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Abstract: A main challenge for integrating the intermittent photovoltaic (PV) power generation
remains the accuracy of day-ahead forecasts and the establishment of robust performing methods.
The purpose of this work is to address these technological challenges by evaluating the day-ahead PV
production forecasting performance of different machine learning models under different supervised
learning regimes and minimal input features. Specifically, the day-ahead forecasting capability of
Bayesian neural network (BNN), support vector regression (SVR), and regression tree (RT) models
was investigated by employing the same dataset for training and performance verification, thus
enabling a valid comparison. The training regime analysis demonstrated that the performance of the
investigated models was strongly dependent on the timeframe of the train set, training data sequence,
and application of irradiance condition filters. Furthermore, accurate results were obtained utilizing
only the measured power output and other calculated parameters for training. Consequently, useful
information is provided for establishing a robust day-ahead forecasting methodology that utilizes
calculated input parameters and an optimal supervised learning approach. Finally, the obtained
results demonstrated that the optimally constructed BNN outperformed all other machine learning
models achieving forecasting accuracies lower than 5%.

Keywords: day-ahead forecasting; machine learning; neural networks; photovoltaic; regression tree;
support vector regression

1. Introduction

The world is entering a new era with photovoltaic (PV) technologies emerging as
the primary source for meeting future electricity demands, while coal-fired generation
declines globally [1]. Driven by cost reductions and concerted government policy efforts,
the world’s total renewable-based power capacity is expected to grow by 50% over the
coming years with PV accounting for 60% of this rise [2]. The integration of higher shares
of variable renewable energy (VRE) technologies, such as PV, is essential for decarbonizing
and meeting the demands of future grids but introduces new grid operation challenges. In
particular, the increasing deployment of VRE generation poses specific challenges as its
share of power generation rises, rendering new power system flexibility options critical
for ensuring continuous service in the face of rapid and large swings in supply or demand
(real-time operations to long-term system planning) [3].

In this domain, the variability and uncertainty of PV generation incurs serious stability
and reliability issues in power system operations since the intermittent nature of solar
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produced electricity must be accommodated by grid operators in their generation planning
and dispatch operations [4–6]. Utility grids with large share deployment of distributed
PV systems are already experiencing a profound transformation towards modern digitally
enhanced technologies that will enable the observability and control of underlying dis-
tributed energy resources (DERs). To this end, the current electrification, decentralization,
and digitalization trends are accelerating the transformation of the existing power sector
paradigm in order to fully unlock system flexibility for high VRE penetration.

To stem grid transition and mitigate adverse power quality impacts posed by high
shares of PV systems, utilities require PV power forecasts for core generation dispatch and
scheduling operations. Forecasting is a main enabler that can ensure secure and economic
integration of PV while building links for synergies between many flexibility innovations in
power systems across different dimensions. Forecasts focus on the output power or the rate
of change of power (ramp rate) of a single PV system or the aggregation of large numbers
of systems. More specifically, accurate PV power forecasting is an important cost-effective
energy management element for utilities and plant operators that can save excessive
spinning reserve, enhance the stability of the system, reduce integration and ancillary
services costs, and ensure seamless integration of VRE sources. Furthermore, it allows the
efficient and direct participation of PV power plants and aggregated systems into electricity
markets by optimizing schedules for the supply and increasing revenues. Incidentally,
forecasting provides the necessary tool for distribution areas to become commercially
viable microgrids and to be aggregated in virtual power plants (VPPs) in order to spur the
value of low-cost solar electricity.

Over the past years, a large number of forecasting methods have been presented in
the literature to address this challenge. In general, forecasting methods are categorized
according to the forecasting time horizon (i.e., the amount of time between the actual
effective prediction time), the approach to yield the forecasts and the particular application
of the forecasted outputs [7]. Regarding the various forecasting horizon methods, these
can be further classified into very short-term, short-term, medium-term, and long-term
forecasting [8–10]. In particular, the forecast horizons of medium-term and long-term
forecasting methods typically range from 1 month to 1 year and 1–10 years, respectively [10].
These forecasting approaches are mainly applied for scheduling and planning in the power
sector. On the other hand, very short-term forecasting methods cover horizons of 1 min
to 1 h and are applied in real-time operations (i.e., automatic generation control, power
smoothing, real-time power dispatching, and spot markets). Accordingly, short-term
forecasts typically range from 1 h to 1 week and are required in unit commitment, economic
dispatching, reserve optimization, storage system management, transmission scheduling,
and day-ahead markets. For very short-term forecasting, onsite PV system measurements
and meteorological data are necessary, while numerical weather prediction (NWP) datasets
are commonly utilized for forecasts extending beyond 6 h. Both very short- and short-term
forecasts are also defined as intraday, and at the present day-ahead forecasting of the hourly
output power, it is the most important component for the integration of PV in electric
grids [9].

In contrast to the very short-term PV generation forecasting methods that rely on
historical observations and statistical approaches to train models, day-ahead forecasts
require weather forecasts from NWP models as the key inputs to PV power prediction
models that generate forecasts [9]. More specifically, NWP models are based on dynamical
equations that describe the evolution of atmospheric physical processes and are classified
as either global or mesoscale. Global models such as the global forecast system (GFS) [11],
have a global coverage with spatial resolution of around 1◦ (approximately 100 km at the
earth’s surface). Mesoscale models usually include topographic details and information at
different levels from the ground level up to the stratosphere. One of the main outputs of
NWP models for solar forecasting is the global horizontal irradiance (GHI) at the ground
level. Previous studies focused on improving the accuracy of GHI recasts by employing
spatial averaging and bias removal techniques [12–17]. The most commonly employed
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mesoscale NWP model is the weather research and forecasting (WRF), which is designed
for both atmospheric research and operational forecasting applications [18]. Ongoing
energy meteorology research efforts focus on the configuration and adaptation of WRF
models for solar-specific applications, as in the case of WRF-Solar [19].

