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Abstract: The recent revolution in electric mobility is both crucial and promising in the coordinated
effort to reduce global emissions and tackle climate change. However, mass electrification brings up
new technical problems that need to be solved. The increasing penetration rates of electric vehicles
will add an unprecedented energy load to existing power grids. The stability and the quality of
power systems, especially on a local distribution level, will be compromised by multiple vehicles that
are simultaneously connected to the grid. In this paper, the authors propose a choice-based pricing
algorithm to indirectly control the charging and V2G activities of electric vehicles in non-residential
facilities. Two metaheuristic approaches were applied to solve the optimization problem, and a
comparative analysis was performed to evaluate their performance. The proposed algorithm would
result in a significant revenue increase for the parking operator, and at the same time, it could alleviate
the overloading of local distribution transformers and postpone heavy infrastructure investments.

Keywords: electric vehicle charging; vehicle-to-grid; genetic algorithms; particle swarm optimization;
demand-side management; discrete choice theory; revenue management

1. Introduction

Advances in battery technology, the low emission factors, the low operation costs and
the high fuel economy of Battery Electric Vehicles (BEVs) and Plugged-in Hybrid Electric
Vehicles (PHEVs) are some of the reasons that the family of Electric Vehicles (EVs) has
attracted a lot of attention over the last few years. New models with extended capabilities
and longer electric ranges are presented every year by major automobile manufacturers [1].
The latest generation of EVs shifts the paradigm towards new markets by providing
extended full electric ranges of over 300 km and significantly reducing the problems
associated with “range anxiety” [2].

The adoption of EVs in private transportation could ultimately lead to a replacement
of crude oil with cleaner energy sources. At the same time, they can be transformed from
unidirectional devices that draw power from the grid to bidirectional assets that transfer
power back. Vehicle-to-Grid (V2G) may enable drivers to provide ancillary services to the
grid in exchange for financial returns, as well as to contribute in alleviating peak power
demand [3]. Kempton and Tomic [3,4] have compared existing grid services (spinning
frequency reserves, peak power supply and regulation) with Vehicle-to-Grid (V2G) support
and concluded that using EVs for regulation can offer the most substantial returns to
vehicle owners.

The accelerated growth in electric mobility also demands the development of new
methods to address their implications for the power grid. The stability of the power
system is at stake, particularly when charging events cluster in space and time. Without
charging coordination, the variations in charging demand could have a great impact on
the electricity market. Peak power demand could be deteriorated without investment in
charging infrastructure at working places and throughout cities.
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Public or non-residential private parking facilities are characteristic examples of
places where large numbers of EVs can concentrate in short periods of time. In order to
avoid system disruptions, the aggregated load in the parking facility should be closely
coordinated. Techniques that achieve this are widely known as “smart charging”.

Smart charging can be either centralized or decentralized. In centralized approaches,
EVs transmit a signal with the required State of Charge (SOC) and the desired parking
duration, and a control unit allocates charging times and sends the information back to the
charger/inverter of each vehicle [3–7]. In decentralized smart charging, the information on
spatiotemporal demand is transmitted in the form of incentives that are processed by the
in-vehicle controller, which optimizes the charging intervals of the vehicle [8–18].

This process can be facilitated by a Charging Service Provider (CSP), which coordi-
nates charging events with the objective of optimizing one or more from the list below:
power losses, transformer overloading, system operation costs, generation costs, vehicle
integration, the cost of the power supply, costs for individual drivers, balancing demand
and supply, and revenue for the CSP.

For this study, it was assumed that CSPs are contracted as intermediate agents to carry
out the task of charging and V2G coordination for parking operators in their control area.
As a result, they have a threefold role: (a) to provide EV drivers with their desired SOCs at
departure time, (b) to exchange electricity in two directions by respecting the local grid
constraints from the Distribution System Operators (DSOs) and (c) to maximize revenue
for contracted parking operators. If the parking operators were acting directly as Charging
Point Managers (CPMs), there would be no need for the intermediate services of the CSP.
These services can be classified as Business-to-Business (B2B) and Business-to-Customer
(B2C), and they are schematically presented in Figure 1.
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Figure 1. Business-to-Business (B2B) and Business-to-Customer (B2C) services of Charging Service
Providers (CSPs) in public and private parking facilities with Vehicle-to-Grid (V2G)-enabled charging
infrastructure.

As they grow in size, EV fleets offer greater load flexibility to the CSP. For example,
if an individual vehicle needs a lot of energy over a limited period, this energy can be
balanced from drivers who are more flexible in their demand and are willing to postpone
charging or even provide V2G services. Load flexibility is valuable for charging control,
and price incentives can be applied to promote longer charging events with lower power
rates and discourage short, power-intense intervals [19].

The work presented in this paper has contributed to the existing literature by develop-
ing a Revenue Management (RM) framework for charging coordination. In this framework,
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EV drivers reserve, in advance, a parking-and-charging bundle with certain characteristics,
such as a charging location, start time and duration, as well as a charging rate. For the
users, this approach offers more transparency and control over the charging parameters,
and a better understanding of the underlying mechanisms compared to typical scheduling
algorithms. For example, if they wish to leave the charging facility earlier, they can estimate,
with precision, the final SOC at that time. However, this transition of control from the CSP
to the EV driver does not necessarily mean a loss of flexibility. On the contrary, CSPs can
vary prices to incentivize low-power bundles; they can better predict EV arrivals, segment
their users and optimize their operations in advance.

The modelling framework was evaluated in a microsimulation framework with syn-
thesized activity patterns from a London-based travel diary and choice parameters adopted
from a stated preferences experiment [20]. Different EV penetration rates were simulated
for a commercial and a shopping area in the city centre.

The rest of the paper is structured as follows: Section 2 discusses the literature review
that is relevant to the context and the methodological approach of this study, while the
proposed optimization algorithm is presented in Section 3. In Section 4, a brief overview
of the data sources that were used for this study is provided along with a demonstration
of the simulation framework. Section 5 presents the results and a comparative analysis.
Finally, the outcomes of the study are discussed in Section 6.

2. Literature Review
2.1. State of the Art in EV Scheduling and V2G Optimization for Non-Residential Facilities

Several studies have investigated the optimal charging of electric vehicles and the
provision of V2G services for peak power and ancillary markets [21–33]. In these studies,
the objectives of the control algorithms vary significantly between maximizing economic
factors and minimizing the impact on the power network.

