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Abstract: Estimation of fluid saturation is an important step in dynamic reservoir characterization.
Machine learning techniques have been increasingly used in recent years for reservoir saturation
prediction workflows. However, most of these studies require input parameters derived from cores,
petrophysical logs, or seismic data, which may not always be readily available. Additionally, very few
studies incorporate the production data, which is an important reflection of the dynamic reservoir
properties and also typically the most frequently and reliably measured quantity throughout the life
of a field. In this research, the random forest ensemble machine learning algorithm is implemented
that uses the field-wide production and injection data (both measured at the surface) as the only
input parameters to predict the time-lapse oil saturation profiles at well locations. The algorithm
is optimized using feature selection based on feature importance score and Pearson correlation
coefficient, in combination with geophysical domain-knowledge. The workflow is demonstrated
using the actual field data from a structurally complex, heterogeneous, and heavily faulted offshore
reservoir. The random forest model captures the trends from three and a half years of historical
field production, injection, and simulated saturation data to predict future time-lapse oil saturation
profiles at four deviated well locations with over 90% R-square, less than 6% Root Mean Square Error,
and less than 7% Mean Absolute Percentage Error, in each case.

Keywords: reservoir characterization; machine learning; saturation prediction; offshore oilfield;
random forest

1. Introduction

Reservoir characterization is the process of preparing a comprehensive quantitative
representation of a reservoir using data from a variety of disciplines, such as geology,
petrophysics, geochemistry, and petroleum engineering [1]. A typical forward-modeling
approach utilizes the reservoir characteristics and project design parameters as input,
to predict the field response. This is accomplished by either solving the system of flow
equations analytically or using a numerical reservoir simulator. More recently, machine
learning techniques have been utilized to predict production using reservoir characteristics
as input [2–8]. Traditionally, reservoir characterization is performed by integrating all
available seismic, geological, well logs, and core data, which is updated throughout the life
of the field as more data becomes available. This makes field-scale dynamic characterization
studies labor-intensive, time-consuming, and expensive [1].

In this study, we utilize the random forest ensemble machine learning method to
implement an inverse-modeling approach that uses the actual field production and injection
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data (measured at the surface) as the inputs to predict the time-lapse saturation profiles.
Accurate estimation of fluid saturation is an important step in the dynamic reservoir
characterization process, as it is one of the reservoir properties that changes over time and
directly impacts well performance. Saturation measurements at a well location are useful
for estimating remaining reserves, predicting production rates, planning workover activity,
assessing drainage efficiency, performing economic analysis, and diagnosing production
problems [1]. Traditionally, oil saturation at a wellbore location is estimated using wireline
logging techniques such as thermal decay logging, carbon-oxygen logging, resistivity, etc.
However, wireline logging suffers from several limitations such as production/injection
interruption, tool operational limits, technical challenges in highly deviated wells, and the
need to pull the tubing pump in some cases [9]. Well intervention can also be prohibitively
expensive and operationally risky, especially in offshore environments and deviated well
trajectories, which limits the frequency of data acquisition.

Machine learning techniques have been increasingly used in recent years for data-
driven reservoir characterization, and specifically for saturation prediction, as summarized
in Table 1. Several studies have utilized Neural Networks (NN) for predicting water or oil
saturation using well logs and core data as inputs and demonstrated superior performance
compared to conventional methods [10–18]. Algorithms such as functional networks [19],
support vector machine [20], long short-term memory [21], and decision trees [22] have
also been successfully used to predict fluid saturation in a variety of formation types using
petrophysical well logs as input. The use of seismic data for estimating fluid saturations in
machine learning models has also been reported [23,24]. Recently, researchers developed
an analytical model to estimate water saturation by using capacitance-resistance model
(CRM) and traditional resistivity logs [25]. Only a handful of studies [9,26] have incor-
porated production and injection data in the machine learning workflow for saturation
prediction. However, these studies also require other input parameters derived from core,
petrophysical logs, or seismic data. This limits the implementation of these models in field
cases where such input data is not readily or reliably available, often due to the acquisition
costs. A key distinction of this study is the use of only the field injection and production
data, which are often readily available, as the key input feature for predicting time-lapse oil
saturation profiles without requiring detailed geophysical inputs, as highlighted in Table 1.

Table 1. Comparison of input/output features for machine learning-based saturation prediction studies.

