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Abstract: The paper describes a case study of the safety hydraulic system damage in the working of
a longwall in a Polish coal mine. The safety elements are a component of the powered roof supports
which secure the shield against damage during rock burst incidents. The damage event, which
occurred in the hydraulic system during the mining process, caused the uncontrolled lowering of
the powered roof support height during the mining process. The uncontrolled lowering of a shield
may cause the danger of the loss of the stability along the longwall working in the form of a rock
burst and collapses and may represent a serious and immediate danger to the safety and health
of employees. Based on the results of the computational fluid dynamics methods (CFD) analysis
of the safety elements in the hydraulic system of longwall 2-leg shield, the causes of damage were
diagnosed and presented. The CFD and the strength analysis by the finite element method (FEM)
were used for numerical modeling. The diagrams and maps of changes of parameters having an
impact on the damage mechanism in safety elements of the hydraulic leg were developed based
on the results of model tests. The forecasted values of stress distributions in the safety system of
the hydraulic leg have made it possible to identify the reasons of the damage causes, verified by
real observations.

Keywords: computational fluid dynamics; safety elements; powered support; numerical modelling

1. Introduction

According to the 2020 annual report on the state of basic natural and technical hazards
in the conditions of Polish mining [1], total extraction from regions classified as threatened
by rock bursts amounted to approximately 54% of the total production volume. Since
classifying the coal seam or part of it to the appropriate degree of rock burst hazard is not a
measure of the occurrence or not of a high-energy rock tremor, and it should be assumed
that rock mass tremors currently affect over 60% of the exploited coal seams and show a
growing tendency (due to deteriorating geological and mining conditions associated with
increasing cover depth, and the occurrence of exploitation problems).

Pursuant to the requirements of the Health and Safety Ministry [2], powered supports
intended for use in conditions with a risk of rock mass tremors should be adapted to
absorb dynamic loads. The assessment and guidelines are prepared by the Central Mining
Institute (GIG) according to its own method for selecting shields for mining conditions.
The GIG method is an analytical method, which is widely used in mining practice, using
the technical parameters of the powered roof support and many years of experience.

The main goal of the method is to determine the safe scope of its work for the con-
sidered case of the powered roof support [3]. The method takes into account the fluid
flow in the safety elements of the powered roof support which secure the hydraulic legs

Energies 2021, 14, 1027. https://doi.org/10.3390/en14041027 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7006-0285
https://orcid.org/0000-0001-7455-9446
https://doi.org/10.3390/en14041027
https://doi.org/10.3390/en14041027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14041027
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/4/1027?type=check_update&version=1


Energies 2021, 14, 1027 2 of 20

against overloads [4]. The safety elements of the powered roof support consist of a pressure-
limiting hydraulic valve and a connection pipe supplying fluid from the hydraulic legs to
the valve [5–7]. The characteristics of liquid flow in safety elements, which are understood
as the dependence of pressure on the volumetric fluid flow together with the parameters of
the hydraulic valve, determine the effectiveness of the safety elements of the powered roof
support against its overload [8]. The extraction of the coal seams at greater depth and the
real risk of rock mass tremors, requires the use of hydraulic legs with increasingly large
bearing capacities. The introduction of shields with a piston diameter of the hydraulic
leg above Ø 0.32 m into operation and additionally hydraulic legs with a drilled cylin-
der shell (an outlet for fluid from the working space under the piston of the hydraulic
leg), has resulted in the appearance of phenomena not previously observed in modern
shields, i.e. hydraulic shocks (fluid hammer) causing the excitation of the safety system.
According to [9], hydraulic shocks are the phenomenon of strong pressure oscillations
in a pipe operating under pressure, caused by rapid changes in the velocity of the fluid
flow in a short time. The hydraulic shocks in the safety elements of a hydraulic leg are
characterized by vibration frequencies of several hundred Hertz (Hz) and amplitudes
significantly exceeding the operating values. The effect of the hydraulic shocks is a loss of
tightness in the safety elements of the powered roof support, and reduction or loss of the
load bearing capacity of the powered roof support, which consequently may lead to the
uncontrolled lowering of the shield height [10–14].

Identification of the aforementioned hazards and their elimination is a significant
problem for the efficiency of mining processes and work safety [15,16]. Therefore, this paper
attempts to describe the causes of damage events occurring in a working overflow valve
during the mining process based on the results of the numerical simulations using the CFD
and FEM methods.