The addition of V2G services on top of regular charging complicates the decision
process for EV owners. The fast recovery of SOC is desirable because it means that smart
charging does not interfere significantly with the daily schedules of the owners. On the
other hand, arbitrage techniques based on wholesale electricity prices can generate profits
for them at the expense of recharging speed [4].

Rotering and Ilic [21] present a dynamic programming approach to solving this V2G
optimization problem, where the objective is to maximize the profit for the EV owners
and the decision variable is the daily SOC curve. Zhang et al. [22] examined the potential
application of V2G for ancillary services by developing optimal methods for voltage
regulation and reactive power control. Shokrzadeh et al. [23] present optimal scheduling
strategies for minimizing harmful operating conditions for distribution transformers at
a neighbourhood level. DeForest et al. [24] present a centralized method for optimizing
EV charging and bid capacity via V2G while maximizing the profit and minimizing the
operation costs for the aggregator. Vandael et al. [25] propose a multiagent system for
charging coordination with the objective of minimizing imbalance in a smart grid.

Non-residential parking facilities such as parking garages or supermarket parking
lots are characteristic examples of places where large numbers of EVs can concentrate in
short periods of time. As a result, there is an increasing volume of studies that are shifting
their focus away from home recharging.

Yao et al. [26] investigated the optimal integration of EVs in a parking station with the
distribution grid according to two different objectives: an economic and a technical one.
Shafie-khah et al. [27] present an optimization problem for a parking operator that satisfies
demand while curtailing loads for a power utility. They suggest that a constant power rate
over the charging session, which is in line with the present paper implementation, can
prolong the battery service time. Zhang et al. [28] also modelled the parking operator as a
demand response aggregation agent, but they found the optimal level of participation in a
set of demand response programs (price-based and incentive-based) instead of focusing on
one. Su and Chow [29] developed an intelligent energy-management system for EVs that
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charge at a municipal parking site, which they solved using probabilistic model-building
genetic algorithms.

Finally, the studies that explore the interaction between utilities and parking lots,
when V2G is available, are more limited.

Mehta et al. [30] implemented a water-filling algorithm to minimize the variance of the
load profile for workplace car parks as a means of reducing peak demand. Babic et al. [31]
propose a framework where the parking operator is a broker with two distinct roles: (a)
an energy retailer and (b) a player in a target electricity market. The electricity trad-
ing functionalities of the operator were evaluated within an agent-based simulation.
Moradijoz et al. [32] used genetic algorithms to solve a multi-objective algorithm that
optimizes the sites and sizes of parking lots that provide V2G services to the grid.

Probably the research work most closely related to the present paper is that of
Hashimoto et al. [33]. In their study, drivers could reserve charging and V2G services
through an auction-based system, and the improvements in revenue for the operators were
evaluated. It also presents similar methodological assumptions such as discretizing hour
intervals for parking reservations and billing by parking duration. In addition, a probability
distribution for parking users’ willingness to pay was derived from the completion of a
questionnaire addressed to them. Finally, the arrival and departure patterns were modelled
according to real parking data.

Summarizing the state of the art in EV scheduling methodological approaches, while
much effort has been devoted to assessing the economical and network impact of charging
and V2G, the current practice largely relies on simplistic representations of charging and
parking demand.

2.2. Representation of Charging Demand

In the majority of relevant studies, as was also pointed out by Daina et al. [34],
smart charging appraisals adopt predefined charging scenarios and exogenous EV use
patterns. The attributes that affect the charging process (the start and end times of charging
sessions, initial SOC, subsequent trip duration, parking duration, etc.) are calculated by
drawing values from typical probability distributions. Fazelpour et al. [35] used probability
distributions of arrival rates and arrival times in a movie theatre parking lot in Tehran, in
order to optimize the charging rates of the vehicles. Vandael et al. [25] used fixed charging
scenarios, and they assumed that the charging rate is constant during the charging process.

In some rare cases [28], these values have been validated with historical parking
information. When real-world charging data are available and are used to deduce charging
flexibility [29], these data are not adequate for capturing the elasticity of drivers to charging
parameters, because their choices are constrained by the limitations of the provided options.

Recently, there have been some efforts to predict charging behaviour with machine-
learning methods. The impact of accurate predictions on charging scheduling has been
demonstrated in [36], where the authors suggest a potential 27% decrease in peak load.
However, when using historical data of parking durations and energy consumption to
predict user behaviour, there is a lack of understanding of individual users’ preferences for
service attributes, such as the location of the charger and the charging rates.

The prominent novelty of the choice-based pricing optimization that was developed
in the present paper is the representation of the charging behaviour in a random utility
context and the use of parameters that were empirically estimated from user-tailored choice
experiments for charging choices. In a previous study by the authors, the results from
these experiments were used under expected and non-expected utility frameworks to
understand how people perceive price probabilities and how risk averse they are when
they book charging events in advance [37].

Our model bridges the gap in the literature by capturing the heterogeneity in activity-
travel and charging preferences and transferring this disaggregate information to a price-
based control mechanism.
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One of the first studies that modelled the implication of discrete choice models for
smart charging services was [34], but in the context of home-based charging activities.
In [8,11], the authors developed an activity-based microsimulation where the electric
vehicles were controlled with smart charging. Nevertheless, the willingness-to-pay as-
sumptions are not backed by empirical estimation based on revealed or stated preference
data. The parameters in the utility function are somewhat arbitrarily tuned using the
difference between the forecasted electricity price for next day and the current equivalent
price of gasoline. This trade-off makes sense in the decision process for a PHEV driver
who can run in both electric and gasoline modes, yet it does not adequately capture the
behaviour of a BEV driver.

The integration of charging coordination with the demand response of EV users is
achieved through the implementation of revenue management. Before proceeding to the
methodological framework in Section 3, there is a brief review of RM and its existing
applications in the context of parking and charging.

2.3. Revenue Management for Electric Vehicle Charging

Revenue management is a widely adopted method for the allocation and pricing
of non-storable services and perishable goods in the service industry. It made its first
appearance in the 1970s, when airline companies were deregulated. Data analytics were
adopted to differentiate the fares for seats located in the same cabin, and the operators
started making dynamic decisions based on predicted demand [38]. Today, we encounter
RM techniques in car rental services, hotels, hospitality and most of the industries where
there is an inventory with capacity constraints [39].

