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Abstract: Providing food security while preserving natural resources and reducing the use of pro-
duction factors (land, labor, and capital), is a critical challenge for EU agricultural sectors in the 21st
century. Sustainable Development goals adoption has increased the need for eliminating Greenhouse
gas emissions across all EU sectors, while production should remain stable or even increase. For
this purpose, Window Data Envelopment Analysis (DEA) has been selected as a benchmarking
technique, in order to assess input use efficiency of agricultural sectors of EU countries for the 2005–
2019 period. Moreover, three-year projections (until 2022) have been calculated in order to acquire
future efficiency scores. Emphasis has been given on the selection of alternative window widths,
examining their influence on calculating efficiency scores for both projected and actual dataset. From
a methodological point of view, this paper aims to highlight the assumption of zero technological
change within Window DEA frames and present their differences. At the same time, results indicate
that Estonia (1.000), the Netherlands (0.999) and Slovenia (0.999) are the most efficient countries in
terms of input use efficiency, while Finland, UK, and Hungary (0.670, 0.755 and 0.771) score the least.
Countries of central Europe (Hungary, Czech Rep., Croatia, Slovakia, and Austria) should redesign
their agricultural strategies, so as to achieve the nine objectives of the upcoming CAP (2021–2027).

Keywords: Window DEA; window width; efficiency; projection; input optimization; crop production

1. Introduction

Existence and evolution of humanity is strongly linked with development of agricul-
ture. It was no later than the end of World War II when the EU decided to support the
primary sectors of member states by establishing the first mutually agreed policy tool,
the Common Agricultural Policy (CAP). Price support and export refund systems had
a significant negative impact on global agricultural trade, suppressing at the same time
natural resources and the environment in rural areas [1]. CAP strategic goals have been
customized periodically since then, so as to meet global food security and safety standards,
promoting at the same time fairer trade, and increased competiveness. European Commis-
sion (EC) has set nine key objectives through the upcoming CAP (2021–2027) period, which
can be grouped in three basic categories: (1) economy (2) environmental protection and
(3) rural communities support, in order to promote sustainable development and achieve
Sustainable Development Goals (SDGs) until 2030 [2].

The assessment of policy interventions on both operational and environmental level
is very crucial. The policy framework developed under the Agenda 2000 reform is more
market oriented, introducing schemes such as decoupled payments, requiring robust
approaches for evaluating their suitability, applicability, and effectiveness [3]. This study
introduces such an assessment tool, taking into consideration both the diversified structural
characteristics of EU member states primary sectors and the influence of the market on
them. Data Envelopment Analysis (DEA) is used for assessing efficiency of multiple
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Decision Making Units (DMUs) in various sectors. DEA can be a useful tool, indicating
the inputs or outputs that are not used efficiently, leading to the point solutions for the
optimization of a given system. The wide applicability of DEA is based on the fact that
efficiency scores are calculated based on the existing DMUs without the need for predefined
optimum values. For this reason, DEA has been used for the improvement of various
sectors such as banking systems [4], healthcare systems [5], tourism [6], logistics [7] and
agriculture both in crop and livestock production [8,9].

2. Literature Review

On the line of SDGs, EU agriculture should succeed on assuring food security and
environmental protection, while on the same time on securing fair income for farmers.

2.1. Land

In the case of agricultural sector efficiency assessment, DEA methodology has been
used in order to evaluate total factor productivity (TFP) [10], revealing the need for im-
provement between countries with similar structural profiles. Under the scope of energy
usage and natural environment protection, Zhou et al. have assessed changes of environ-
mental efficiency between years 2006–2015, revealing geographical patterns that should
be further supported from the government, connecting efficiency scores with regional
characteristics [11]. Feasible solutions for crop management can be provided through
DEA results, has led to improved management of available agricultural land, as a whole,
in the most efficient way, combining crops’ productive needs with regional structural
characteristics [12]. On the same approach, Toma et al. [13] have classified 36 countries
according to their geographical characteristics, clustering them in three distinct groups
(plain, hill, mountainous), using as inputs the three production factors (land, labor and
level of mechanization) and production value as the output. Efficient land use can be
achieved by examining Greenhouse Gas (GHG) emissions of different crop types, leading
to agriculture with lower emissions [14] As Bournaris et al. suggest, DEA can provide
meaningful results about crop selection in greenhouse farming, optimizing the use of all
inputs involved [15].