In day-ahead PV power production forecasting the NWP forecasts (solar irradiance
and temperature) are applied directly to PV performance predictive models to yield the
power output of a PV plant. Aided by internet of things (IoT) and high-speed comput-
ing evolution, recent advances involve more sophisticated predictive models that utilize
data-driven approaches based on machine learning (ML) principles in order to gain insight
on large amounts of data to uncover hidden patterns. The application of ML predictive
models is continuously gaining ground in the renewable sector due to their improved
accuracy and robustness over other modelling approaches. Furthermore, these predictive
models form the basis of digital twin technologies, which are virtual system that replicate
the operation of a PV system and are useful for both proactive and reactive performance
analytics. In addition, with data-driven approaches the technical barriers such as the lack
of PV system characteristics information and operational performance status are over-
come [20–30]. This is essential since a large share of PV systems are decentralized behind
the meter (BTM) and system metadata (plant location, geometry, nearby obstructions, and
hardware information) are rarely available. Most commonly applied supervised learning
approaches for PV generation forecasting include support vector machines (SVMs) [31–33],
artificial neural networks (ANNs) [34–36], random forests (RF) [37,38], and other deep
learning methods [39–43].

Even though there is a multitude of employed techniques, a unified data-driven
methodology that yields accurate PV production forecasts over various time scales is
desirable but challenging for future smart grid applications. A study by the California
Renewable Energy Collaborative (CREC) showed that accurate day-ahead PV generation
forecasts of up to 6% root mean square error (RMSE) are obtained only for clear sky
days [44]. Under other sky conditions nRMSE values of at least 20% were obtained, even
though several occurrences in the range of 40–80% were observed [44]. Another study
proposed the application of different types of ANNs that yielded forecasting errors in
the range of 15.2% to 16.3% for the next day [26]. Similarly, an adaptive feed-forward
back-propagation network (AFFNN) for short-term forecasting was applied providing a
mean absolute percentage error (MAPE) lower than 5% for sunny days [23]. According to
many authors and reviews, ANN-based forecasting techniques prove to be very effective
due to their inherent ability to capture non-linear abrupt changes caused by the varying
environmental conditions between the input–output relationship [23,26,45,46].

Along this context, the performance comparison of different techniques applied for
day-ahead forecasting is a challenging task since numerous factors influence the perfor-
mance such as the availability of historical data and weather forecasts, the temporal horizon
and resolution, the weather conditions, the geographical location, and the installation con-
ditions [47]. Apart from the use of conventional data-driven ML techniques, prior studies
focused in utilizing hybrid models, in an attempt to improve the forecasting accuracy by
merging features of physical models to ML techniques [47–49]. In particular, a previous
study employing a self-organizing map that classified the weather type in the training stage
of an ANN model achieved MAPE of 6.36% [48]. Another investigation demonstrated that
the application of a physical hybrid artificial neural network (PHANN) for clear sky days
provided a normalized mean absolute percentage error (NMAE) of 5.3% [47].

Even though there are many studies presenting day-ahead PV production methods
based on data-driven techniques, the lack of a widely recognized practice and standardized
procedure to accurately yield forecasts for PV systems beyond the state-of-the-art, remains
yet an important challenge. In addition, the question related to the impact of different
supervised learning regimes (effect of training period, training data sequence, and appli-
cation of irradiance condition filters) is yet unexplored and necessary for more reliable
forecasts that will further increase the potential of PV and lead to industrial standards. To
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this end, research efforts are further striving to develop accurate data-driven forecasting
models that are based on minimal measured parameters.

The main aim of this work is to present a robust day-ahead PV production forecasting
methodology and fill-in the gap of knowledge by evaluating the forecasting accuracy of
different supervised trainings. For this purpose, a comparative analysis of widely used ML
techniques that leverage Bayesian neural network (BNN), support vector regression (SVR),
and regression tree (RT) principles was performed in order to evaluate their effectiveness
for PV power forecasting applications. The proposed methodology included training the
different ML PV predictive models (digital twins that were thoroughly investigated by
Theocharides et al. [43]), under different supervised learning regimes and benchmarking
the forecasting performance. The verification was carried out using actual high-quality
hourly PV operational and meteorological measurements acquired over a period of two
years from a test-bench PV system installed at the outdoor test facility (OTF) of the Uni-
versity of Cyprus (UCY) in Nicosia, Cyprus. Alongside the on-site measurements, NWP
hourly data were computed at a spatial resolution of 2 × 2 km for the point location of the
test-bench PV system. The test-bench PV system settings provide the perfect opportunity
to study the effect of the supervised training regimes to the forecasts based on commonly
used metrics. Furthermore, the forecasting accuracy of the constructed models was com-
pared against a baseline persistence model (PM) in order to assess the effectiveness of
each machine learning technique. The analysis verified the initial hypothesis that the
choice of the predictive model and training regime are crucial for the forecasting accuracy.
Additionally, the obtained results provided useful information for the establishment of a
robust day-ahead forecasting methodology that utilizes only computed input parameters
and an optimal supervised learning approach.