2. Safety Elements Damage

The safety elements of powered roof support are, in many cases, the last link securing
the shields against damage due to rock tremors. The safety elements securing the hydraulic
leg of a powered roof support against the damage are shown in Figure 1.
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Figure 1. Powered roof support: 1- 2-leg shield, 2- hydraulic leg, 3- safety elements, 4- cross section.

Putting the powered roof supports with large diameter hydraulic legs into the longwall
operation requires increased flows of the liquid supplying the hydraulic legs, which entails
technical problems resulting from the necessity to move a fluid with a high variability of
pressure and intensity. These problems are especially exacerbated in the case of hydraulic
legs in which the liquid from the working space (under the piston) is discharged to the
operated check valve by drilling a hole in the hydraulic leg’s cylinder shell. Recently, cases
of the operation of longwall supports were registered in which, despite compliance with all
formal and technical requirements, there was an excessive amount of damage to the safety
elements of powered roof supports. The recorded cases of damage events resulted from
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tremors of the rock mass, the values of which were lower than forecasted. The greatest
amount of damage to the hydraulic leg’s control system components was recorded in
shields in which hydraulic legs with a diameter of ∅ 0.37 m and drilled cylinder shells was
used. The registered damage events during the advancing of the longwall showed that they
were uniformly distributed along the entire longwall. Within four months of the longwall
advance, over 500 cases of damage to various elements of the control hydraulics were
recorded. The number and nature of these damage events during the longwall operation
was enormous. A fragment of the data is shown in Figure 2. All recorded damage events
occurred at the ends of the connections which discharge fluid from the working space of
the hydraulic leg to the safety elements of the powered roof support, such as hydraulic
legs, hydraulic valves and pressure gauges [17].
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Figure 2. Monitoring of damage events of the powered roof support in the longwall (DOH Hydraulics Center) during the
mining process.

The damage always resulted in the loss of pressure in the hydraulic systems of the
hydraulic legs, which in extreme cases resulted in the uncontrolled lowering of the shield
height. This uncontrolled lowering meant that the longwall advances had to be stopped
until the damage was dealt with. Hydraulic valves limiting the working pressure of the
hydraulic legs (the overflow valves) were the elements that were most often damaged
(representing approximately 50% of the damage incidents). The overflow valves used are
piston valves with an O-ring seals and a spring (Figure 3). The damage was mainly in the
form of damage to the O-ring seals sealing the valve piston, breaks or leaks of the piston
and/or damage to the valve parts. Examples of damage are shown in Figure 4 [17].

Energies 2020, 13, x FOR PEER REVIEW 3 of 20 

 

shell. Recently, cases of the operation of longwall supports were registered in which, 
despite compliance with all formal and technical requirements, there was an excessive 
amount of damage to the safety elements of powered roof supports. The recorded cases 
of damage events resulted from tremors of the rock mass, the values of which were lower 
than forecasted. The greatest amount of damage to the hydraulic leg’s control system 
components was recorded in shields in which hydraulic legs with a diameter of ∅ 0.37 m 
and drilled cylinder shells was used. The registered damage events during the advancing 
of the longwall showed that they were uniformly distributed along the entire longwall. 
Within four months of the longwall advance, over 500 cases of damage to various ele-
ments of the control hydraulics were recorded. The number and nature of these damage 
events during the longwall operation was enormous. A fragment of the data is shown in 
Figure 2. All recorded damage events occurred at the ends of the connections which 
discharge fluid from the working space of the hydraulic leg to the safety elements of the 
powered roof support, such as hydraulic legs, hydraulic valves and pressure gauges [17]. 

 
Figure 2. Monitoring of damage events of the powered roof support in the longwall (DOH Hydraulics Center) during the 
mining process. 

The damage always resulted in the loss of pressure in the hydraulic systems of the 
hydraulic legs, which in extreme cases resulted in the uncontrolled lowering of the shield 
height. This uncontrolled lowering meant that the longwall advances had to be stopped 
until the damage was dealt with. Hydraulic valves limiting the working pressure of the 
hydraulic legs (the overflow valves) were the elements that were most often damaged 
(representing approximately 50% of the damage incidents). The overflow valves used are 
piston valves with an O-ring seals and a spring (Figure 3). The damage was mainly in the 
form of damage to the O-ring seals sealing the valve piston, breaks or leaks of the piston 
and / or damage to the valve parts. Examples of damage are shown in Figure 4 [17]. 