The first revenue-management approach for a car parking lot was presented in
Guadix et al. [40]. In a later study, car parking revenue maximization was achieved by
finding the optimal balance between early subscriptions and last-minute drive-in users [41].
In [42], the authors pursued the goal of maximizing revenue for a parking lot in a slightly
different manner. A fuzzy-logic-based intelligent parking system with learning capabilities
decided, in real time, which reservations to accept and which to reject.

To the best of the authors’ knowledge, the first study where revenue management was
applied for electric vehicle charging was that of Flath et al. [43]. The optimization objective
was to minimize disruption at the distribution network level and to balance energy demand
with supply. In this approach, there were two main differentiations from conventional
RM methods: (a) instead of discrete inventory units (e.g., hotel rooms, airplane seats,
etc.), the energy provided to the EV drivers was continuous, and (b) limited and high-
value transactions were replaced by frequent and low-cost ones. In terms of customer
segmentation, it is assumed that there are two types of users: drivers who charge their
vehicles on a regular schedule (e.g., at home or work) and drivers who have a spontaneous
need for topping-up their batteries.

Compared to [43], our methodological approach adds the physical dimension of
charging-post availability, moving from a single-resource (energy amount) to a dual-
resource allocation. Most importantly, it uses a sophisticated representation of charging
demand, and it enables customer segmentation using both quantitative and qualitative
choice parameters.

3. Choice-Based Price Optimization
3.1. Charging Offer Set

Charging services in the rest of the paper are represented as “bundles” that combine a
parking place with the electricity for recharging. As with existing revenue-management
applications, this study developed an online reservation system where EV drivers can book
their charging bundles up to 1 h before arrival. This system should display all the available
options at the time of reservation, including their prices and other service attributes. By
packaging out-of-home charging with other parking services, overall prices could become
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even more appealing than home energy tariffs and attract sufficient charging events to
boost investment in public infrastructure.

This is not the first study where users have had the option to choose between different
charging offers. In [44], the authors suggest a menu-based pricing system where the users
select among contracts of fixed energy quantity and time windows.

The charging bundle offer set for the EV customers was designed by the CSP, and it
could either include or not V2G services. The optimal pricing algorithm that is presented
here used as input the demand for parking and charging along with the elasticities to the
characteristics of each bundle. Given that the size of the price menu escalated exponentially
with additional hours of operations, multiple periods of four-hour slots were evaluated.

Moreover, the various bundles were categorized according to their charging rates,
which ranged between 3 and 12 kW. It was decided that rapid chargers should not be
included in the analysis, due to their relatively low availability at the time that the research
was undertaken. The charging preferences of EV customers were estimated under a Latent
Class (LC) model.

The optimization problem has two capacity constraints. The first one is the physical
constraint of the available charging posts across the parking lots. The second one is the
power constraint that is defined by the remaining capacity available to the DSO. While the
objective of the algorithm is revenue maximization for the CSP and the contracted parking
facilities, the demand-driven management of charging events has the potential for peak
shaving and the alleviation of bottlenecks in the local distribution network.

One of the ethical concerns around dynamic pricing is the fairness of the prices. For
this reason, the fairest approach is to differentiate prices for EV services based on the impact
they have on the grid. Therefore, we need to make sure that we apply accurate bounds for
each charging bundle. In order to achieve that, the following equation was formulated:

p∗j = phour + pbaseRjTjCDj Arj (1)

where p∗j is representative of the specific charging service, and the upper bound is defined
at 1.5 p∗j ; phour is the parking price for an hour, pbase is the price for baseload electricity, Rj is
the factor that penalizes power-intensive services, Tj is the factor that penalizes peak-load
time intervals, CDj is the charging duration and Arj is the factor that penalizes parking
lots with high occupancy. All these factors were normalized in a way meaning that the
electricity price varied between the base price (10 p/kWh) and a maximum of 55 p/kWh.

In the UK power market, after the actual delivery of electricity, the differences between
demand and supply are resolved with an imbalance settlement. This settlement recovers
the costs for the system operator by compensating every entity that produced an energy
surplus and charging every entity that produced a deficit [45]. Therefore, if the CSP agrees
with the DSO for a certain amount of power supply, and the actual demand for EV charging
is lower than the expected one, each unit of deficit will have to be reimbursed according to
the market index for imbalance costs.

Imbalance prices should be higher for peak-load periods because these are translated
to higher costs for the TSO; as a simplification of the complexity of real-market trading
values, the imbalance price for each charging bundle was estimated using the Tj factor
from Equation (1). Subsequently, these prices were used to calculate the costs from excess
power capacity, which were subtracted from the charging service profits to calculate the
net revenue for the CSP.

The analysis went a step further by incorporating V2G services in the bundles offered
by the CSP. Preferences for V2G services were not estimated because there was a high risk
of compromising the estimation validity by augmenting the stated preferences experiments
conducted in [20] with V2G scenarios and increasing the complexity for the respondents.
Therefore, an assumption was made that the sensitivities to the selling price and discharging
amount are identical to those for the buying price and charging amount. The only difference
was that the marginal utilities would then have the opposite signs.
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While charging and V2G behaviour are assumed to be symmetric, it is likely that this
is not the case in reality. For example, the marginal disutility from discharging could be
higher for the drivers because of the degradation of the battery or range anxiety. As there
are increasing examples of V2G trials around the world, future research could explore these
behavioural nuances.

When V2G services are provided, the offer set is extended from 46 to 60 charging
bundles. Therefore, EV drivers with low energy requirements (<1 kWh/day) are presented
with an extended choice set, where all 14 discharging alternatives deliver a 6 kWh discrete
energy quantity to the grid, using different combinations of discharging rates and plug-in
durations.

As Moradijoz et al. [32] elaborate, the revenues from V2G power depend on the type
of the electricity market that it is sold to. For example, there are markets that pay for
energy such as the peak-power market and markets that pay for the available capacity and
only require having the vehicle plugged in, such as ancillary services [4]. In the following
analysis, only peak-power services were taken into account.

In the next section, we show that by incorporating a latent class model, within the
choice-based formulation, it is possible to capture the taste heterogeneity among EV users.