2. Materials and Methods

The methodology followed to develop the day-ahead PV production forecasting
models and to evaluate the impact of different supervised learning regimes included the
experimental setup, construction of the optimal performing predictive PV power output
ML models, and the performance verification using consistent metrics applied to the same
dataset. The proposed method is illustrated in Figure 1. In this study, the ML techniques
of BNNs, SVR, and RTs were used for predicting the power output. These models were
selected amongst a list of candidate ML models (e.g., ANN, BNN, SVR, long short-term
memory [LSTM], recursive neural networks [RNN], RT, etc.), based on their accuracy
performance on similar applications, computing complexity, execution time for training,
dataset pipeline, and ease of hyperparameter management [41,42]. Regarding the selection
of the model based on neural networks, the BNN was used in contrast to other already
investigated approaches such as the LSTM and RNNs [41–48], mainly to prove that higher
forecasting accuracies can be achieved using stochastic optimization approaches even at
low dataset sizes and at high-varying environments.

In respect to the construction and optimization process of the ML-based models:

• The BNN, SVR, and RT models were trained with the same input features (input range,
sampling rate, and parameters);

• The trained models were used to optimize their hyperparameters over a series of
empirical and statistical procedures;

• The optimized models were verified through a series of performance evalua-
tion techniques.

Figure 1 demonstrates the aforementioned methodology.
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Figure 1. Flowchart of the proposed day-ahead photovoltaic (PV) production forecasting methodology.

2.1. Experimental Setup

The OTF at the UCY in Nicosia, Cyprus (Koppen’s classification BSh; hot semi-arid) is
a flexible and scalable testing, demonstration, and R&D platform for smart grid and other
advanced energy technologies. In addition, the infrastructure includes, among others, a
test-bench grid-connected PV system used for the forecasting analysis of this study, as
shown in Figure 2. The test-bench PV system comprises of 5 polycrystalline silicon (poly-c
Si) PV modules of rated power 235 Wp that are installed in an open-field arrangement
at an inclination angle of 27.5◦. The modules are connected in series to form a string of
nominal capacity 1.175 kWp at the input of a grid-connected inverter. The infrastructure is
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further equipped with a state-of-the-art weather station and meteorological datasets are
continuously acquired and analyzed in order to facilitate research in the area of energy
meteorology and PV production forecasting.
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Figure 2. Test-bench PV system comprising of a polycrystalline silicon (poly-c Si) photovoltaic
(PV)string, sensor network and data acquisition (DAQ) monitoring system, at the FOSS Research
Centre in Nicosia, Cyprus.

The performance of the test-bench PV system and the prevailing weather conditions
were recorded and stored with the use of a data acquisition (DAQ) monitoring platform
according to the requirements set by the International Electrotechnical Commission (IEC)
61724 [50]. The measured meteorological parameters included the in-plane solar irradiance
(GI), wind direction (Wa), wind speed (Ws), as well as ambient temperature (Tamb).The PV
system operational measurements included the maximum power point (MPP) current (Imp),
voltage (Vmp), and power (Pmp), as measured at the output of the PV array (DC side) and
module temperature (Tmod). AC energy measurements at the output of the inverter were
also acquired using an energy meter. The Sun’s position parameters (i.e., solar azimuth
(ϕs) and elevation (α) angles) were calculated using solar position algorithms [51]. The
system was continuously monitored and high-quality data (at a resolution of a second and
recording interval of 1-, 15-, 30-, and 60-min) were acquired over a 2-year period. All the
installed sensors and the associated measurement accuracies (acquired from manufacturer
datasheets and calibration files) are summarized in Table 1.

Table 1. Technical information of data acquisition (DAQ) system and sensor network.

Parameter Manufacturer Model Manufacturer’s
Headquarters Accuracy

Data acquisition Campbell Scientific CR1000 Logan, UT, USA ±0.06%
Ambient temperature Rotronic HC2A-S3 Bassersdorf, Switzerland ±0.1 ◦C at 23 ◦C

In-plane irradiance Kipp Zonen CMP11 Delft, The Netherlands ±2% expected daily accuracy,
±20 W/m2 for 1000 W/m2

DC voltage Muller Ziegler Ugt Gunzenhausen Germany ±0.5%
DC current Muller Ziegler Igt Gunzenhausen Germany ±0.5%
AC energy Muller Ziegler EZW Gunzenhausen Germany ±1%

The system and pyranometer were cleaned on a seasonal basis and after dust events in
order to minimize any soiling effects. Systematic recalibration of the sensors was performed
as specified by the manufacturers and periodic cross-checks against neighboring sensors
(other pyranometers and temperature sensors installed in close proximity) were conducted
in order to identify sensor drifts.

In addition, NWP data were computed by the Department of Meteorology of Cyprus
at a spatial resolution of 2 × 2 km for the point location of the test-bench PV system. More
specifically, the two-year numerical forecast dataset was derived by employing the WRF
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3.6.1 model with two-way nesting. The forecasted NWP dataset comprised of the hourly
points of the forecasted GHI (GHI_F), Tamb (Tamb_F), Wa (Wa_F), Ws (Ws_F), cloud index
(CI_F) and relative humidity (RH_F). The numerical forecast dataset of the 1st year was
employed to train the machine learning predictive models while the dataset of the 2nd year
was used as a test set for forecasting performance verification.

In this study, the high-quality datasets acquired from the test-bench PV system were
used for constructing the predictive machine learning models and for validating their
performance accuracy under different training regimes. In particular, a 2-year dataset with
hourly measurements of GI, Tamb and Pmp was constructed and merged with the forecasted
NWP hourly dataset.

Initially, the acquired measurements were thoroughly inspected for erroneous values,
outliers, gaps, and repetitions similar to a process presented by Livera et al. [52]. Sequential
steps of filtering and data mining inference routines were applied to the dataset in order
to ensure data fidelity before proceeding with the data-driven approaches. The specific
data mining techniques were applied to detect features that differ significantly from nor-
mal instances by setting threshold ranges for the acquired measurements, missing data
by searching for not available (NA) values, and repetitive measurements. All detected
erroneous and missing data were discarded from the initial dataset.