 
Figure 3. An example of the overflow valve: 1–O-ring of slide piston, 2–slide piston, 3–piston disc, 4–spring, 5–adjusting 
nut cover. 
Figure 3. An example of the overflow valve: 1–O-ring of slide piston, 2–slide piston, 3–piston disc, 4–spring, 5–adjusting
nut cover.



Energies 2021, 14, 1027 4 of 20

Energies 2020, 13, x FOR PEER REVIEW 4 of 20 

 

Figure 4. Examples of overflow valve damage: (a) damaged O-rings, (b) damaged pistons. 

In order to confirm the proper execution of the piston of the overflow valve (the 
basic element of the valve), the piston was subjected to chemical composition analysis in 
the laboratory of the Polish Mining Group (PGG S.A.). The chemical analysis showed that 
the chemical composition of the piston material was normal. Therefore, it should be as-
sumed that the probable cause of the damage was the occurrence of pressures at the inlet 
of the hydraulic valve with values and variability exceeding its permissible technical 
parameters. 

3. Materials and Methods  
The model tests were performed using SolidWorks Flow Simulation, which is based 

on Computational Fluid Dynamics (CFD) as well as in SolidWorks Simulation (2018, 
Waltham, MA 02451, U.S.A) by the finite element method (FEM). This is a Comput-
er-Aided Engineering (CAE),program used for designing 2D and 3D models, as well as 
allowing the creation of very detailed elements and assemblies at the design stage as well 
as working drawings. Also allow to inspect a design directly before production by means 
of a broad range of available tools, from CFD analysis to the analysis of static and dy-
namic strength of a studied prototype construction, based on the FEM method. 

3.1. Geometry 
In Figure 5 a view of the safety elements of a longwall shield is shown. The safety 

elements are the components of hydraulic legs which determine its power hydraulic as 
well as the safety and capacity of powered roof support. The main component of hy-
draulic legs is the overflow valve which serves as a safety valve. The overflow valve’s 
task is to protect and secure a hydraulic leg against dynamic loads which occur during 
rock burst. When the pressure in the hydraulic leg is exceeded then the overflow valve is 
opened via slide-piston (position 6 in Figure 5). The slide-piston with a roll spring (posi-
tion 4 in Figure 5) acts directly on the adjusting nut (position 2 in Figure 5) and causes 
that the pressure is released in the hydraulic legs through the two holes located on the 
adjusting nut cover (position 1 in Figure 5). 

Based on the 3D model, the volume of fluid was separated from solid geometry on 
which boundary conditions (i.e. volume flow rate, static pressure, etc.) are defined. The 
separated volume of fluid was used to generate the numerical model in order to simulate 
the work of safety elements using the CFD method. The CFD simulation will be able to pre-
dict the pressure change depending on the volume flow rate. The CFD results will be used to 
simulate load changes in the safety element using the finite elements method (FEM). 

 

 

 

 
 

(a) (b) 

Figure 4. Examples of overflow valve damage: (a) damaged O-rings, (b) damaged pistons.

In order to confirm the proper execution of the piston of the overflow valve (the basic
element of the valve), the piston was subjected to chemical composition analysis in the
laboratory of the Polish Mining Group (PGG S.A.). The chemical analysis showed that the
chemical composition of the piston material was normal. Therefore, it should be assumed
that the probable cause of the damage was the occurrence of pressures at the inlet of the
hydraulic valve with values and variability exceeding its permissible technical parameters.

3. Materials and Methods

The model tests were performed using SolidWorks Flow Simulation, which is based
on Computational Fluid Dynamics (CFD) as well as in SolidWorks Simulation (2018,
Waltham, MA 02451, U.S.A) by the finite element method (FEM). This is a Computer-Aided
Engineering (CAE), program used for designing 2D and 3D models, as well as allowing the
creation of very detailed elements and assemblies at the design stage as well as working
drawings. Also allow to inspect a design directly before production by means of a broad
range of available tools, from CFD analysis to the analysis of static and dynamic strength
of a studied prototype construction, based on the FEM method.