3.2. Utility Specification

The utility of the individual user n selecting the charging bundle j under a discrete
choice model specification is the following:

Ujn = ASCj + βXXjn + βXYXjnYn + βXZXjnZn (2)

where ASCj is the alternative specific constant of the charging bundle j, βX is a set of
parameters to be estimated, X is a vector of charging-bundle-specific attributes, βXY and
βXZ are sets of parameters for interaction terms, Y is a vector of the travel and charging
patterns of the individual n, and Z is a vector of individual attributes of the decision maker
such as age, marital status, employment type, income, gender and parental status. In
particular, the vector X consists of the following characteristic parameters of the charging
service:

• The energy required by the user n, Ejn;
• The parking and charging price, p∗j ;
• The walking time from the charging post to the location where the activity of the

individual takes place, WTjn;
• The Charging-Induced Schedule Delay Early (CISDEjn) and the Charging-Induced

Schedule Delay Late (CISDLjn).

The last two parameters (i.e., CISDEjn and CISDLjn) are based on the theory behind
time-of-travel-choice modelling. In particular, the methodology developed in Vickrey’s
seminal paper [46] suggests that when a commuter choses what time to leave for work,
this decision comes after a trade-off between travel time and the measures Schedule Delay
Early (SDE) and Schedule Delay Late (SDL). These two measures were defined as follows:

SDE = max (PAT − (td + TT(td)), 0) (3)

SDL = max (td + TT(td)− PATb, 0) (4)

where PAT is the preferred arrival time, td is the time of departure from home and TT(td)
is the travel time, which is a function of the departure time. We defined CISDEjn and
CISDLjn in a similar fashion to the disutility of starting the activity earlier or later, respec-
tively, due to the starting time of the charging event. To better clarify these terms, they are
visually demonstrated in Figure 2 for a hypothetical daily scenario.
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Figure 2. Graphical representation of charging-induced schedule delay for four scenarios: (a) there is no schedule disutility,
as the charging and the parking episodes are identical; (b) there is no schedule disutility, as the charging episode is a subset
of the parking episode; (c) there is Charging-Induced Schedule Delay Early (CISDE) because both episodes start before the
Preferred Arrival Time (PAT); and (d) there is Charging-Induced Schedule Delay Late (CISDL) for the next activity because
both episodes finish later than the typical departure time. The red dotted lines in (c,d) represent the actual arrival times that
are different from the preferred arrival times.

The majority of the above parameters were estimated in [20]. The parameter for the
energy amount βE was based on a previous estimation of EV drivers’ sensitivity to post-
charging SOC [47], and the parameter for CISDL was obtained from the CISDE coefficient
using the SDE-to-SDL ratio estimated in another study for London commuters [48].

3.3. Latent Class Specification

Latent Class (LC) models are typically applied for segmentation, since they identify
classes of users with distinct choice behaviours. As a result, the objective of these models is
to achieve intrasegment homogeneity and intersegment heterogeneity based on a set of
attributes. Individuals are attributed to each of the classes probabilistically, by estimating
class-membership probabilities. A typical LC model formulation is the following:

Pn
(

j
∣∣Xjn, Yn, Zn, β

)
=

K

∑
κ=1

Pn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn) (5)

where K represents the total number of classes, zn is the set of attributes that makes the
behaviour across the segments distinctive and Pn(κ|zn) is the probability that the user n
belongs to class κ, conditional on zn, widely known as the class-membership probability.
It is deduced that ∑ K

κ=1Pn(κ|zn) = 1. Additionally, Pn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
is the class-

specific probability calculated in (6).

SPn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
=

eUjn

∑J
j=1 eUjn + eU0n

(6)
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where J is the total set of bundles and U0n is the utility gained from the “no buy” choice.
Since “no buy” was not an option in the choice experiments, this utility was approximated
by calibrating the alternative specific constant of Equation (2) in a way implying that a
small share of the EV drivers did not buy any of the charging bundles.

The typical formulation for a class-specific probability is the multinomial logit (MNL)
model; however, other Generalized Extreme Value (GEV) models, such as nested logit or
cross-nested logit, can also be adopted to relax some of the hard assumptions of MNL.

The empirical estimation of the latent class model in [20] identified two latent classes:
a class where the common characteristic was the high elasticity to price, and a class that
was more sensitive to time coefficients, such as walking time and charging duration. The
class-membership model is shown in Equation (7).

Pn(κ|zn) =
eδκ+γκzn

∑K
l=1 eδl+γl zn

(7)

where δκ is a constant that is specific to the k class and γκ are the parameters to be estimated.

3.4. Price Optimization

In revenue management, it is commonly assumed that the demand is homogeneous.
The introduction of discrete choice models as a means to better capture customer behaviour
was first attempted with the Choice-Based Deterministic Linear Program (CDLP) [49].
MNL models were replaced by more sophisticated specifications such as nested logit [50]
and LC models [51] in subsequent studies.

The objective of the optimization problem developed in this paper is to maximize the
expected revenue of the CSP for each four-hour period. The final solution is a menu-based
pricing strategy, which should satisfy the constraints for the two-dimensional capacity
(charging-post and power availability). The decision variables of this problem, pj, are
the prices of the 46 (or 60 when V2G is available) charging bundles. The latent-class
optimization problem is formulated as follows:

max
pj

Revenue = DEV [
J

∑
j=1
{

K
∑

κ=1
Pn

(
j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn)pj}]−[Yc − DEV B

K
∑

κ=1
Pn

(
j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn)pj]pI (8)

subject to:

• Capacity constraints:

DEV A
K

∑
κ=1

Pn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn)pj ≤ Xc (9)

DEV B
K

∑
κ=1

Pn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn)pj ≤ Yc (10)

• Price-policy constraints:

p−j ≤ pj ≤ p+j (11)

where DEV is the total number of electric vehicles that arrive at the parking facilities for
recharging or discharging, Xc is the total number of charging posts, Yc is the power in kW
supplied to the CSP for the contracted facilities, pI are the imbalance prices, A and B are the
incidence matrices for the two capacity dimensions, and finally, p−j and p+j are the lower
and upper bounds for the decision variables, which are calculated using Equation (1). The
methodological approach is visually demonstrated in Figure 3.
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objective function.

Equation (8) can be decomposed in two terms. The first term is the generated profit
that is calculated by multiplying the number of EVs by the latent class probability of
choosing a charging bundle j and the price of this bundle. The second term is the imbalance
cost that is calculated by multiplying the imbalance price for each hour slot with the
respective deficit power. The maximum revenue for the CSP is equal to the difference
between the generated profit and the imbalance cost for the optimal price menu.