Reference Input Output

This Study Field Production and Injection data Oil saturation

Miah et al. [15] Well logs (Gamma Ray, Resistivity, Density, Neutron, Sonic Porosity) Water saturation

Gholanlo et al. [16] Well log (Sonic, Density, Neutron, Resistivity, Photoelectric Index) Water saturation

Khan et al. [18] Well log (Caliper, Gamma Ray, Density, Neutron Porosity, Resistivity) Dean-stark data

Tariq et al. [19] Well logs (Gamma Ray, Neutron Porosity, Bulk Density, Mobility) Water saturation

Sambo et al. [23]. Seismic data (SQp and SQs attributes) Fluid saturation

Ojukwu et al. [9] Well logs (Density, Neutron, Sonic, Shale Volume), Seismic attributes,
Production data, Core data (porosity, permeability)

Reservoir Quality (includes
saturation)

Cao & Roy [24] 4D Seismic (Time-shift, Time strain, Amplitude), 3D Seismic
(Acoustic Impedance, Porosity, Reservoir thickness) Fluid Saturation

AI-Sudani [25] Well logs (Resistivity, Porosity) Water saturation

Tiwari et al. [26]
4D Seismic (Time-shift, Time strain, Amplitude), 3D Seismic
(Acoustic Impedance, Amplitude, Density, Shear Impedance,

Porosity, V-Shale, Facies), Production data
Fluid Saturation

Fluid production is an important reflection of the dynamic reservoir properties [27].
Moreover, production data is typically the most frequently and reliably measured quan-
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tity throughout the life of a field. Although oil saturation is influenced by a number of
parameters such as the capillary pressure, drainage, injection, wettability, etc., the direct
relationship between the changing reservoir fluid saturations and surface production can
be illustrated from mass conservation as the production of fluids at the surface results in a
change in reservoir saturations. However, it is a complex non-linear time-dependent rela-
tionship as the fluid saturation is affected by the field-wide drainage and injection over time.
Supervised machine learning algorithms have been demonstrated to effectively “learn” the
complex relationship between a given set of target prediction output and input features. In
this study, a random forest ensemble machine learning algorithm is implemented using
the actual field-wide production and injection data as the inputs, to predict the time-lapse
wellbore oil saturation profiles. Static geological parameters such as absolute permeability,
porosity, lithology, etc. are not included as input features because they do not typically
change significantly over time at a given well location (except in some cases such as during
fracking, high rate injection, and others) and they are also not measured frequently over
the life of an operation. Other dynamic data such as downhole or surface pressures and
temperatures are also not included as inputs to demonstrate the broad applicability of the
algorithm when such data is not easily available, or not collected frequently.

Since the time-lapsed oil saturation data is not collected in the subject offshore field, it
is synthetically generated for training and testing the random forest algorithm through full-
field numerical reservoir simulation. The simulation model is history-matched by adjusting
reservoir parameters to ensure a reasonable agreement between the nine years of observed
historical field behavior and simulation output, to establish a satisfactory representation
of the field. Although the algorithm is demonstrated using synthetic saturation data, the
workflow can also be implemented with actual field saturation profiles, if available. Three
and a half years of historical field production, injection, and synthetic oil saturation trends
(from the history-matched simulation model) are used for training, and about one year of
data is used for the blind testing. The workflow is successfully demonstrated for predicting
time-lapse saturation profiles at four deviated well locations, each representing a unique
well trajectory, complex reservoir structure, and geological heterogeneity. In addition to
demonstrating the workflow using the actual field production and injection data with
simulated saturation data, it is also tested with the production, injection, and saturation
data all from the simulation model. Very similar results are obtained (as illustrated in the
Supplementary Material Figures S1 and S2) which is expected as the simulation model is
history matched with the field data.

The next section describes the subject field and the available data, this is followed by
the description of the machine learning algorithm and feature selection in Section 3, and
the model prediction results and discussion in Section 4, and finally the conclusions in
Section 5.

2. Field Overview and Data Description

This study utilizes data from the Volve oil field, located in the central part of the North
Sea, at the southern end of the Norwegian sector as shown in Figure 1. This offshore oil
field was discovered in 1993, and the plan for development was approved in 2005 [28].
Field production started in early 2008, achieving 56,000 bbl/day of peak oil rate. New
wells were drilled up until 2012–2013, which contributed to the increased recovery rate
and extended life of the field. The main drainage strategy was pressure maintenance by
water injection, with production wells placed high on the structure and water injectors at
the flanks. The Volve field is described as a fault block structure with an initial estimation
of 173 million bbl of oil in place [29]. The reservoir is a small dome-shaped structure and
is believed to be formed due to the collapse of adjacent salt ridges during the Middle
Jurassic age [29,30]. Oil was produced from the sandstone of Middle Jurassic age in the
Hugin formation at an average depth of 2700 to 3100 m true vertical depth (TVD) below
sea level. There is no known aquifer support, so the drainage was primarily dependent on
reservoir depressurization and hydrocarbon displacement by water injection. The field was
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decommissioned in September 2016 after roughly nine years in operation that delivered a
cumulative oil production of 63 million barrels, achieving a recovery rate of 54% [31].
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Figure 1. The geographic location of the Volve field.

Equinor (previously known as Statoil), the operator of Volve field, together with the
Volve license partners released all subsurface and production datasets from the field in
2018 to support research, learning, and innovation for the energy future. The released
dataset [29] includes production and injection data through the life of the operation (from
2008 to 2016), well trajectories, completion string design, seismic data, well logs (petrophys-
ical and drilling), geological and stratigraphic data, static and dynamic models, surface
and grid data.