3.1. Geometry

In Figure 5 a view of the safety elements of a longwall shield is shown. The safety
elements are the components of hydraulic legs which determine its power hydraulic as well
as the safety and capacity of powered roof support. The main component of hydraulic legs
is the overflow valve which serves as a safety valve. The overflow valve’s task is to protect
and secure a hydraulic leg against dynamic loads which occur during rock burst. When the
pressure in the hydraulic leg is exceeded then the overflow valve is opened via slide-piston
(position 6 in Figure 5). The slide-piston with a roll spring (position 4 in Figure 5) acts
directly on the adjusting nut (position 2 in Figure 5) and causes that the pressure is released
in the hydraulic legs through the two holes located on the adjusting nut cover (position
1 in Figure 5).

Based on the 3D model, the volume of fluid was separated from solid geometry on which
boundary conditions (i.e. volume flow rate, static pressure, etc.) are defined. The separated
volume of fluid was used to generate the numerical model in order to simulate the work
of safety elements using the CFD method. The CFD simulation will be able to predict the
pressure change depending on the volume flow rate. The CFD results will be used to simulate
load changes in the safety element using the finite elements method (FEM).
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3.2. Numerical Grid

In the case of fluid flow analysis in the CFD module, the program groups fluid flow
analysis into two separate categories namely: internal analysis and external analysis. At the
beginning of model preparation, it is very important to recognize which type of analysis
one wishes to perform; in this instance it is an internal flow analysis. For this type of
analysis, the fluid enters a model through the inlets and exits the model through the
outlets. In order to perform internal flow analysis, the overflow valve model must be fully
closed (no openings) using lids. In Figure 6 the major steps of the fluid volume (Figure 6b)
separating process based on the 3D model of safety elements (Figure 6a) are shown.

A numerical grid, shown in Figure 7, was formed by 226,112 total cells, where
69,745 fluid cells are in contact with solids, which represents the geometry of the fluid.
The fluid volume is 0.0002 m3. The mesh grid was based on an orthogonal finite vol-
ume mesh.
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Figure 7. Numerical grid developed to analyse fluid flow in the safety elements using CFD method.

In the case of safety element analysis, the modelling process begins by creating a
geometric model. The program divides the model into small fragments with simple shapes
(elements) that connect with each other at common points (nodes). Finite element analysis
applications perceive the model as a grid of discrete elements which are connected to each
other using the automatic generator. The automatic generator in the software generates
a numerical grid based on the global information such as: tolerance, element size and
determination of local mesh controls. Numerical grid control enables the specification of
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different element sizes for vertices, edges, faces and components. The program calculates
the global element size for the model, taking into account its surface, area and volume.
The size of the generated numerical grid (the number of nodes and elements) depends
on the geometry and dimensions of the model, the size of the element, grid tolerance,
grid control and specific contacts.

The numerical grid shown in Figure 8 was generated in the form of a mesh formed by
35,837 elements, connected with 62,804 nodes. The tetrahedral 3D solid elements for all
solid components were used to generate the mesh grid.
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3.3. Assumption of the CFD Method

The purpose of the fluid flow process simulation supported by CFD methods in the
space that constitutes the volume occupied by the analyzed fluid is to obtain a solution to a
set of differential equations which interpret the law of the conservation of the mass and
momentum of the moving fluid (Naiver-Stokes equation). These fundamental equations,
which express the behaviour of a fluid flow through a given geometry, are defined in the
following forms [18]:

• Mass conservation equation:
∂ρ

∂t
+∇(ρνi) = 0 (1)

• Naiver-Stokes equation:

ρ
∂(ρνi)

∂t
+

∂

∂xj

(
$νiνj

)
+

∂P
∂xi

=
∂

∂xj

(
τij+τR

ij

)
+ Si (2)

where ρ–fluid density (kg·m−3), ν–fluid velocity (m·s−1) and p–fluid pressure (Pa),

The influence of disturbances in the fluid transfer process within the given geometry
were interpreted with a k-ε turbulence model. Solving this model comes down to determin-
ing the value of turbulent viscosity µt using turbulence kinetic energy k and dissipation
rate ε related to the energy dissipation resulting from the occurrence of internal resistances
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to motion of a fluid flow through a channel. The turbulent viscosity µt model of the fluid is
expressed using an equation defined in the following form:

µt = fµCµ
ρk2

ε
(3)

Fluid transport equations for turbulence kinetic energy k and dissipation ε are ex-
pressed in the following forms [18]:

• For turbulence kinetic energy:

∂ρk
∂t

+
∂ρkνi
∂xi

=
∂

∂xi

((
µ +

µi
σk

)
∂k
∂xi

)
+ τR

ij
∂νi
∂xj
− ρε + µtPB (4)