The capacity constraints (9) and (10) correspond to the number of charging posts and
the supplied power, respectively. Price-policy constraints (11) vary across charging and
V2G services. The minimum price for charging bundles is equal to the maximum price for
V2G bundles, and it is assumed to be zero. On the other hand, the maximum prices for
charging bundles and minimum prices for V2G bundles reflect their main characteristics;
i.e., power-intensive bundles are allowed to have higher prices.

4. Data and Simulation Approach

A simulation approach was employed for the demonstration of the developed pric-
ing algorithm. Two areas with distinct activity patterns and increased travel demand
levels were selected for the simulation: a large shopping mall (Westfield Shopping Cen-
tre) and a busy commercial area (Canary Wharf). Similar assumptions were made in
Battistelli et al. [52], where two garages with EV parking spaces were modelled, serving an
office and a residential area. The characteristics of the trips for these areas were extracted
from an annual household survey, which combined personal and household information
with data from travel diaries: the London Travel Demand Survey (LTDS) [53].

The number of parking spaces used for the simulation corresponded to the existing
off-street infrastructure within a 1 km2 radius of the centroid of each area. It was assumed
that these spaces and the hypothetical charging posts were concentrated in two large
parking lots for both areas. In terms of data preprocessing, the steps below were followed:

• The units of analysis were tours that started and ended at the homes of the respondents.
The tours contained multiple trips.

• Tours that were not identified as car driving, or did not have an intermediate stop
within the examined areas, were removed from the analysis.
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• If the number of stops in the area of interest was higher than one, the parking event
with the highest duration was identified, and that is where the charging event was
assumed to take place.

All the electric vehicles in the simulation were assumed to be BEVs, because of range
anxiety and their higher likelihood of depending on out-of-home charging infrastructure.
At the time of the research, one of the most competitive BEVs in the market was the Nissan
Leaf; hence, it was used for the estimation of electricity consumption [54]. For combined
city and highway driving, this was set equal to 30 kWh/100 miles, and given a battery
capacity of 24 kWh, it corresponds to a driving range of 83 miles. Finally, the energy
efficiency of the charging posts was assumed to be 80% and to remain constant at any time
step.

The number of charging posts for the simulation was assumed to be equal to the
number of parking spaces. While this could be considered a very optimistic scenario for the
evolution of electromobility and its infrastructure, there is a rapid deployment of charging
posts in large urban centres, which is going to be further facilitated by economies of scale.
Furthermore, it should be noted that the areas examined are of high economic interest,
with the potential to attract infrastructure investments.

Along with travel demand, these areas have increased electricity demand, especially
during hours of peak occupancy. Some examples of appliances that contribute to the
aforementioned peaks are personal computers, display lighting and air conditioning units.
In order to model the base load of electricity without electric vehicles, first, we identified
the baseload profiles for a typical winter weekday for both domestic and nondomestic
users. Then, the average population density of residents, the number of employees and
the percentages of domestic and nondomestic consumption were used to scale up from
a personal profile to the daily distribution. The resulting load curves are presented in
Figure 4.
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installed capacity for the scenario of 20% overload capacity).

The overload capacity can generally fluctuate between local distribution networks.
Typically, distribution transformers are replaced when the peak demand grows to be almost
equal to the installed capacity. Figure 4 demonstrates the capacities that were selected for
the simulation, which in both cases, were 20% higher than the peak value of the base load.

The trip data from LTDS only represent a sample of the population and not the actual
demand. Thus, the respondents were used to generate a synthetic population that would
allow the exploration of network effects for the two areas. The specifics of the population
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synthesis algorithm are presented in [20]. The energy requirements for the synthetic EV
drivers were calculated based on the reported mileage for all the daily trips. However,
since out-of-home charging events were expected to follow a top-up pattern, there was an
asymmetric draw from the lower end of the distribution (1–5 kWh).

In order to account for different levels of EV penetration, three scenarios were evalu-
ated: a mid-term scenario (25%), a long-term scenario (50%) and a full-electrification (100%)
scenario. As a preliminary step, the incoming demand was satisfied with an uncoordinated
charging strategy. This allowed an initial estimation of the spatiotemporal allocation; thus,
it could be used for an informed pre-allocation of the supplied power capacity amongst
the parking facilities. Some basic assumptions for the uncoordinated scenario were the
following: (a) recharging starts as soon as the vehicle is plugged in and (b) the charging
event has a constant rate and is evenly distributed over the parking dwell time.

Combining the data sources and the synthetic information that has been described
so far in this section, we present all the variables that were used for simulation and
optimization in this study, in Table 1. Scaling up the trip sample dataset using aggregate
statistics for the areas of interest, we ended up with 10,852 trips for Canary Wharf and
14,360 trips for Westfield. Then, depending on the scenario for EV penetration levels, the
total numbers of trips in the simulation are presented at the end of the table.

Table 1. Description of the input data used in the simulation.

Description Value Range Description Value Range

Parking and charging characteristics Demographics
Parking start time 9:00–20:00 Gender Male or female
Parking end time 10:00–21:00 Age <=40 vs. >40
Parking location 1 or 2 Marital status Married vs. all other categories

Constant charging rate (in kW) 0.5–12 Employment status Employed vs. unemployed
Walking distance from activity to

parking locations (in m) 10–1700 Income (in GBP) <GBP 10,000 to >100,000

Energy requirements (in kWh) 0–24 Children in the household Yes or no

Charging bundle characteristics Context variables
Discrete charging rate (in kW) [−6,−3,3,6,8,12] Day of week Monday–Sunday

CISDE (in minutes) 0–180 Initial charging prices
(GBP/kWh) 0.10–0.55

CISDL (in minutes) 0–180 Energy consumption
(kWh/miles) 30/100

Charging duration (in minutes) 0–240 Battery range (in miles) 83
Number of products (no V2G/V2G) 46/60 Charging efficiency 80%

Number of charging posts 625
Work-based tour Yes or no

Distribution network
headroom 20%

Size of synthetic daily trip dataset
Canary Wharf Westfield

25% EVs scenario
50% EVs scenario

100% EVs scenario

2713
5426

10,852

3590
7180

14,360

The first step of the methodological approach was to examine an uncontrolled charging
scenario. The parking and charging characteristics in the top left of Table 1 were deduced
from the trip dataset following a set of assumptions and rules. For example, it was assumed
that the driver will park at the facility that is closer to the final destination and that the
energy requirements will depend on the subsequent trips of the day and the remaining
SOC. Subsequently, the initial SOC depends on the distance driven so far and the energy
consumption. Additional context variables that were necessary for the simulation are
depicted in the middle-right part of the table.
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The “dumb charging” strategy is useful for understanding the spatiotemporal alloca-
tion of demand and applying the simple area-based and time-based fixed prices that are
explained in Equation (1). It also enables the higher allocation of power capacity to the
busiest parking facility as a strategic decision. In the next step of our methodology, the
charging events were driven by actual choices of the users, which in turn, were probabilistic
outcomes of a decision process. Individuals try to maximize their utility (Equation (2)),
which is a linear combination of factors from all the sections of Table 1. Using the choice-
based formulation described in Equation (8), the prices of the charging bundles were
optimized with respect to CSP revenue. Then, they were used to rerun the simulation and
evaluate other key metrics such as the load factors and demand–supply imbalance.