The day-ahead PV production forecasting models and statistical data analytics were
performed using the R Statistical Language [53], which is a free open-source environment
for statistical computing and graphics development. The R tool also provides a variety of
basic built-in libraries that were used and adjusted in order to develop customized software
scripts for supervised learning approaches and performance benchmarking. Finally, the
NWP data were derived using the WRF 3.6.1 model [18].

2.2. PV Power Output Predictive Models

The analysis in this paper is a continuation of a prior research on the construction of
PV power output machine learning predictive models with optimal input features [43],
by evaluating the day-ahead forecasting performance of models based on BNN, SVR, and
RT techniques under different training algorithms (training with measured or computed
input variables, training sequentially or randomly with values of different timeframes, and
training with filtered irradiance data).

The 2-year evaluation dataset was separated into the train and test sets using different
data split approaches. More specifically, 10 different train sets were extracted from the
original time series by partitioning the 1st year evaluation dataset sequentially or randomly
into portions of 10%, 30%, 50%, and 70%. Additionally, in order to assess whether an entire
year is required for accurate forecasting a train set comprising of the data of the entire 1st
year was also used. Previous work by [54] showed that machine learning models with
input feature combinations of measured or forecasted irradiance, temperature, and the
Sun’s position angles outperformed any other input parameter selection. For the purpose
of this work and to demonstrate whether accurate forecasts can be obtained using only
computed input values or not, each train set included the input features of the on-site
measured GI and Tamb, calculated ϕs and α, forecasted GHI_F and Tamb_F, and the output
variable of Pmp. The constructed train and test set partitions and included features are
summarized in Table 2. In all cases, the entire 2nd year of the evaluation dataset was used
as the test set in order to provide a common benchmarking dataset that accounted for all
seasonality that may exhibited throughout the year.

To further evaluate the effect of training the machine learning forecasting models
at low and high irradiance conditions, an irradiance filter was applied to the 1st year
evaluation period train set. The applied filters included a low-pass filter that filtered out
high irradiance conditions of irradiance levels >600 W/m2 (i.e., kept low and moderate
irradiance conditions) and a high-pass filter that filtered out data at irradiance levels
≤600 W/m2 (i.e., kept high irradiance conditions). Subsequently, both the low- and high-
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irradiance datasets were used to train the different machine learning models (BNN, SVR,
and RT).

Table 2. Train set features, data timeframe partition, and sampling regime.

Inputs Timeframe Partition Sampling Output

GI, Tamb, ϕs and α 10–70% (at 20% resolution) Sequential/Random Pmp
GI, Tamb, ϕs and α 100% (entire year) - Pmp

GHI_F, Tamb_F, ϕs and α 10–70% (at 20% resolution) Sequential/Random Pmp
GHI_F, Tamb_F, ϕs and α 100% (entire year) - Pmp

Finally, for each constructed day-ahead PV forecasting model, additional hyper-
parameter optimization steps were performed to ensure that for each technique the optimal
models were selected. Specifically, the number of hidden units and epochs for the BNN
were varied by performing an automated grid search for the cost of constraints and the
scaling parameter (γ) in the case of SVR and optimizing the complexity parameter (CP) of
the RT model (more details in Sections 2.2.1–2.2.3).

2.2.1. Bayesian Neural Networks

Even though deep learning approaches such as deep neural networks (DNNs) proved
to be robust to natural variations and flexible in being applied to different applications
and data types, these models are prone to overfitting and tend to be overconfident about
their predictions. This adversely affects the generalization capabilities of the constructed
models. Consequently, an approach to improve the generalization capabilities of the
constructed models is to use stochastic neural networks that are able to estimate the
prediction uncertainty. In this domain, the Bayesian paradigm provides the framework to
analyze and train neural networks stochastically and to quantify the uncertainty associated
with the predictions [55]. It also gives a mathematical framework to understand many
regularization techniques and learning strategies that are already used in classic deep
learning [56].

In general, the training of ANNs is performed by minimizing a cost function with
the error term referring to the discrepancy between the predicted and actual output. The
error is commonly measured using the mean square error (MSE) and error minimization
is achieved with the back-propagation (BP) algorithm. The BP algorithm calculates the
error contribution of each neuron after a batch of data by distributing the error back from
the output through the network layers. In addition, the cost function is often associated
with a regularization term to penalize parametrizations and control the complexity of
the network.

Conversely, a BNN is a type of ANN that is constructed by introducing stochastic
components into the network architecture (activation and weights) to simulate multiple
possible models with an associated probability distribution. To this end, BNNs are consid-
ered to be a special case of ensemble learning, where instead of training one single model, a
set of models is trained, and their predictions are aggregated [57]. The Bayesian paradigm
is based on the principle that probability is a measure of belief in the occurrence of events
and that prior beliefs influence posterior beliefs. Once the data were fitted, the density
function for the weights was updated according to Bayes’ rule [22,58]:

P(w|D, α, β, M) =
P(D|w, β, M)P(w|α, M)

P(D|a, β, M)
(1)

where D represents the dataset, M is the model used for the BNN, and w is the vector
of the weights. The value of the weights prior to the dataset input is represented as
P(w|α, M), while P(D|w, β, M) is the probability of the data occurring based on the weights.
Lastly, P(D|a, β, M) is a normalization factor that ensures that the total summation of the
probability is one.
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In this study, Bayesian inference was applied to the training algorithm of a deep
learning neural network. The marginal probability distribution of the predicted output
was computed based on the Bayesian posterior.