• For dissipation energy:

∂ρk
∂t

+
∂ρενi
∂xi
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where Cε1–empirical constant, Cε1 = 1.44, Cε2–empirical constant, Cε2 = 1.92, Cµ–empirical
constant, Cµ = 0.09, k–velocity fluctuation (turbulence) kinetic energy (m2·s−2), P–local
vorticity fluctuation production, ε– turbulence kinetic energy dissipation rate (m2·s−3),
µt–turbulent viscosity (Pa·s), σk–turbulent Prandtl number σk = 1.0, σε–turbulent
Prandtl number σε = 1.3 and µ–fluid dynamic viscosity (Pa·s).

In order to carry out the calculation process, the following boundary conditions were
adopted for pure water:

• density described by ρ(T) = −0.0025T2 + 1.1577T + 871.45 (kg·m−3) (Figure 9a),
• dynamic viscosity described by µ(T) = 4 × 10−8 T2 − 4 × 10−5 T + 0.0082 (Pa·s)

(Figure 9b),
• specific heat described by Cp(T) = 0.0172T2 − 11.4T + 6062.2 (J·kg−1·K−1) (Figure 10a),
• thermal conductive described by λ(T) = −6 × 10−6 T2 + 0.005T − 0.332 (W·m−1·K−1)

(Figure 10b),
• variation of volumetric flow V = 0 ÷ 2000 dm3·min−1,
• temperature of fluid T = 298.15 (K) (25 ◦C).
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3.4. Assumption of the Strength Analysis

Finite element analysis (FEM) is a numerical method for analyzing engineering
projects. The software calculates the element size of the numerical grid for the over-
flow valve model, taking into account its volume, surface area and other geometric details.
The size of the generated numerical grid (the number of elements and nodes) depends on
the dimensions and geometry of the model, the size of the element, grid tolerance, grid con-
trol and specific contacts. At the initial stages of design analysis, when approximate results
may be sufficient, a larger element size can be specified to reduce solution time. In order to
obtain a more accurate calculation, a smaller size of the numerical grid may be required.

Calculations were carried out using the FEM method in SolidWorks Simulation. Com-
puter programs, operating on the basis of the finite elements method numerical algorithms
in addition to internal forces and displacements, automatically calculate the Huber-Mises-
Hencky reduced tension in the following relationship [19]:

σred =

√
σ2

x + σ2
y + σ2

z − σxσy − σxσz − σyσz + 3 ·
(

τ2
xy + τ2

xz + τ2
yz

)
(6)

Equation (6) can be simplified to the following form [19]:

σred =
√

σ2 + 3 · τ2 (7)

where τ shear stresses (N·m−2), σ normal stresses (N·m−2).
By reducing the stresses into the appropriate loads related to the geometric properties

Wx (the section modulus) for the cross-sectional area A, the following Equation (8) is
obtained [19]:

σred =

√(
Mg
Wx

+
N
A

)2
+ 3 ·

(
T
A

)2
(8)

where Mg–bending moment (Nm), N–axial force (N), T–shear force (transverse force) (N),
Wx–section modulus (m3), A–cross section area (m2) and σred–normal stresses (N m−2),

4. Results

The results of numerical modelling were represented by curves in the graphs and in
the form of graphically maps. The CFD method was used to calculate the pressure and
the velocity for various values of volume flow rate in safety elements of the hydraulic
leg. The volume flow rates in the CFD numerical model reflect and simulate the dynamic
loads due to rock burst. The FEM method was used to calculate the effect of the pressure
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and the velocity on the distribution of stress contours reduced based on the Huber-Mises-
Hencky hypothesis.

4.1. CFD Analysis

In Figures 11–15 the results of our CFD simulations are presented. These figures
illustrate the characteristics of slide-piston (position 6 in Figure 5) work for different values
of volume flow rate. The horizontal axis describes the change of slide-piston length.
The length of the slide-piston is 0.022 m. The vertical axis describes the change of pressure
and velocity along the length of the slide-piston. The results were obtained from numerical
calculations using the CFD. The volume flow rate simulates loading by a rock burst.
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Figure 11. The variation curves of pressure (p) (a) and velocity (υ) (b) for a 0.0033 m3·s−1 volume flow rate (200 L·min−1).