EV scheduling problems are typically characterized by large numbers of variables
and constraints that are not continuously differentiable and increase the related models’
execution times for finding an optimal solution. Metaheuristic algorithms (MAs) are very
popular in the relevant literature as a means for solving these NP-hard (nondeterministic
polynomial-time hard) problems [55,56]. The main disadvantage of MAs is that they are not
guaranteed to reach the global optimum, due to the stochasticity in the process. However,
V2G scheduling problems are typically highly dimensional, nonconvex and nonlinear
optimization problems, and MAs are arguably one of the best options for both binary and
real-valued problems.

The formulation in this paper is, in fact, a constrained nonlinear problem, and the two
main categories of MAs that are applied to solve such are Genetic Algorithms (GAs) and
Particle Swarm Optimization (PSO).

The reader is referred to [55,56] for a detailed review of GAs, PSO and other meta-
heuristics applied in Unit Commitment (UC) problems and EV charging/discharging
coordination. The studies [57,58] are typical applications of the two methods. In [57], the
authors used a GA in a game theoretic analysis of EV charging coordination. On the other
hand, Hutson et al. [58] applied binary PSO to find the optimal buying and selling times
for a fleet of vehicles in a parking lot.

The genetic algorithm creates a population of candidate price vectors for the charging
bundles, and the best candidate approaches the optimal price vector. Each population
is generated after applying certain stochastic operators to the previous population. In
particular, the revenue for the operator, which is the fitness score in this application, is
calculated for every price vector in the population using Equation (8). If the score of the
vector is higher than the average fitness score, it is selected to be transitioned to the next
population. This process is typically known as selection. If the score is lower than the
average fitness score, random changes are applied to the parent price vectors in order to
generate children for the new population. This process of adding diversity in the creation
of new offspring is typically known as mutation. If some of the prices in a price vector
lead to solutions that violate capacity constraints (Equations (9) and (10)) or price-policy
constraints (Equation (11)), a penalty score is incremented by the maximum price. In this
way, infeasible price candidates are less likely to be selected for the next population.

The algorithm is presented in detail in Figure 5. First, we initialize the number of
iterations (generations) as G = 100. We randomly generate an initial population P0 of size
P = 100. Each individual in the population is represented by a D-dimensional vector, where
D is the number of charging (or charging and discharging) bundles:

pi = (pi1, pi2, . . . , piD) (12)

and the genetic encoding is a direct value encoding the price. This value can be between
0 and the upper bound for the charging bundles or between the lower bound and 0
for the discharging bundles. The fitness function (the choice-based revenue function in
Equation (8)) is evaluated for all the individuals in P0. Then, as long as the stopping
criterion is not satisfied, we iteratively create subsequent populations. We calculate the
score (revenue) for each individual and the average score of the population. We select
the individuals with scores higher than the average population score to move to the next
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generation, and we remove the remaining ones. We also mutate the genes (prices) of the
successful individuals by adding random noise, in order to create new price vectors and
always have a population of size 100. At each generation t, we evaluate the fitness function
Pt, and we follow the same steps. Finally, when the stopping criterion is satisfied, the
iteration is terminated, and the individual that generates the maximum revenue is selected.
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Figure 5. Genetic algorithm solution for price optimization.

The second nature-inspired algorithm that was adopted in this study for optimization
is the PSO. Like the genetic algorithm, each individual in a population (here referred to as
swarm because it is based on the information exchange of birds in a swarm) is updated in an
iterative manner. The exploration of the problem search space is guaranteed by introducing,
again, a certain stochasticity in the transitions. Upon initialization, each individual particle
in the swarm creates a randomized position solution, i.e., vector of prices, and a randomized
velocity within a uniform range of values. Then, the initial positions are assigned to the
particles’ best-known positions. For each iteration, the algorithm updates the velocity of
the price vectors using their best individual positions and the best position of the swarm.
A cognitive constant c1 limits the influence that the particle’s best-known positions have
on their new velocity, while a social constant c2 limits the influence the best price vector of
the swarm has on the other vectors.

The details of the PSO solution are presented in Figure 6. The algorithm starts by
initializing a set of parameters including the acceleration constants c1 and c2. The size
of the swarm is assumed to be P = 100. The position of each solution (particle) i of the
swarm is represented by a D-dimensional vector, where D is the number of charging (or
charging and discharging) bundles, as depicted earlier in Equation (12). Simultaneously,
each particle is randomly assigned an initial velocity, which is given by:

vi = (vi1,vi2, . . . , viD) (13)
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The fitness value (Equation (8)) is evaluated for each particle’s position f(xi). The
current position is assigned as the best local position (x*

i), while the position with the
highest fitness value is assigned as the best global position (gbest). Then, as long as the
termination criterion is not satisfied, the positions and velocities of the swarm particles
are updated based on (a) their own best local positions and (b) the global best positions in
their neighbourhood:

pi
(t+1) = pi

(t) + v(t+1)
i (14)

vi
(t+1) = vi

(t) + c1ri1

(
x∗(t)i − x(t)i

)
+ c2ri2

(
gbest− x(t)i

)
(15)

where t is the iteration count, while r1 and r2 are random vectors that take values between
0 and 1. The fitness value is evaluated for the new position, and the local and global best
solutions are updated. At the end, when the termination criterion is satisfied (t = 100), the
best particle is selected as the optimal price vector.

Both the GA and PSO algorithms were developed in Python, which was also used to
build the simulation framework.

