL algorithm’s detection performance as well
as its convergency. Figure 14 shows the improvement of our proposed TA-RL. We ran
the simulation for 3000 episodes. Here, episode denotes all the stages that fall between
an initial state to the terminal state of a sensing cycle. At the end of each episode, the
agents integrate local decisions and take a cooperative sensing decision. We achieved
good detection performance even before our optimum solution was achieved. Figure 14
shows the enhancement of detection performance during the TA-RL process. In the figure,
we showed two cases: one was with the use of TA-RL (i.e., GS(SSA)), and the other was
without the use of TA-RL (i.e., GS(LS). We calculated Pd based on the PU activity and with
the initial 500 sensing decisions made by TA-RL. We found that Pd was improved steadily
and reached above 0.92 after 2200 episodes. Thus, the efficiency of detection increased with
TA-RL-based CSS as soon as learning from the environment took place.
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Figure 14. Improvement of Pd during TA-RL-based CSS.

Figure 15 shows the average rewards of all the three agents over the most recent
100 episodes for a total of 3000 episodes and averaged the results to validate the per-
formance of TA-RL based on Q-learning with ε-greedy. We considered discount factor
λ = 0.9 with ε-greedy, ε = 0.1. Since the reward observed at each state was constrained
and the number of states was finite for each episode, the expected reward asymptotically
approached its upper bound when the algorithm converged. We obtained the convergence
of the algorithm after 2200 episodes with the maximum average rewards of 3.84.
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We listed our research highlights below:

• Two conventional spectrum sensing techniques can sense even at different noise levels
to ensure higher accuracy. Thus, between two spectrum sensing techniques, one was
chosen using the fuzzy–naïve Bayes algorithm.
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• Usage of dynamic threshold values is more accurate, feasible, and adaptive, especially
in the CR-VANET environment due to its rapid change and noise uncertainty.

• The management of vehicle density was obtained by merging and splitting segments
into sub-segments; a probability value-based division of sub-segments was performed
for cooperative spectrum sensing.

• For efficient global decision-making of the spectrums, the tri-agent reinforcement
learning algorithm was proposed to learn three different environments and decide
the spectrum concerning the collected local sensing reports from the secondary users,
i.e., vehicles.

6. Conclusions

This paper introduced a novel Seg-CR-VANET (segment-based cognitive radio ve-
hicular ad hoc network) architecture to achieve better data transmission efficacies for the
vehicular environment. The proposed Seg-CR-VANET relies on spectrum sensing and road
segmentation management efficiency, which improved the overall network performance.
We introduced a novel spectrum sensing technique using a hybrid ML algorithm that
combines the fuzzy and naïve Bayes algorithms. The spectrum sensing technique is dynam-
ically chosen based on the current network condition between energy detection and the
matched filter. Due to the uncertainty of noise, static threshold value usage is not feasible,
which is why we used dynamic threshold values calculated using Tsallis entropy. Based
on the sensed reports, a cooperative sensing decision is made with the TA-RL (tri-agent
reinforcement learning) algorithm. It is executed by SSA (segment spectrum agent), which
is responsible for managing spectrum availability in each segment. The roads are managed
by equal segmentation and further sub-segmented dynamically if the vehicle density in-
creases at a certain threshold level. The proposed architecture provides much better results
than previous works. We achieved better spectrum detection, throughput, and packet
delivery ratio; lower delay and lower packet loss; higher accuracy; and good convergence
rate. In the future, we will focus on route optimization by using the 2HMO-HHO (2-Hop
Multi-Objective Harris Hawks Optimization) algorithm. We will also focus on the resource
allocation scheme for secondary users by considering multiple parameters.
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