For this study, the daily production and injection field data measured at the surface
(from all six active producers and two active injectors) is used as input. Since saturation
data is not measured directly in the Volve field, synthetic saturation profiles are generated
using numerical reservoir simulation. A commercial simulator (CMG®) is used to create
a black-oil heterogeneous reservoir model, as summarized in Table 2. The geological
properties, well surveys, operating parameters, and grid dimensions are imported from the
Eclipse® simulation model that is part of Equinor’s publicly released Volve dataset [29]. The
areal field map with the well locations is shown in Figure 2. The prefix “P” or “I” are added
to the well names to indicate a producer or injector, respectively, as one of the injectors
(well F-5) is converted into a producer later. The western part of the reservoir structure is
heavily faulted, as shown in Figure 3, and communication across the faults is uncertain.
The faults are represented using low transmissibility multipliers in the simulation model,
consistent with the Volve simulation model developed by Equinor [32]. The oil, water, and
gas production rates from the simulation model showed a reasonable match with the nine
years of historical Volve field data, as illustrated in Figure 4 (where the monthly oil and
water rates are expressed in thousands of stock tank barrels or MSTB, and the gas rate is
expressed in millions of standard cubic feet or MMSCF). The objective of history matching
is to ensure a reasonable representation of the Volve oil field. The saturation profiles from
the history-matched simulation model, along with the actual field production (oil, water,
gas) and injection (water) rates, are used for the training, validation, and testing of the
ensemble machine learning model, as described in the next section. Although the algorithm
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is demonstrated using synthetic saturation data, the workflow can also be implemented
with actual field saturation profiles, if available.

Table 2. Reservoir simulation model parameters and well operating durations.

Number of Grid Blocks I, J, K 108, 100, 63

Grid Dimensions: dx, dy, dz (m) 50, 50, 1–3

Total Blocks (Active Cells) 680,400 (77,105)

Producers (Operating Duration)
PF-12 (2/2008–9/2016), PF-1C (4/2014–4/2016), PF-5

(4/2016–8/2016), PF-11(7/2013–9/2016), PF-14
(7/2008–7/2016), PF-15D (1/2014–/2016)

Injectors (Operating Duration) IF-5 (8/2008–4/2016), IF-4 (4/2008–9/2016)
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3. Materials and Methods
3.1. Random Forest Algorithm

This study implements a random forest algorithm which is a powerful machine learn-
ing method that uses the supervised ensemble approach for classification or regression [33].
It has been widely used in a variety of petroleum engineering applications, including for
facies classification [34,35], well planning [36], and drilling optimization [37]. Information
entropy and Gini Index are two criteria for random forest classification. Entropy is a
measure of disorder or uncertainty and defined mathematically as:

E(S) = −
c

∑
i=1

pi log2 pi (1)

In this equation pi is the frequentist probability of an element/class i in data. Gini
Index (IG), also known as Gini impurity, calculates the amount of probability of a specific
feature that is classified incorrectly when selected randomly. It is defined as:

IG = 1−
c

∑
i=1

(pi)
2 (2)

In this equation pi denotes the probability of an element being classified for a distinct
class. While information entropy and Gini Index are common criterion functions for classifi-
cation trees, mean squared error (MSE) and mean absolute error (MAE) are commonly used
for regression trees. MSE measures the average of the squares of the difference between
the actual and predicted values and defined mathematically as:

MSE =
n

∑
i=1

(yi − f (xi))
2/n (3)

whereas MAE represents the difference between the absolute difference between the actual
and predicted values averaged over the dataset and given by:

MAE =
n

∑
i=1
|yi − f (xi)|/n (4)
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Random forest utilizes a bagging technique by sampling with replacement from the
original dataset randomly to construct bootstrapped datasets. The algorithm operates by
using these bootstrapped datasets to create decision trees and gives prediction from the
mean values of each tree, as illustrated in the schematic in Figure 5. At each node of a
regression tree, a random subset of all input variables is selected as candidates for binary
partitioning [38]. The regression tree splitting criterion is based on the criterion function
that measures the quality of a split, based on which the best candidate is used to split the
current node. The predicted value of an observation is calculated by averaging over all
the trees.
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In this study, the Scikit-learn package in Python is used as the framework to build
the random forest model [39]. Scikit-learn module integrates a wide range of machine
learning algorithms for medium-scale supervised and unsupervised problems. Several
hyperparameters in the model are tuned to improve the predictive power, generalizability,
and robustness of the model. The ‘model_selection’ package in Scikit-learn combined
with the training dataset are used to find the best hyperparameters for the random f
model. The optimum random forest hyperparameters are shown in Table 3. For instance,
n_estimators represent the number of trees in the forest and it is set to 20 to avoid un-
derfitting and optimize the computational time. Typically, the higher number of trees
gives the better prediction, however, adding a lot of trees can slow down the training
process. The max_features determines the number of input variables to consider when
looking for the best split and a value of “auto” is set which means all the input features
are used for the model. MSE is used the criterion function to measure the quality of a split
which implies variance reduction as the feature selection criterion. The max_depth is the
hyperparameter to limit the depth of the subtree when it builds the random forest model.
The min_samples_split limits the conditions for the subtree to continue to be divided.
If the number of samples of a node is less than the value, it will not continue to try to
select the optimal feature for the division. In view of the dataset size, the max_depth and
min_samples_split are set as default. The max_leaf_nodes is used to prevent overfitting,
we selected "None" which represent the maximum number of leaf nodes is not limited.
The model performance is evaluated using the R-square (R2), root mean square error
(RMSE) and mean absolute percentage error (MAPE). R-square is a statistical measure
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of how close the data are to the fitted regression line. It is defined by the percentage of
explained variation on total variation. The total variation about a regression line is the
sum of the squares of the differences between the y-value of each ordered pair and the
mean of y, that is ∑(y− y)2. The explained variation is the sum of the squared of the
differences between each predicted y-value and the mean of y, that is ∑(ŷ− y)2. It is also
known as the coefficient of determination, or the coefficient of multiple determination for
multiple regression. RMSE is a measure of how spread out these residuals are. It is the
standard deviation of the residuals (prediction errors). It is defined by the error rate by
the square root of MSE. Residuals are a measure of how far from the regression line data
points are. MAPE is a statistical measure of how accurate a forecast model is. It measures
this accuracy as a percentage and can be calculated as the average absolute percent error
for each time period minus actual values divided by actual values. MAPE is the another
common measure used to forecast error and works best if there are no extremes to the
data (and no zeros). R-square by itself does not indicate whether the coefficient estimates
and predictions are biased, which is why we also need to assess the RMSE which is the
standard deviation of the prediction errors. In other words, it tells us how concentrated the
data is around the line of best fit.