Energies 2020, 13, x FOR PEER REVIEW 10 of 20 

 

loads due to rock burst. The FEM method was used to calculate the effect of the pressure 
and the velocity on the distribution of stress contours reduced based on the Hu-
ber-Mises-Hencky hypothesis. 

4.1. CFD Analysis  
In Figures 11–15 the results of our CFD simulations are presented. These figures il-

lustrate the characteristics of slide-piston (position 6 in Figure 5) work for different val-
ues of volume flow rate. The horizontal axis describes the change of slide-piston length. 
The length of the slide-piston is 0.022 m. The vertical axis describes the change of pres-
sure and velocity along the length of the slide-piston. The results were obtained from 
numerical calculations using the CFD. The volume flow rate simulates loading by a rock 
burst. 

   
(a) (b) 

Figure 11. The variation curves of pressure (p) (a) and velocity (υ) (b) for a 0.0033 m3·s-1 volume 
flow rate (200 L·min-1). 

The pressure-length curve in Figure 11a shows that pressure changes in a range 
from approx. 1×106  Pa, at the slide-piston inlet, to approx. 4×106  Pa, at the slide-piston 
outlet, for a volume fluid flow which equals 0.0033 m3s-1. In the case of the results in 
Figure 11b, the velocity-length curve shows that the velocity is 70 m·s-1 at the slide-piston 
outlet but the velocity at the outlet is 0.02 m·s-1.  

   
(a) (b) 

Figure 12. The variation curves of pressure (p) (a) and velocity (υ) (b) for a 0.007m3·s-1 volume flow 
rate (420 L·min-1). 

The pressure-length curve in Figure 12a shows that pressure change in the range 
from approx. 5×106 Pa, at the slide-piston inlet, to approx. 15×106 Pa, at the slide-piston 
outlet, for a volume fluid flow which equals 0.007 m3·s-1. In the case of the results in Fig-

y = 2x1010x2 - 1x108x + 843435
R² = 0.90

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

0 0.005 0.01 0.015 0.02 0.025

Pr
es

su
re

 (P
a)

Length (m)
Pressure change

y = -359763x2 + 3434.9x + 74.668
R² = 0.95

0
10
20
30
40
50
60
70
80
90

0 0.005 0.01 0.015 0.02 0.025

Ve
lo

cit
y (

m
·s

-1
)

Length (m)
Velocity change

y = 7x1010x2 - 5x108x + 3e6

R² = 0.90

0
2,500,000
5,000,000
7,500,000

10,000,000
12,500,000
15,000,000
17,500,000
20,000,000
22,500,000
25,000,000

0 0.005 0.01 0.015 0.02 0.025

Pr
es

su
re

 (P
a)

Length (m)
Pressure change

y = -760852x2 + 7241x + 158.04
R² = 0.95

0
20
40
60
80

100
120
140
160
180
200

0 0.005 0.01 0.015 0.02 0.025

Ve
lo

cit
y (

m
·s-1

)

Length (m)
Velocity change

Figure 12. The variation curves of pressure (p) (a) and velocity (υ) (b) for a 0.007m3·s−1 volume flow rate (420 L·min−1).
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Figure 13. The variation curves of pressure (p) (a) and velocity (υ) (b) for volume flow rate 0.01m3·s−1 (600 L·min−1).
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Figure 14. The variation curves of pressure (p) (a) and velocity (υ) (b) for volume flow rate 0.01335m3·s−1 (800 L·min−1).Energies 2020, 13, x FOR PEER REVIEW 12 of 20 
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Figure 15. The variation curves of pressure (p) (a) and velocity (υ) (b) for volume flow rate 0.017 m3·s−1 (1020 L·min−1).

The pressure-length curve in Figure 11a shows that pressure changes in a range from
approx. 1 × 106 Pa, at the slide-piston inlet, to approx. 4 × 106 Pa, at the slide-piston outlet,
for a volume fluid flow which equals 0.0033 m3s−1. In the case of the results in Figure 11b,
the velocity-length curve shows that the velocity is 70 m·s−1 at the slide-piston outlet but
the velocity at the outlet is 0.02 m·s−1.
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The pressure-length curve in Figure 12a shows that pressure change in the range from
approx. 5× 106 Pa, at the slide-piston inlet, to approx. 15× 106 Pa, at the slide-piston outlet,
for a volume fluid flow which equals 0.007 m3·s−1. In the case of the results in Figure 12b,
the velocity-length curve shows that the maximum value of velocity is 180 m·s−1 but at the
outlet the velocity is 0.02 m·s−1.