The simulation framework, which is demonstrated in Figure 7, considered four control
scenarios: (a) fixed pricing based on the time of day (FP), (b) fixed pricing based on the
time of day and typical spatial demand (FP2), (c) optimal pricing with the GA, and (d)
optimal pricing with PSO. All these control scenarios were compared with an uncontrolled
charging scenario where it was assumed that charging demand was equally allocated for
the parking duration.
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Figure 7. Simulation framework for charging and V2G coordination. The three levels capture (a) the synthetic approach
to building a representative demand for travel and energy, (b) the technology and behavioural assumptions and (c) the
dynamic parameters that were evaluated under different scenarios.

All the simulation runs account for a 12 h operating window between 9:00 and 21:00
with overlapping subsequent 4 h scheduling windows. By running the simulation for all
the possible combinations, a total of 48 cases were modelled. Breaking down the problem
into 4 h subproblems led to near-optimal solutions but, simultaneously, did not become
computationally expensive, which would be prohibitive for the numerous scenarios that
were analysed.

5. Results

The main metrics that were evaluated after each simulation run are the revenue for the
charging service provider, and the load factors for both the physical dimension of charging
posts and the power supplied by the DSO.

Figures 8 and 9 demonstrate the results for the simulation across two dimensions: the
percentage of EVs and the overload capacity. Figure 8 corresponds to the heavy business
area, while Figure 9 corresponds to the commercial area. For each case study, we examined
the load curve against a transformer capacity that was designed based on the maximum
value of the baseline curve (first column) and on an overload capacity of 20% (second
column). Finally, the three rows are associated with an increasing percentage of EVs from
top to bottom.
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Figure 8. Charging allocation analysis for Electric Vehicle (EV) market penetration and overload
capacity (Canary Wharf area). The red dotted line represents the nominal capacity of the distribution
transformer; the grey line, the baseline load demand; the blue dotted line, the uncoordinated charging
scenario; and the green line, the charging allocation with Fixed Pricing based on time of day (FP).
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Figure 9. Charging allocation analysis for EV market penetration and overload capacity (Westfield
Shopping Centre area). The red dotted line represents the nominal capacity of the distribution
transformer; the grey line, the baseline load demand; the blue dotted line, the uncoordinated
charging scenario; and the green line; the charging allocation with Fixed Pricing based on time of day
(FP).
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Since the peak demand for the study areas is already high, a 20% overload capacity is a
significant increase in the available power, and it is sufficient, even for the full-electrification
scenario. The baseline load distribution is quite similar for the two areas, with the busiest
time being around midday. For the uncoordinated-charging scenario, there are several
periods where demand exceeds the available capacity. The most extreme case is the scenario
for Westfield, with 100% of EVs and 0% overload capacity.

The FP control algorithm takes into account historical driving and activity data to
penalize the hour slots with the highest charging demand. The price for each charging
bundle is calculated based on Equation (1) without the area factor. Each charging bundle is
allocated only if it is not constrained by power availability and the number of free charging
posts. This pricing incentive initiates a behavioural shift, with some EV drivers charging
later in the day, while some drivers with low SOC needs are discouraged from charging at
all.

Figures 8 and 9 do not include V2G services for parking customers. The impact of V2G
services can be observed in Figure 10. From this point on, only the Canary Wharf results
are presented because the relative effects of the parameters on the results were similar for
the Westfield area. The difference is that now, the overload capacity was kept fixed at 0%,
and it is replaced in the graphs by the V2G availability parameter.

It is interesting to observe that the final load curve is below the baseline curve for
the majority of the day. This can be explained by the fact that several drivers prefer to
sell electricity back to the grid instead of charging their cars, even taking into account the
disutility from the reduced SOC for the rest of their daily trips. This is extremely useful
for periods of peak demand because it allows other drivers with higher charging needs to
refill their batteries. Nevertheless, it incurs additional imbalance costs to the CSP during
nonpeak periods, when the V2G services are not required.

The net revenue for the CSP is optimized with the choice-based pricing algorithm that
was presented in the previous sections. Figure 11 shows the load curves under the four
different control approaches, with and without V2G availability. FP2 is similar to FP, but
now, the area factor is included in the calculation of Equation (1). In this way, busy parking
is penalized, and drivers are incentivized to plug in their cars in a more distant location.

In terms of overall load scheduling, this method has very similar results to the previous
one. On the other hand, the two solution algorithms for our optimization problem have
a more profound effect. When V2G is not available, a higher portion of charging events
is shifted from peak to nonpeak hour slots by setting prices that are closer to the drivers’
willingness to pay. To better understand what happens when V2G services are provided,
one can have a look at Table 2.
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Figure 10. Charging allocation analysis for EV market penetration and V2G availability (Canary
Wharf area and 0% overload capacity). The red dotted line represents the nominal capacity of
the distribution transformer; the grey line, the baseline load demand; the blue dotted line, the
uncoordinated charging scenario; and the green line, the charging allocation with Fixed Pricing based
on time of day (FP).
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Figure 11. Charging allocation analysis for V2G availability and control algorithm (Canary Wharf
area and 0% overload capacity). The red dotted line represents the nominal capacity of the distribution
transformer; the grey line, the baseline load demand; the blue dotted line, the uncoordinated charging
scenario; and the green line, the charging allocation with the respective algorithm.
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Table 2. Revenue performance and parking load factors for various parameter combinations.

V2G
Availability

EV Market
Penetration

Control
Scenario

Overload
Capacity

Revenue
(GBP)

Parking
Load Factor

Parking
Load Factor

(P1)

Parking
Load Factor

(P2)

No V2G

100% FP
0.0 5768 40% 43% 38%

0.2 7980 69% 69% 68%

50% FP
0.0 3775 27% 27% 27

0.2 5268 50% 51% 50%

25%

FP
0.0 1959 15% 16% 14%

0.2 2818 31% 31% 31%

FP2 0.0 1835 15% 8% 22%

GA 0.0 6056 15% 16% 14%

PSO 0.0 8051 15% 16% 13%

V2G

100% FP
0.0 −5278 72% 73% 71%

0.2 −5026 72% 72% 72%

50% FP
0.0 −2691 48% 51% 45%

0.2 −2657 50% 51% 48%

25%

FP
0.0 −1358 25% 27% 23%

0.2 −1230 27% 28% 26%

FP2 0.0 −2005 25% 31% 18%

GA 0.0 −6.86 18% 9% 26%

PSO 0.0 −1040 20% 20% 20%

When drivers are allowed to sell electricity to the grid using V2G technology, all the
methods result in losses for the CSP because the expenses from the “selling” bundles exceed
the income from the “buying” bundles. The choice-based optimization reduces the losses,
especially when the GA solution is applied. The reduced parking load factors indicate that
upon decreasing the sale prices to avoid excessive V2G and reduce the imbalance costs, the
V2G activities are spread throughout the day.