Table 3. Optimum hyperparameters for the random forest model.

N_Estimators Max_Features Max_Depth Min_Samples_Split Max_Leaf_Nodes Criterion

20 auto none 2 None MSE

3.2. Data Preparation and Feature Selection

The input features in the random forest model are the actual field-wide injection (wa-
ter) and production (oil, water, gas) history, while the output is time-lapsed oil saturation
versus depth profile at a well location, which is generated using history-matched reservoir
simulation. Nearly five years of data from 2011 to 2016 is used in this study. The entire
dataset is divided into training, validation, and test sets. The first 3.6 years of production,
injection, and saturation history (from November 2011 to June 2015) is randomly divided
for training and validation with an 80% and 20% split, respectively, while the last 1.25 years
of data (from July 2015 to October 2016) is used for the blind testing. The workflow is
demonstrated for predicting saturation profiles at four producer well locations: PF-1C,
PF-14, PF-12, and PF-11. Each well has a unique deviated well trajectory as shown in
Figure 6. The geological structure and reservoir heterogeneity (demonstrated through
the vertical permeability in millidarcy or mD) at the four test-well locations are shown in
Figure 7. These figures highlight the complex reservoir architecture, unique well paths,
and geological heterogeneity present at each well location that is used to demonstrate
the workflow.

The dynamic oil saturation profile at a well location is affected by the injection and
production in the surrounding wells. Therefore the model inputs included actual field
production (oil, water, gas) rates for the target well as well as the injection (water) and
production (oil, water, gas) from the surrounding wells, in addition to the time, and
depth measured across the producing interval. The output is oil saturation profile across
the producing interval along the wellbore, which is compared with the saturation data
generated from the simulation model. The gas saturation in the reservoir is negligible and
therefore it is not modeled. The production and injection data are measured daily in the
field, while the oil saturation profiles are recorded from the simulation model every 10 to
15 days, at unequal time steps. The data frequency reflects actual field conditions where the
production and injection are measured or allocated daily, while the oil saturation profile is
typically measured using wireline logs or estimated analytically every few days, months
or years, depending on the operational requirements. Instead of using the production and
injection rates only on the day of the saturation measurement, the daily rate data is averaged
over the previous ten days to synchronize with the temporal frequency of the oil saturation
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data. The averaging is done to account for any temporary fluctuations in the daily rates
due to the surface operating conditions and to accurately reflect the reservoir-driven
production and saturation changes. Because of the highly dipping reservoir structure
(Figure 7), some grid blocks in the simulation model are pinched out (due to thickness
less than 10−4 m) and therefore removed during the data preparation. The final data are
divided into training, validation, and test sets. The number of data points for each dataset
is summarized in Table 4 which are based on the data separation methodology described
in the previous paragraph. The range of the production and injection data for all wells
is summarized in Table 5. The saturation data corresponds to the saturation values in
the simulation grid blocks intersected by the wellbore in the reservoir zone, as illustrated
in Figure 8a. The initial oil saturation profile across the four wellbores is illustrated in
Figure 8b. Corresponding to each time-step, there will be a single production and injection
value but multiple saturation values along with the measured depth of the well, which
results in a large dataset in Table 4 (this is also demonstrated with an example in the
Supplementary Figure S3).

Table 4. Dataset partition for the random forest model.

PF-1C PF-14 PF-12 PF-11

Training dataset 23680 18648 5835 14644
Validation dataset 5921 4661 1458 3660

Test dataset 9264 7824 2448 6144

Energies 2021, 14, x FOR PEER REVIEW 8 of 19 
 

 

percentage and can be calculated as the average absolute percent error for each time pe-

riod minus actual values divided by actual values. MAPE is the another common measure 

used to forecast error and works best if there are no extremes to the data (and no zeros). 