Finally, optimal prediction performance was achieved by evaluating different input
feature combinations and hidden layer topologies (number of hidden units) while training
the network models. The training process was reiterated until the optimal network param-
eters were identified and accurate testing results were obtained (overtraining that results
in overfitting was avoided).

2.2.2. Support Vector Regression

SVR is an abstracted variant of support vector machines (SVMs) that is used for
regression applications [59]. The basic principle of SVR is the derivation of a function
that maps input patterns to the output based on a given train set by individualizing the
hyperplane in order to minimize the error. The input features are mapped into a high-
dimensional space by using a non-linear mapping process and the search for the maximum
margin hyperplane (MMH) with the use of identified support vectors.

In this study, a sigmoid kernel function was applied in order to transform the non-
linear data into a higher dimensional feature space and facilitate linear data separation.
The sigmoid kernel is given as:

K(X, Y) = tan h
(

γXTY + r
)

(2)

where X and Y are the training vectors, XT is the transposed input vector, γ is a scaling pa-
rameter of the input data and r is a shifting parameter that controls the mapping threshold.

Furthermore, an error tolerance margin (ε) was included as the margin of the error
(points predicted within a distance ε from the actual value) within which no penalty is
associated with the training loss function.

Finally, a rigorous grid search tuning process was commenced in order to identify the
optimal hyper parameters (cost of constraints and γ) of the constructed SVR model.

2.2.3. Regression Trees

A compelling numeric prediction alternative to regression modelling is to use RT
approaches. RT methods that are used for numeric predictions recursively partition data
according to the feature that will result in the greatest increase in homogeneity among the
data partitions [60]. Homogeneity is measured by statistics such as variance (Var), standard
deviation (σ), and absolute deviation from the mean (µ). A commonly applied splitting
criterion is the standard deviation reduction (SDR), which is based on the decrease in
standard deviation after a dataset is split on an attribute. This splitting criterion measures
the reduction in σ from the original value to the weighted σ post-split. SDR is given as:

SDR = σ(T)−∑
i

|Ti|
|T| σ(Ti) (3)

where the σ(T) function is the standard deviation of the values in the dataset T and Ti are
the resulting split values on a feature.

In this study, the developed day-ahead PV production forecasting RT model was
further optimally pruned by applying a complexity parameter (CP) that specifies how
the cost of a tree is penalized by the number of terminal nodes. Specifically, a low CP
values resulting to large trees prone to overfitting while a high CP results to small trees
and potential underfitting.

2.3. Performance Evaluation

The most commonly employed performance metrics were considered in this work in
order to assess the forecasting performance accuracy of the derived models. The metrics
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used include the mean absolute error (MAE), MAPE, and normalized RMSE to the rated
system power (nRMSE). The metrics are computed as follows:

MAE =
1
N

N

∑
i=1
|ei| (4)

MAPE =
100
N

N

∑
i=1

|ei|
|yi|

(5)

RMSE =

√√√√ 1
N
×

N

∑
i=1

(ei)
2 (6)

where N is the number of forecasts and ei is the error between the observed value (yi) and
the forecasted value (ŷi):

ei = yi − ŷi (7)

Furthermore, the nRMSE is provided in order to ease comparison by relating the
RMSE to the nominal power capacity of the system (Pnominal). The nRMSE is given by:

nRMSE =
100

Pnominal

√√√√ 1
N

N

∑
i=1

(ei)
2 (8)

The MAE, MAPE, and nRMSE do not retain the information on the error direction
(sign of the error). For this reason, the normalized mean biased error (nMBE) is also used,
as it is defined as:

nMBE =
100

Pnominal

1
N

N

∑
i=1

(ei) (9)

where a positive nMBE corresponds to an overestimation of the actual power generation.
Naïve persistence-based forecasting models (unskilled forecasting models such as

the PM), are commonly used for benchmarking by facilitating the comparison with more
advanced models (skilled forecasting models such as ML techniques). The operational
principle considers that the conditions at the time of the forecast do not change and apply
for the next-day forecast. Such naïve models are applicable only when weather patterns
have minor fluctuations (locations with repetitive clear sky days). In this domain, the
skill score (SS) is a commonly employed metric to assess the improvement of the skilled
forecasting model over a reference model (an unskilled forecast such as random chance
and PM). An SS = 100% indicates accurate forecasts while a SS = 0% shows that the
skilled model provides the same forecasted RMSE (RMSEforecasted) value to the reference
model (RMSEreference):

SS = 100 ×
(

1− RMSEforecasted
RMSEreference

)
(10)

Finally, to gain insight into the performance of each model at different sky conditions,
the clear sky index (kt) was used. The kt is a commonly applied index used in order to
reflect the sky conditions with kt = 0 corresponding to overcast sky and kt = 1 to clear sky.
The kt is given by:

kt =
GHI

GHICS
(11)

where GHI and GHICS is the observed and clear sky GHI, respectively.

3. Results

The comparative analysis of the forecasting models at different training regimes
verified their dependency on input features (computed and measured), timeframe of the
train set, training data sequence, and application of irradiance condition filters on the
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accuracy. This section analyzes these dependencies in the scope of achieving a robust
day-ahead forecasting methodology that utilizes only computed input parameters and an
optimal supervised learning approach.

3.1. Impact of Input Features

The impact of the selected input features (GI, Tamb, ϕs, α, GHI_F and Tamb_F) on the
day-ahead forecasting accuracy was evaluated by training the different machine learning
models with the data of the first year (train set) and verifying using the second-year
evaluation dataset (test set) for verification. The forecasting performance results obtained
when training the BNN, SVR, and RT predictive models using the measured historical data
of GI and Tamb and the calculated ϕs and α, are summarized in Table 3. The performance
evaluation results demonstrated that the investigated machine learning models provided
forecasting accuracies in the range of 6.95–8.97% and 6.07–8.12% when benchmarked
with the nRMSE and MAPE metrics, respectively. The highest forecasting accuracy was
exhibited by the BNN model with a nRMSE and MAPE of 6.95% and 6.07%, respectively.