The trade-offs between charging and discharging in the choice model heavily rely on
the customers’ sensitivity to price. As was highlighted earlier, the class-specific parameters
for the two latent classes were estimated by the authors in previous work. Therefore, the
estimates were bound to the tariffs used in the choice experiments and do not necessarily
reflect future fluctuations in electricity prices. The effect of this behavioural uncertainty
on the outcome of the optimization problem was addressed by performing a sensitivity
analysis regarding the price coefficients. The outcomes are demonstrated in Table 3 for the
GA solution. The relative differences were similar for the PSO solution.

Table 3. Analysis of revenue and parking load factor sensitivity to price parameters.

Price
Sensitivity Revenue (GBP) Parking Load

Factor
Parking Load

Factor (P1)
Parking Load

Factor (P2)

Decreased 850.21 23% 24% 13%

Medium −6.41 20% 11% 28%

Increased −791.26 18% 17% 30%

The original specification was defined as “Medium Price Sensitivity”, and the price
parameters were halved and doubled, respectively, for the “Decreased” and the “Increased”
scenarios. When drivers are less sensitive to charging prices, their utility is overruled by
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their energy needs and their willingness to walk, so there is an increase in drivers that
charge in parking lot 1, and the overall revenue becomes positive for the CSP. On the
contrary, when drivers are more sensitive to charging prices, the number of V2G events
increases in both parking facilities. Consequently, the imbalance costs are increased by the
excess electricity, and the optimal solution leads to an overall loss.

The following results indicate the significance of the demand parameters in the devel-
oped framework. If similar datasets become available in the future, a cross-validation could
be useful since some elements of the choice experiments that were used are not established
at the moment (e.g., workplace charging services), and some properties were approximated
(e.g., the sensitivity to energy quantity). At the same time, the estimated parameters should
be treated with caution when applied to other geographic locations, since it is likely that
they are correlated with some idiosyncratic preferences of British drivers.

The next step in the analysis was to understand how the optimal prices were related
to the attributes of the charging bundles. Figure 12 demonstrates a classification of the
prices that were generated with the GA solution by power and charging duration. It is
observed that short-duration, high-power bundles tend to be more dispersed around 0
compared to long-duration, low-power bundles. This is essentially an indirect reward to
users that strain the power network less by spreading their charging demand over time.
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Figure 12. Classification of GA-optimized prices for charging and V2G bundles by power and
charging duration.

To conclude this section, we performed a comparative analysis of the two algorithms’
performance in terms of computational time. The run time of the optimization was eval-
uated for three different parameters: (a) the number of iterations, (b) the number of
populations (GA) or the number of particles (PSO) and (c) the effect of scaling up the
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number of EVs. All the parameters were found to have linear effects on computational
time as is shown in Table 4.

Table 4. Comparative analysis of computational times for solution algorithms.

Genetic Algorithms Particle Swarm Optimization

No. of Iter. No. of Populations Scale (%) Time (s) No. of Iter. No. of Populations Scale (%) Time (s)

10 10 25 20.1 10 10 25 17.1

10 10 50 40.6 10 10 50 35.0

10 10 100 83.6 10 10 100 69.2

100 10 25 186.7 100 10 25 184.5

10 100 25 192.7 10 100 25 194.3

The metaheuristics’ overall performance can be summarized as follows:

• Their computational times are very similar;
• The GA algorithm provides a better solution without V2G;
• The PSO algorithm provides a better solution with V2G.

6. Conclusions

This paper shows how a choice-based revenue-management problem can be integrated
with the parking and charging choices of electric vehicle drivers. In particular, an integrated
latent class and nonlinear framework was developed to optimize prices for charging
services provided by a charging service provider.

There are two innovative elements of the developed methodological framework in
comparison to existing research.

First, the endogenous relationship between the sensitivity of EV drivers to charg-
ing characteristics and the charging coordination methods applied by the operator was
captured with a sophisticated disaggregate model of demand. Most importantly, the pa-
rameters of this model were empirically estimated from user-tailored choice experiments
for charging choices.

The second contribution of this paper is the development of a framework that can have
direct implementation in the charging service industry. Revenue management allows the
closed-loop integration of supply and demand and has proven to be financially beneficial
in several service industries. The excessive number of papers that have been written in the
last decade aiming to accommodate the increasing charging needs of EV drivers cannot
always be aligned with practice-ready business models.

A microsimulation framework was used to implement the pricing model for a syn-
thesized network of two distinctive regions. Baseload electricity curves were modelled
by scaling up typical load profiles, and survey data for travel behaviour were scaled up
by using synthetic population methods. The charging behaviour of the simulated drivers
was modelled using an advanced discrete choice model, and different scenarios were
established for EV penetration rates, the overload capacity and the V2G availability.

One limitation of this online reservation system is that it cannot capture last-minute
stochastic arrivals. As was explained in the introduction, this approach reduces the un-
certainty both for the users who need to be reassured of a certain level of SOC for their
subsequent trip and for the parking operator who wants to achieve a smooth allocation
of charging demand. However, it results in a conservative lower-bound estimation of the
optimal revenue. Future research could combine a revenue-management approach, which
by definition, has to be resolved in a preservice booking period, with a more dynamic
application that considers last-minute arrivals.

The results suggest that the revenue-management framework simultaneously maxi-
mizes revenue and assists in the prevention of local transformer overloading. Charging
peaks are alleviated especially when V2G services are adopted to provide energy back to
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the grid. In addition, it accommodates drivers during the peak hours, while before, they
were unable to charge their vehicles because of network constraints.

The outcomes of this research could potentially be interesting for retail operators that
host charging infrastructure and want to understand revenue opportunities from merging
charging and retailing services. The charging bundles described could be extended to
incorporate a point system or the exchange of electricity with retail products. At the same
time, the power constraints could reflect the energy needs of a retail building, such as,
for example, lighting, heating and cooling for a supermarket in high-demand hours. It is
significant to highlight here the rapid increase in studies that are exploring the integration
of V2G with energy-management systems in buildings [59–61].
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