R-square by itself does not indicate whether the coefficient estimates and predictions are 

biased, which is why we also need to assess the RMSE which is the standard deviation of 

the prediction errors. In other words, it tells us how concentrated the data is around the 

line of best fit. 

Table 3. Optimum hyperparameters for the random forest model. 

N_Estimators Max_Features Max_Depth Min_Samples_Split Max_Leaf_Nodes Criterion 

20 auto none 2 None MSE 

3.2. Data Preparation and Feature Selection 

The input features in the random forest model are the actual field-wide injection (wa-

ter) and production (oil, water, gas) history, while the output is time-lapsed oil saturation 

versus depth profile at a well location, which is generated using history-matched reservoir 

simulation. Nearly five years of data from 2011 to 2016 is used in this study. The entire 

dataset is divided into training, validation, and test sets. The first 3.6 years of production, 

injection, and saturation history (from November 2011 to June 2015) is randomly divided 

for training and validation with an 80% and 20% split, respectively, while the last 1.25 

years of data (from July 2015 to October 2016) is used for the blind testing. The workflow 

is demonstrated for predicting saturation profiles at four producer well locations: PF-1C, 

PF-14, PF-12, and PF-11. Each well has a unique deviated well trajectory as shown in Fig-

ure 6. The geological structure and reservoir heterogeneity (demonstrated through the 

vertical permeability in millidarcy or mD) at the four test-well locations are shown in Fig-

ure 7. These figures highlight the complex reservoir architecture, unique well paths, and 

geological heterogeneity present at each well location that is used to demonstrate the 

workflow. 

 

Figure 6. Well trajectories for the four test-wells used in this study for demonstrating the random 

forest workflow (colors indicate different reservoir formations targeted by the wellbore)[29]. 

Figure 6. Well trajectories for the four test-wells used in this study for demonstrating the random forest workflow (colors
indicate different reservoir formations targeted by the wellbore) [29].



Energies 2021, 14, 1052 10 of 20
Energies 2021, 14, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 7. Cross-sections from simulation model highlight the reservoir structure and vertical per-

meability variation at the four test-well locations (Y-axis is TVD in meters and X-axis is UTM coor-

dinates in meters). 

The dynamic oil saturation profile at a well location is affected by the injection and 

production in the surrounding wells. Therefore the model inputs included actual field 

production (oil, water, gas) rates for the target well as well as the injection (water) and 

production (oil, water, gas) from the surrounding wells, in addition to the time, and depth 

measured across the producing interval. The output is oil saturation profile across the 

producing interval along the wellbore, which is compared with the saturation data gen-

erated from the simulation model. The gas saturation in the reservoir is negligible and 

therefore it is not modeled. The production and injection data are measured daily in the 

field, while the oil saturation profiles are recorded from the simulation model every 10 to 

15 days, at unequal time steps. The data frequency reflects actual field conditions where 

the production and injection are measured or allocated daily, while the oil saturation pro-

file is typically measured using wireline logs or estimated analytically every few days, 

months or years, depending on the operational requirements. Instead of using the pro-

duction and injection rates only on the day of the saturation measurement, the daily rate 

data is averaged over the previous ten days to synchronize with the temporal frequency 

of the oil saturation data. The averaging is done to account for any temporary fluctuations 

in the daily rates due to the surface operating conditions and to accurately reflect the res-

ervoir-driven production and saturation changes. Because of the highly dipping reservoir 

structure (Figure 7), some grid blocks in the simulation model are pinched out (due to 

thickness less than 10–4 m) and therefore removed during the data preparation. The final 

data are divided into training, validation, and test sets. The number of data points for each 

dataset is summarized in Table 4 which are based on the data separation methodology 

described in the previous paragraph. The range of the production and injection data for 

all wells is summarized in Table 5. The saturation data corresponds to the saturation val-

ues in the simulation grid blocks intersected by the wellbore in the reservoir zone, as il-

lustrated in Figure 8a. The initial oil saturation profile across the four wellbores is illus-

trated in Figure 8b. Corresponding to each time-step, there will be a single production and 

injection value but multiple saturation values along with the measured depth of the well, 

Figure 7. Cross-sections from simulation model highlight the reservoir structure and vertical permeability variation at the
four test-well locations (Y-axis is TVD in meters and X-axis is UTM coordinates in meters).

Energies 2021, 14, x FOR PEER REVIEW 10 of 19 
 

 

which results in a large dataset in Table 4 (this is also demonstrated with an example in 

the supplementary Figure S3). 

Table 4. Dataset partition for the random forest model. 

 PF-1C PF-14 PF-12 PF-11 

Training dataset 23680 18648 5835 14644 

Validation dataset 5921 4661 1458 3660 

Test dataset 9264 7824 2448 6144 

Table 5. The range of all input features used in the machine learning model (oil and water rates in 

MSTB/day, gas rates in MSCF/day). 