Table 3. Day-ahead photovoltaic (PV) production forecasting accuracy comparison of different
machine learning predictive models trained using measured historical data, over the test set evalua-
tion period.

Model nRMSE (%) MAPE (%)

BNN 6.95 6.07
SVR 8.51 7.92
RT 8.97 8.12

In order to investigate the effect of training with computed input features, the investi-
gated machine learning models were trained only on computed historical data (forecasted
GHI_F and Tamb_F and the calculated ϕs and α). The results presented in Table 4 showed
that accurate day-ahead forecasts can be achieved without utilizing onsite weather mea-
surements and by applying data that were calculated entirely from NWP models and solar
position algorithms. All predictive models showed higher forecasting accuracies compared
to the respective models trained with historical measured data, with maximum absolute
improvements of up to 0.77% and 1.31% for the nRMSE and MAPE, respectively. In this
case, the best-performing model was, once again, the BNN with a nRMSE and MAPE
of 6.51% and 5.39%, respectively. Consequently, the results provide evidence that in the
absence of on-site weather measurements, only measuring the power output and using
NWP data is adequate to train machine learning models for day-ahead forecasts.

Table 4. Day-ahead photovoltaic (PV) production forecasting accuracy comparison of the machine
learning predictive models trained using computed historical data, over the test set evaluation period.

Model nRMSE (%) MAPE (%)

BNN 6.51 5.39
SVR 7.74 6.61
RT 8.43 6.98

3.2. Impact of Training Set Timeframe

The influence of train set timeframe on the forecasting performance was examined
by using different dataset portions (10%, 30%, 50%, and 70% of the first-year evaluation
dataset) to train the machine learning models. In addition, the train set data portions
comprised of both sequentially acquired and randomly sampled data from the entire first-
year train set. The forecasting accuracy results obtained over the second-year evaluation
period, presented in Figure 3, demonstrated that increasing the train set duration improves
the forecasting performance of all investigated techniques. Figure 3a shows that the BNN
provided the highest results when compared to the other models for all sequential training
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portions with a nRMSE of 19.14%, 17.33, 14.57%, 8.97%, and 6.51% when trained at 10%,
30%, 50%, 70%, and 100% portions of the train set, respectively. In addition, training with
randomly sampled data yielded higher accuracies for all models compared to training
sequentially. More specifically, the forecasting accuracy results when training all the
models with train set portions comprising of random samples, depicted in Figure 3b,
showed higher accuracies compared to the sequential data training regime. The obtained
results demonstrated that for limited timeframe train sets, it is preferable to construct the
data-driven models using random data samples from the entire training population over
training sequentially.
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3.3. Impact of Irradiance Condition Filtering

The dependency of the forecasting accuracy on data filtering and specifically, filtering
at low (<600 W/m2) and high (≥600 W/m2) irradiance conditions, was further examined.
The investigated machine learning models were trained with the filtered train sets and
their performance was once again evaluated over the second-year evaluation test set. The
day-ahead forecasting accuracies provided in Table 5, demonstrated that the application of
the irradiance condition filter further improved the forecasting accuracies of all models
(absolute difference in the range of 1.06–1.97% nRMSE and 0.71–2.22% MAPE when com-
pared to the results without the application of an irradiance condition filter). Furthermore,
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the application of the high irradiance condition filter resulted in higher accuracies for all
models. Specifically, the application of the high irradiance filter enhanced the performance
of the BNN model that resulted in forecasting errors lower than 5% given by the nRMSE
and MAPE. This renders the application of irradiance filtering necessary when training
data-driven PV production forecasting models.

Table 5. Day-ahead photovoltaic (PV) production forecasting accuracy comparison of the machine learning predictive
models trained at different irradiance condition levels, over the test set evaluation period.

BNN SVR RT

Irradiance nRMSE (%) MAPE (%) nRMSE (%) MAPE (%) nRMSE (%) MAPE (%)

<600 W/m2 5.32 3.78 6.82 6.14 8.09 7.85
≥600 W/m2 4.53 3.17 6.37 5.83 7.37 6.27

No Filter 6.51 5.39 7.74 6.61 8.43 6.98

3.4. Optimized Day-Ahead PV Generation Forecasting Performance

The training regime evaluation of the investigated machine learning models provided
evidence that optimal performance is achieved when training using computed historical
data inputs (GHI_F, Tamb_F, ϕs and α), employing the entire first-year dataset and filtering
out data that are at low and moderate irradiance conditions (i.e., <600 W/m2). Initially,
the Taylor diagram was used to benchmark the performance accuracy of the optimized
models by comparing the heuristic distance between each model and the corresponding
observations [61]. Specifically, the standard deviation and correlation of each model and
actual data, presented in Figure 4, indicates that the best-performing model (the one with
the lowest distance away from the actual observations) was the optimally trained BNN.
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Figure 4. Taylor diagram of the forecasted Bayesian neural network (BNN) (purple dot), support
vector regression (SVR) (red dot), and regression tree (RT) (blue dot) against the observed power
values (white dot), over the test set evaluation period.