The pressure-length curve in Figure 13a shows that pressure change in the range from
approx. 10 × 106 Pa, at the slide-piston inlet, to approx. 35 × 106 Pa, at the slide-piston
outlet, for a value of volume fluid flow which equals 0.01 m3·s−1. In the case of the results
in Figure 13b, the velocity-length curve shows that the maximum value of velocity is
250 m·s−1 at the slide-piston inlet but at the outlet the velocity is 0.02 m·s−1.

The pressure-length curve in Figure 14a shows that pressure change in the range from
approx. 10 × 106 Pa, at the slide-piston inlet, to approx. 60 × 106 Pa, at the slide-piston
outlet, for a value of volume fluid flow which equals 0.01335 m3·s−1. In the case of the
results in Figure 14b, the velocity-length curve shows that the maximum value of velocity
is 350 m·s−1 at the slide-piston inlet but at the outlet the velocity is 0.02 m·s−1.

The pressure-length curve in Figure 15a shows that pressure changes between approx.
20 × 106 Pa, at the slide-piston inlet, to approx. 100 × 106 Pa, at the slide-piston outlet,
for a value of volume fluid flow which equals 0.017 m3·s−1. In the case of the results
in Figure 15b, the velocity-length curve shows that the maximum value of velocity is
425 m·s−1 but at the outlet the velocity is 0.02 m·s−1.

The results of CFD simulations show an increase of pressure by 19 × 106 Pa at the
inlet slide-piston, where for velocity the results show an increase by 365 m·s−1. In the case
of pressure, the results show an increase of 96 × 106 Pa at the outlet of the slide-piston.

Figures 16–20 show the variation of pressure and velocity in the safety elements of
a longwall shield in the form of graphic maps. The results were listed depending on the
volume flow rate of the fluid. The qualitative analysis supporting the interpretation of the
results shows that the pressure reaches its maximum value at the inlet of the connecting
spigot (position 7 in Figure 7) and at the outlet of the slide-piston (position 6 in Figure 5).
In the case of velocity, the maximum value was reached along the length of the slide-piston
and the connecting spigot.
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Figure 16. The variation maps of pressure (p) (a) and velocity (υ) (b) for a 0.0033 m3·s−1 volume flow
rate (200 L·min−1).
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In the area where CFD calculation achieves the maximum value of pressure and
velocity, the damage to the safety elements can occur. The strength analysis will be
performed using the FEM method to clarify the obtained results of the CFD calculations.

4.2. Strength Analysis

The curve in Figure 21 illustrates the variation of the von Mises stress and the displace-
ment depending on the volume flow rate. The horizontal axis describes the change of the
volume flow rate. The vertical axis describes the change of stress and displacement. Results
were obtained from numerical calculations using the FEM method. The von Mises criteria
was used in order to determine stress value in the safety elements which was subjected in
a complex loading condition. The results of the von Mises stress were compared with the
material’s tensile strength (Rm).
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Figure 21. The variation curves of von Mises stress (σ) (red curve) and displacement (d) (blue curve) depending on the
volume flow rate.

The stress-volume flow rate curve in Figure 21 shows that the increase of stress in the
analyzed safety elements of longwall hydraulic power support occurs above the volume
flow rate value of 0.0025 m3·s−1. It can be noticed that the higher the value of the volume
flow rate, the greater is the stress in the safety elements. Table 1 illustrates the variation of
stresses and displacement due to pressure in safety elements.

Table 1. Change of von Misses stress (δ) and displacement (d) depending on the volume flow rate of
the fluid.

No. Stress σ,
(MPa)

Displacement d,
(m)

Volume Flow Rate V,
(m3·s−1)

1. 120 0.000012 0.003
2. 150 0.000031 0.007
3. 200 0.002160 0.010
4. 850 0.010000 0.013
5. 950 0.021000 0.017

Figures 22–26 show the variation maps of von Mises stress and displacement in the
safety elements of the longwall shield. The results are shown in the form of graphic maps
depending on the volume flow rate of the fluid. The qualitative analysis of the results in
Figures 22–26 show that von Mises stress reaches its maximum value in the slide-piston
(position 6 in Figure 5). Up to the amount of 0.01 m3·s−1, the von Mises stress is not
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exceeded in the safety elements. Above the value of 0.01 m3·s−1, the von Mises stress is
exceeded and this occurs mainly in the slide-piston. The yield point (Re) of the slide-piston
steel is 650 MPa, but the variation of tensile strength (Rm) between 800–1000 MPa [20].Energies 2020, 13, x FOR PEER REVIEW 16 of 20 
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It can be observed in Figures 22–26 that destruction of the overflow valve is the result
of notches appear on the surface, which led to cracks and consequently damage to the
slide-piston due to exceeding permissible stresses above 0.01 m3·s−1.