Well Name Inputs Feature Range of Inputs 

PF-1C Oil/Water/Gas Rate (0–9.7)/(0–10.3)/(0–7828) 

PF-11 Oil/Water/Gas Rate (0–12.9)/(0–22.4)/(0–10598) 

PF-12 Oil/Water/Gas Rate (0–8.6)/(0–40.2)/(0–7356) 

PF-14 Oil/Water/Gas Rate (0–12.7)/(0–30.5)/(0–10845) 

PF-15D Oil/Water/Gas Rate (0–3.2)/(0–2.2)/(0–2740) 

IF-4 Water Injection Rate (0–55.8) 

IF-5 Water Injection Rate (0–51.5) 

 

Figure 8. (a) Saturation from grid block intersected by the well (b) Initial oil saturation profiles at 

the four test wells. 

3.3. Feature Selection 

To improve the computational efficiency and performance of the model, a feature 

selection analysis is performed to select the wells that are most influential in predicting 

the saturation at the four test-well locations. This is done by evaluating the input data 

correlation and feature importance ranking. The Pearson correlation coefficient (r) is used 

to measure the strength of the linear association between two variables given by: 

𝑟 =  ∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) /√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2 (5) 

where xi and yi are the actual values, and 𝑥̅, 𝑦̅ are the mean of the values. Two variables 

have a high correlation if a change in one variable affects a similar change in another at 

the same time [40]. A value of r = 1 means a perfect positive correlation, while r = -1 indi-

cates a perfect negative correlation. Pearson's correlation coefficient is calculated for the 

oil, water, and gas rate attributes between each well pair to analyze the effect of produc-

tion or injection in one well on the rates in the other well. The absolute values of the cor-

relation coefficients for oil, water, and gas rates are aggregated at the well level to reflect 

the statistical relationship between the well pairs. 

Figure 8. (a) Saturation from grid block intersected by the well (b) Initial oil saturation profiles at the four test wells.



Energies 2021, 14, 1052 11 of 20

Table 5. The range of all input features used in the machine learning model (oil and water rates in
MSTB/day, gas rates in MSCF/day).

Well Name Inputs Feature Range of Inputs

PF-1C Oil/Water/Gas Rate (0–9.7)/(0–10.3)/(0–7828)
PF-11 Oil/Water/Gas Rate (0–12.9)/(0–22.4)/(0–10598)
PF-12 Oil/Water/Gas Rate (0–8.6)/(0–40.2)/(0–7356)
PF-14 Oil/Water/Gas Rate (0–12.7)/(0–30.5)/(0–10845)

PF-15D Oil/Water/Gas Rate (0–3.2)/(0–2.2)/(0–2740)
IF-4 Water Injection Rate (0–55.8)
IF-5 Water Injection Rate (0–51.5)

3.3. Feature Selection

To improve the computational efficiency and performance of the model, a feature
selection analysis is performed to select the wells that are most influential in predicting
the saturation at the four test-well locations. This is done by evaluating the input data
correlation and feature importance ranking. The Pearson correlation coefficient (r) is used
to measure the strength of the linear association between two variables given by:

r = ∑(xi − x)(yi − y)/
√

∑(xi − x)2 ∑(yi − y)2 (5)

where xi and yi are the actual values, and x, y are the mean of the values. Two variables
have a high correlation if a change in one variable affects a similar change in another at
the same time [40]. A value of r = 1 means a perfect positive correlation, while r = −1
indicates a perfect negative correlation. Pearson’s correlation coefficient is calculated
for the oil, water, and gas rate attributes between each well pair to analyze the effect of
production or injection in one well on the rates in the other well. The absolute values of the
correlation coefficients for oil, water, and gas rates are aggregated at the well level to reflect
the statistical relationship between the well pairs.

The feature importance is calculated by evaluating the relative contribution of each
input feature in predicting the output, which also takes into account any non-linear relation-
ship [41]. Tree-based models provide a measure of feature importance based on the mean
decrease in impurity (MDI). Impurity is quantified by the splitting criterion of the decision
trees (Gini, entropy, or MSE). Even though impurity-based feature importance for trees is
strongly biased, it favors high cardinality features (typically numerical features) over low
cardinality features such as binary features or categorical variables. The contribution is
based on impurity, which in the case of regression problems is variance. The individual
scores calculated for the oil, water, and gas rate attributes are summed up for each well to
reflect the total feature importance score for the well in predicting the output (oil saturation)
at the test-well location.

The final set of input features for the random forest model are selected based on the
agreement between the Pearson correlation coefficient, feature importance scores, and
the domain-knowledge such as the structural location of the injectors and the producers,
geological features such as reservoir dip and proximity to faults, as demonstrated in
Figure 9. The input features of time and depth are included in all models and not included
in feature importance evaluation since they are fundamentally needed for generating the
temporal and spatial saturation profile.
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Figure 9. Feature selection based on agreement between data correlation, feature importance, and
domain knowledge.