Figure 5 shows the daily PV power production forecasting accuracy (daily nRMSE)
of the optimally trained models over the test set evaluation period, categorized according
to the daily clearness index, kd. Overall, all models yielded daily nRMSE forecasts lower
than 10% providing evidence that high performing forecasting models trained without
employing on-site measurements, apart from the output power, can be constructed by
applying the proposed methodology. As depicted in Figure 5a, the daily nRMSE results
showed that the optimally designed BNN outperformed all other models exhibiting nRMSE
lower than 5% (nRMSE = 4.53%), while the SVR and RT models provided in general less



Energies 2021, 14, 1081 14 of 22

accurate results. Specifically, the nRMSE of the SVR and RT models over the test set
period was 6.37% and 7.37%, presented in Figure 5b,c, respectively. Another important
observation was that for most clear-sky days all the machine learning models exhibited
nRMSE accuracies below 6%.
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To gain insight into the performance of each model at different sky conditions a
boxplot of the exhibited daily nRMSE at different kd bins over the test set evaluation
period, was created. As depicted in Figure 6, all models exhibited similar daily nRMSE
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variations at all kd bins demonstrating that there are no underlying biases due to irradiance
conditions. Qualitatively, it is evident that the BNN model yielded substantially more
accurate results compared to the SVR and RT models for all kd bins, depicted in Figure 6a.
To this end, an important outcome of this analysis was that the BNN consistently yielded
robust results for the Cyprus’ climate, as it always provided accurate forecasts under any
weather condition. Conversely, the SVR model exhibited the lowest residual dispersion as
shown in Figure 6b. Consequently, the results indicate that the performance accuracy of
the forecasting models is consistent at all sky conditions since the nRMSE values exhibit
similar magnitude and variability.
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More detailed information regarding the performance comparison of the investigated
machine learning models, together with other evaluation metrics, is shown in Table 6.
Specifically, Table 6 summarizes the performance of the resulting forecasting models over
the test set evaluation period, based on commonly applied forecasting performance metrics
(nRMSE, RMSE, MAPE, MBE, and SS). In this framework, the results in Table 6 confirm that
the optimally devised BNN consistently outperformed the other machine learning models
(SVR and RT). The forecasting capabilities of the SVR and RT models can be considered
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as equivalent in this case, since the exhibited nRMSE absolute difference of these models
was 1%. Moreover, the results indicated that the application of machine learning achieved
higher relative improvement over the reference PM since the SS ranged from 53.71% to
78.33%. To further assess the direction of the forecasted bias, the obtained nMBE of all
models showed that power generation was underestimated (between 2.89–5.42%).

Table 6. Performance accuracy (mean absolute percentage error (MAPE), root mean square error
(RMSE), normalized RMSE (nRMSE), normalized mean biased error (nMBE), and skill score (SS)) of
the different data-driven models over the test set evaluation period.

Performance Metrics

Models MAPE (%) RMSE (W) nRMSE (%) nMBE (%) SS (%)

BNN 3.17 53.22 4.53 2.89 78.33
SVR 5.83 81.89 6.37 4.26 63.14
RT 6.27 86.59 7.37 5.42 53.71

A residual analysis was conducted to further assess the quality of the models and the
statistical significance of the nRMSE difference. The residuals (the difference between the
actual and forecasted values) of the test set period were examined for normality using the
Shapiro–Wilk normality test [62]. The statistic tests the null hypothesis that the residuals
come from a normally distributed population. The performed normality test considering
a significance level of 5% provided evidence that the null hypothesis is rejected and that
there is evidence that the data tested are not normally distributed since the p value obtained
for each model was less than 0.05 (BNN = 0.014, SVR = 0.027 and RT = 0.024), therefore, this
indicates a statistically significant test result (P ≤ 0.05) meaning that the test hypothesis is
false or should be rejected, indicating that the residuals of the forecasting models had been
affected from the observed data.

Furthermore, Figure 7 exhibits the scatterplots of the observed against the forecasted
power obtained from all the investigated forecasting models. The comparison shows that
the variability was exhibited by the forecasts of the BNN model with Pearson correlation
(r) of r = 0.99, as depicted in Figure 7a. Slightly higher variability was exhibited by the SVR
model with r = 0.97, shown in Figure 7b, while the highest scattering was obtained by the
RT forecasts r = 0.90, depicted in Figure 7c. Additionally, the BNN model residuals are
concentrated around the blue fitting line, indicating clos fit at all power levels. Conversely,
the residuals of both the SVR and RT models present higher variability at high irradiance
conditions where PV output is maximized.

Finally, the statistical significance of the nRMSE difference of all investigated models
was evaluated by using the Wilcoxon signed-rank test [63], considering a significance level
of 5%. The test was used to assess the statistical significance of the nRMSE differences
between the models, by using all the hourly errors to investigate whether the observed
difference in model skill is likely due to a difference of the models or statistical chance. As
a result, after comparing every possible residual pair of the forecasting algorithms, the
obtained results provided evidence that the differences between the investigated models are
statistically significant (the differences are due to the models and not by chance) since the
highest p value was obtained when comparing the BNN and SVR (p value equal to 0.037),
indicating that the BNN model has a confidence interval of 96.3% over the SVR model.
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4. Discussion

In this work, a comparative day-ahead forecasting performance analysis of differ-
ent machine learning models was presented. Within this framework, the performed
data-driven training regime analysis revealed useful information for the implementation
of an accurate day-ahead PV production forecasting methodology with minimal input
measured features. In summary, the following findings were obtained throughout the
commenced analysis:

• Accurate day-ahead PV production forecasts were achieved without utilizing onsite
weather measurements by inputting data that were computed from NWP models
and solar position algorithms (GHI_F, Tamb_F, ϕs and α) to machine learning models.
The application of calculated input data compared to training with the respective
on-site measured data provided maximum absolute improvements of up to 0.77% and
1.31% for the nRMSE and MAPE, respectively. This improvement is attributed to the
correction of underlying biases of NWP forecasted data.