5. Discussion

The safety elements are the key system of the hydraulic leg which securing a powered
roof support against damage and the uncontrolled lowering of shield height during the
mining process. The uncontrolled lowering of shields height can cause the danger of the
loss of the longwall stability in the form of a rock bursts and collapses as well as danger to
safety and health for employees.

Using the CFD method described in the paper, the pressure and velocity developments
in the safety elements of the 2-leg shield were simulated and calculated. Based on the
results of CFD calculations the effect of the pressure and the velocity on the distribution
of stress contours reduced based on the Huber-Mises-Hencky hypothesis were simulated
and calculated. The applying the CFD method with connection of strength analysis by
FEM method have enabled captured the main process and mechanisms of damage. These
phenomena cannot be monitored experimentally or in the laboratory conditions due to
huge investment costs caused by the highly dynamic process, measured in microseconds.

The novelty demonstrated in the paper is to develop a numerical method for selecting
overflow valve for dynamic load conditions by means of the CFD method and strength
analysis using the FEM method in the hydraulic system of longwall powered support.

Connecting these two methods allows to observe the interaction of various factors,
the effect of which is greater than the sum of individual separate actions (the synergies of
calculations). The proposed method of numerical calculation for investigation of hydraulic
system by the case of the 2-leg shield was not reflected in available literature. There is a
wide range of method for an analysis of hydraulic leg safety system reported by various
researchers [14–16] but does not include the possibility of addressing this problem.

Presented in the paper numerical model is a hybrid approach combining the CFD
method with the strength analysis by FEM method allows a better understanding of
the hydraulic leg safety elements behaviour under the dynamic load in the context of
effectiveness of hydraulic system as well as can be a one of the method for selecting shields
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to geo-mining conditions. Moreover, the numerical model can be adapted to the actual
situation based on an available experimental monitoring.

6. Conclusions

This article presents the results of model tests which consisted of identifying the
distribution of the pressure and the stresses causing the destruction of the overflow valve
piston. Model tests were carried out with the use of the CFD method to determine the
fluid pressure in the safety system of 2-leg shield and the strength analysis by FEM
method in order to determine the distribution of stresses based on the Huber-Mises-
Hencky hypothesis.

The results of the model tests allowed to identify the safe scope of the overflow
valve work for the considered case of the powered roof support to the value of volume
flow rate below 0.01 m3·s−1, which corresponds to a reference value of 600 L·min−1 and
pressure approx. 35 × 106 Pa. The results of the model tests enabled the formulation of the
following conclusions:

(1) The use of CFD methods in combination with the finite element methods (FEM)
enables the identification of the pressure values and the von Mises stress in safety
elements of the powered roof support which may leads to its destruction as a result
of dynamic loads originating from the rock mass occurs during the longwall mining,

(2) The results of numerical simulations have made it possible to identify the maxi-
mal scope of the overflow valve work below the volume flow rate approximately
0.01 m3·s−1, which corresponds to a reference value of 600 L·min−1,

(3) Results of the strength analysis by finite element method allowed identifying the
reasons of damage in safety system of hydraulic legs by specifying a higher stress
value than allowable for the piston material,

(4) The exceeded values of stress observed in the piston based on the numerical strength
analysis by FEM method led to damage to safety system of the hydraulic leg which
covers with the real observations,

(5) The results of model tests have created the possibilities to enhance the use of the
analyzed overflow valve, through modifications of the geometry of the overflow
valve piston and increase the strength parameters of the material,

(6) The combination of CFD methods with the strength analysis by FEM methods pro-
vided for development a method enabling the effective design and method for selec-
tion of the powered roof support to given dynamic load conditions,

(7) The advantages of proposed method are the possibility of adaptation the numerical
model to the actual situation based on an available experimental monitoring,

(8) The numerical calculations demonstrated that the coupled CFD method together with
the strength analysis based on the FEM method adopted in this paper can give good
insights into the hydraulic system dynamic behaviour of the powered roof support.
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