4. Results and Discussion
4.1. Feature Selection Results

Figure 10 shows the correlation matrix for all well pairs which is calculated by aggre-
gating the absolute values of the Pearson correlation coefficients for oil, water, and gas rate
attributes at the well level. The feature importance scores estimated for each test well are
presented in Figure 11. The final input variables for the random forest model are deter-
mined based on the results from the pair-wise Pearson’s correlation, feature importance
results, as well as the underlying geological understanding, as summarized in Table 6.
When a feature (such a well) is not included, we just didn’t include the corresponding
production and injection values in the input matrix. For instance, for well PF-1C, wells PF-5,
IF-4, and IF-5 are not included as input features because they had a low correlation with PF-
1C (Figure 10), low feature importance (Figure 11), and they are also located farthest from
well PF-1C (Figure 2). Both the injectors (IF-4 and IF-5) are structurally neither on strike
nor directly downdip of PF-1C as illustrated in the 3D view of the horizontal permeability
in Figure 10 (left), which justifies minimal impact from a geological standpoint. For well
PF-14, only well PF-5 is excluded as it met all three criteria of low correlation coefficient
(Figure 10), low feature importance (Figure 11), and geological distance (Figure 12). For
well PF-11, even though the two injectors (IF-4 and IF-5) ranked low on feature importance
and correlation coefficient, they are included as input features as they are located directly
downdip of PF-11, as shown in Figure 10 (right). Thus, from a geological standpoint, they
are expected to influence the saturation profile at PF-11. The data from well PF-5 ranked
very low in both the feature importance score and correlation coefficients, as this well
produced for only four months (see Table 2).
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Table 6. Input variables for the predictive random forest model for each test-well.

Features Test Wells

PF-1C PF-14 PF-12 PF-11
PF-1C (oil, water, gas rates) 3 3 3

PF-5 (oil, water, gas rates)
PF-11 (oil, water, gas rates) 3 3 3 3

PF-12 (oil, water, gas rates) 3 3 3 3

PF-14 (oil, water, gas rates) 3 3 3 3

PF-15D (oil, water, gas rates) 3 3 3 3

IF-4 (water injection rate) 3 3 3

IF-5 (water injection rate) 3 3 3

Time 3 3 3 3

Depth 3 3 3 3
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4.2. Oil Saturation Prediction Results

In order to find the optimal machine learning method for saturation prediction
six different standard regression algorithms are tested namely, linear regression [42], K-
neighbors [43], multi-layer perceptron [44], gradient boosting [45], AdaBoost [46], and
random forest. All the models are used from Scikit-learn package in Python directly. To sim-
plify the model comparison process, the performance is tested on one of the four test-wells
(PF-12). Consistent with the methodology described in Sec. 3.2, the first 3.6 years of pro-
duction, injection, and saturation history (from November 2011 to June 2015) is randomly
divided for training and validation with an 80% and20% split, respectively, while the last
1.25 years of data (from July 2015 to October 2016) is used for the blind testing. The training
dataset is used for grid search. The model_selection package from Scikit-learn [39] which
includes GridSearchCV and grid.fit methods are used to find the best hyperparameters
for each model which are shown in (Supplementary File Tables S1–S4). After tuning the
hyperparameters, 1.5 years blind testing data are used for predicting oil saturation for
PF-12. The performances of the different models are summarized in Table 7. Based on
ANOVA analysis (included in the Supplementary Figure S4) the difference between the
model results are statistically significant. Random forest demonstrated the best prediction
performance (highest R-square, lowest RMSE, and lowest MAPE), followed by gradient
boosting and AdaBoost. The MAPE and RMSE scores are expressed in the same unit as
the saturation, which is a fraction. Based on the assessment, Random forest algorithm was
selected for saturation modeling at all four test well locations.

Table 7. The performance of different machine learning models on PF-12.

Linear Random
Forest K-Neighbors Ada Boost Gradient

Boosting

MAPE 0.1917 0.0486 0.1944 0.1629 0.0745
RMSE 0.1507 0.0324 0.1298 0.0856 0.0675

R2 −0.1036 0.9142 0.1801 0.6439 0.8563

The selected input features (Table 6) are used to train, validate, and test the Random
forest model for each of the four test-wells (PF-1C, PF-14, PF-12, and PF-11). To further
illustrate the role of feature selection, the model also tests four wells by including all features
before the feature selection process as input. The comparison of the resulting performance
of the model prediction using the MAPE, RMSE and R-square is summarized in Table 8.
The results are based on running 35 independent runs, and the standard deviation of the
results are shown in Table 9. It could be seen from each column that by including the
removed wells, the results remain unchanged. The feature selection provides efficiency by
reducing computation time as well as data preparation time by elimination of redundant
features. The model computation time before and after the feature selection are different
as summarized in Table 8. The results also show that the model predicts time-lapse oil
saturation profiles with over 90% R-square, less than 0.07 MAPE and less than 0.06 RMSE
in all cases. The predicted and actual values of oil saturation for the entire testing dataset
for each well are presented in Figure 13. The majority of the predicted values overlap the
actual data points, which shows that the regression model reasonably forecasts the change
of oil saturation. However, the model shows low R-square for some data points. One of
the main factors influencing the mismatch between the actual and predicted saturation at
certain depths is the intersection of well path with the fault boundaries, which creates flow
barrier and discontinuities making it difficult for the machine learning model to predict
the saturation trend accurately. This is demonstrated in Figure 14 which illustrates the well
paths intersecting the fault planes that are modeled as low transmissibility zones in the
simulation model.