• Training the machine learning models at larger timeframes resulted in lower errors.
This is attributed to the generic functionality of data-driven algorithms of capturing
hidden behaviors from larger amounts of data.

• The application of irradiance filtering when training data-driven PV production
forecasting models enhanced the performance of the constructed models. Specifically,
the forecasting accuracy of all models was improved from the application of the
irradiance condition filter (absolute difference in the range of 1.06–1.97% nRMSE
and 0.71–2.22% MAPE when compared to the results without the application of an
irradiance condition filter). The application of the high irradiance condition filter
resulted in lower errors for all models rendering this filtering stage an important
step in day-ahead data-driven methodologies. This can be attributed to the fact that
low and medium irradiance conditions (<0.6 kW/m2) are associated with a higher
power output dispersion (low-light and thermal effects), which in turn decreases the
forecasting accuracy.

• Overall, the adoption of BNN principles outperformed all other investigated models
(SVR and RT). More specifically, the study showed that the optimally trained BNN
consistently outperformed all other models exhibiting nRMSE lower than 5% (nRMSE
= 4.53%), while the SVR and RT models provided in general less accurate results.
Several reasons to explain this effect include the ability of BNNs to simulate multiple
possible models with an associated probability distribution and to become more
certain with increasing data shares. The BNN model was substantially more accurate
compared to the SVR and RT models for all sky conditions. This renders BNN
approaches applicable for forecasting studies and favorable over other elaborate and
computer intensive techniques.

Furthermore, since the main objective of this study was to implement a unified
methodology with minimal input features, the obtained results demonstrated that accurate
day-ahead PV production forecasting machine learning models can be constructed by
entirely inputting computed parameters and applying a high irradiance condition filter
to a 1-year train set. It is important to mention that the results of the specific work were
location- and system-specific, therefore by applying datasets from other systems and/or
locations, the respective results might indicate variations.

The proposed generalized methodology can be applied to larger PV plants with iden-
tical results. This can be achieved by employing an intermediate PV power normalization
step (normalize all power measurements to the rated capacity of the PV system) before
commencing the training, which will enable forecasting of the PV power production irre-
spective to the capacity of the plant. At the output stage, the normalized power forecasts
can be scaled up to the rated power of the investigated system. Optionally, the proposed
method can operate on either the output data recorded from a monitoring system, smart
meter at the point of interconnection (POI) and at the output of a central inverter. In this
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case no normalization is required since the model is directly trained using the power output
of the entire plant.

Finally, this work focuses on the application of day-ahead PV production forecasting
as an enabling cost-effective technology that will improve the flexibility and observability
of the grid. According to the European Technology Innovation Platform for PV (ETIP
PV) accurate day-ahead PV production forecasting is a necessity for utility operators for
determining operation reserve requirements, for distribution system operators (DSOs)
and microgrid operators for the optimal day-ahead flexible commitment of resources and
PV plant operators for energy trading and management of storage systems [64]. As an
example, a utility scale 10 MWp PV power plant located in regions with high irradiance
(annual irradiation of 2000 kWh/m2) and participating in the wholesale market, produces
17,000 MWh/year (assuming a PR of 85%). An absolute forecasting improvement of 2%
provides approximately 11,050 MWh/year of excess energy that is not curtailed due to fore-
casting errors. Moreover, this excess energy can be traded in the Energy market providing
additional revenue of approximately €8M (at an Energy trading cost of 70 €/MWh).

5. Conclusions

Photovoltaic (PV) power production forecasting is an efficient cost-effective tool for
grid management and a critical decisive function for system reliability at high PV shares.
This paper presented a comparative analysis towards implementing a unified methodology
for accurately forecasting the day-ahead production of PV power plants with minimal
measured data. To this end, the method included the data acquisition, construction, and
optimization of PV predictive models based on machine learning (Bayesian neural network
(BNN), support vector regression (SVR) and regression tree (RT)) using different supervised
learning regimes whereas their performance was verified using consistent metrics. The
benchmarking was carried out using two-year field data from a test-bench PV system
installed in Nicosia, Cyprus, enabling homogenous conditions for such evaluations.

The supervised learning analysis showed that high-performing models can be con-
structed by entirely utilizing data that were computed from numerical weather predictions
(NWP) models and solar position algorithms. This is an important outcome since accurate
forecasting models can be constructed in the absence of on-site weather measurements.

Additionally, the amount of training dataset timeframe was directly influencing the
accuracy of the forecasts since increasing the train set duration improved the forecasting
performance of all investigated techniques. For low resolution datasets the application
of training all the models with train set portions comprising of random samples showed
higher accuracies compared to the sequential data training regime.

Moreover, the application of an irradiance filter further improved the forecasting
accuracies of all models. Specifically, the high irradiance filter further enhanced the perfor-
mance of the BNN model that resulted to forecasting errors lower than 5%, demonstrating
that the predictive accuracy of the models was enhanced by data filtering.

Finally, the comparative analysis of the optimally devised machine learning models
showed that all the models achieved relative improvements over the reference model
(SS results ranged from 53.71% to 78.33%). The performance accuracy of the forecasting
models was stable at all sky conditions since the obtained normalized root mean square
error (nRMSE) values exhibited similar magnitudes and variabilities. The optimally trained
BNN outperformed all other models (SVR and RT) and consistently achieved the lowest
forecasting errors (nRMSE = 4.53% and mean absolute percentage error (MAPE) = 3.17%),
over the test set evaluation period. The ability of the BNN model to adapt to frequent fluctu-
ations and its relatively low complexity and optimization with respect to the computational
efficiency further highlight its overall performance.
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