Energies 2021, 14, 1052 15 of 20

Table 8. Comparison of performance with and without removed input features for each test-well
based on the average of 35 independent model runs.

Metric (Selected/All Features) PF-1C PF-14 PF-12 PF-11

MAPE 0.0542/0.0523 0.0397/0.0398 0.0532/0.0486 0.0642/0.0654
RMSE 0.0513/0.0534 0.0291/0.0298 0.0387/0.0324 0.0554/0.0554

R2 0.9312/0.9331 0.9567/0.9543 0.9212/0.9142 0.9365/0.9756
Computation Time (seconds) 4.1700/4.6823 3.8482/4.1938 1.5023/1.6130 2.9332/3.3412

Table 9. Standard deviation in performance metrics for the 35 independent random forest model runs for each test-well.

PF-1C PF-14 PF-12 PF-11

MAPE (Selected/All Features) 0.00039/0.00038 0.00042/0.00039 0.00043/0.00041 0.00042/0.00039
RMSE (Selected/All Features) 0.00050/0.00054 0.00051/0.00053 0.00051/0.00052 0.00053/0.00053

R2 (Selected/All Features) 0.00153/0.00156 0.00153/0.00156 0.00151/0.00157 0.00154/0.00156
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To demonstrate the performance of the random forest model in predicting the time-
lapse saturation profile trends, the actual and predicted saturation profiles for representa-
tive time steps from the testing dataset are compared in Figure 15 for all four test-wells. The
three time-steps correspond to the starting of the test-set (7/3/2015), middle (2/8/2016),
and the end of test-set (9/5/2016). To illustrate the change in oil saturation over a longer
duration two additional saturation profiles (11/1/2011 and 10/6/2012) are included in
the left two plots of Figure 15. In each figure, the blue curve represents the actual satura-
tion values (obtained from the reservoir simulation), while the red curves represent the



Energies 2021, 14, 1052 16 of 20

predicted saturation values from the random forest model. The results show a reasonable
saturation prediction in all cases with acceptable errors. Not all saturation changes are fully
captured at some intervals likely due to the complex reservoir structure, faulting, and the
limited number of input features used in the random forest model. However, the results
clearly demonstrate the effectiveness of our simple modeling approach utilizing the most
readily available field injection and production data as the primary inputs in predicting
time-lapse saturation profile within acceptable error margins in a structurally complex and
heterogeneous reservoir.
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5. Conclusions

In this study, we develop an ensemble machine learning method to implement an
inverse-modeling approach that uses the field-wide production and injection data as the
main inputs to predict the time-lapse saturation profiles. Other dynamic reservoir parame-
ters such as pressures, temperatures, and static geological attributes such as permeability,
porosity, etc. are not included as inputs to demonstrate the broad applicability of the
algorithm when such data is not easily or reliably available. The workflow is demonstrated
using actual field injection and production data measured at the surface from a structurally
complex, heterogeneous, and heavily faulted offshore oil field. The oil saturation data
for training and testing the machine learning model is synthetically generated through
full-field history-matched numerical reservoir simulation, as time-lapsed saturation data is
not measured directly in the subject field.

The random forest model predicted dynamic saturation profiles at four deviated well
locations, each representing a unique well trajectory, complex reservoir structure, and
geological heterogeneity, with over 90% R-square, less than 0.07 MAPE and less than 0.06
RMSE in all cases. The results demonstrate the effectiveness of our simple and intuitive
modeling approach that captures the dynamic relationship between the field production,
injection, and oil saturation trends.

The proposed workflow is demonstrated for a waterflood operation but it can also be
adopted for primary production, which will be a special case for no water injection. For
other enhanced oil recovery (EOR) processes (such as polymer, steam, or gas injection), the
key criteria that will determine whether or not our model can be applied are the recovery
mechanisms. For instance, if a process significantly alters the reservoir properties, like
permeability (in case of fracking) or temperatures (in case of a steam flood) then the model
will need to incorporate those changes, as the current model does not include permeability
or temperature as an input feature. This study uses simulated oil saturation data. In the
future, we plan to extend this by using saturation data from well logs and also implement
the workflow in other oil and gas fields.
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saturation data from the simulation model, Figure S2: Predicted versus the actual time-lapsed oil
saturation profiles with production, injection and saturation from the simulation model shown at
the four test-well locations for three time-steps from the testing dataset, Figure S3: Input and output
features for well PF-14 to illustrate the number of data points, Table S1–S4: Hyperparameters used
for the Linear Regression, K-Neighbors, AdaBoost, and Gradient Boosting algorithms, respectively,
Figure S4: Results from single-factor ANOVA analysis on the MAPE results from the machine
learning models.
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