2.2. Energy

As FAO suggests, agriculture consumes 30% of total energy spent, while the greatest
share of this energy is referring to in-farm procedures [16]. On a global scale, constant
population growth and increased food demand had led to intensification of production.
Despite the urge for covering the previous mentioned needs, agricultural land has remained
in similar levels from 1961 to 2014, resulting in higher energy inputs, agrochemicals, and
fertilizers, per land unit. It should be mentioned that Pellegrini et al. confirm the existence
of Jevons paradox in agriculture, claiming that technology evolution was not accompanied
by input minimization, due to the extended use of these innovations for achieving higher
yields. [17].

Energy consumption affects famers’ income, having frequently a negative impact on
natural resources. That is the reason conventional agriculture systems are gradually trans-
forming to sustainable ones, using minimum energy resources and producing a fair output
as yield [18]. Literature review of Smith et al. indicates higher energy efficiency scores for
organic agriculture, but mainly in the crop production domain, while conventional live-
stock farms achieve higher efficiency scores than the organic ones [19]. According to FADN
database, Guth and Smedzik-Ambrozy analyzed EU agricultural sectors, concluding that
countries with the highest amounts of labor, land and capital achieve the higher efficiency
scores, underlying the need for restricting measures in order to promote environmental and
societal development [20]. DEA results can contribute to sustainable intensification ame-
liorating in-farm operations (energy consumption, integrated pest management, greener
logistics) and policies promoting environmental protection on a national and EU level [21].
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Another advantage of DEA methodology, apart from calculating efficiency scores of
all DMUs of a given system and ranking them from the most to the least efficient, is slacks
calculation. Slacks are used to quantify the changes that should occur in each variable, in
order for a DMU to be efficient. Their interpretation is meaningful both for stakeholders
and policy makers in order to take final decisions, while from analyst’s perspective, it can be
signified which slacks have major or minor importance. Assessment of French diary sector
according to their energy use, has resulted in a positive relation between subsidies and
energy use slacks, meaning that larger farms have higher amounts of exploited energy, than
the smaller ones proportionally [22]. This is an applicable example of slacks contribution in
energy use minimization on the farm level, but also indicates potential policy reformation
for French livestock sector. Adjustment of slacks has resulted in improved efficiency scores,
providing optimal solutions for both developed and developing countries, regarding their
energy consumption and CO2 emissions [23]. Slack-Based-Model (SBM) implementation
from Apergis et al. raises concern about the decreasing energy efficiency of OECD countries,
proving the feasibility of methodology in real case problem solving [24].

2.3. GHG Emissions

DEA methodology has also been used to assess the energy efficiency of national
agricultural sectors, in relation to GHG emissions as an undesirable output. According to
the Window DEA methodology of Pishgar-Komleh et al., Spain, Greece, Italy and Malta
achieved the highest efficiency scores, presenting outcomes both using or neglecting CO2eq
as an output [25]. Similar results have been obtained using DEA for 2005 and 2010 for
agricultural sectors of European countries with the use of Gross Value Added (GVA)
from agriculture to GHG (GVA/GHG) as an eco-efficiency index [26]. High improvement
potential of up to 56% has been identified applying DEA for the reduction of CO2 emissions
in Chinese provinces [27]. The authors underline the need for incentives from government’s
side to farmers, for higher rates of technology acceptance that will reduce GHG emissions
and align Chinese agricultural undesirable output with global standards. Moreover, DEA
results have revealed 70% space for improvement in energy saving for the Spanish supply
chain of agricultural products [28]. Focusing on agricultural inputs and especially fertilizers,
slight improvements have been observed in Latvian agricultural sector, providing at the
same time the appropriate methodology for continuous monitoring [29]. On a farm level,
DEA can also be applicable, while an overall reduction in carbon footprint could be
achieved with the implementation of proposed actions, leading to a cleaner production [30].

Literature review of Mardani et al., reveals the extensive applicability of DEA method-
ology for optimization of energy consumption and environmental protection under opera-
tional terms [31]. DEA results can provide meaningful insights for efficiency assessment
of multi-sectorial industries while providing feasible solutions for energy optimization,
accentuating the importance for green technology alternatives [32]. Another remark from
the previous survey, is the calculation of efficiency scores depending on the given objective
every time, proposing methodology for managerial or environmental-based results. New
approaches provide the appropriate tools for mathematical expression of limiting factors
that cannot be controlled both for inputs or outputs (e.g., reduced efficiency of solar panels
due to environmental conditions), depicting reality more sufficiently [33]. Combining the
above-mentioned surveys, Mo and Wang have estimated environmental sustainability of
road transport for OECD countries, an approach that can be applied in the agricultural
logistics or in the whole agricultural supply chain as a whole [34].

Focusing on agriculture, the number of publications per year presenting combina-
tion of DEA + Life Cycle assessment (LCA) have been increased during the 2003–2018
time period, due to the increased interest for cleaner production systems and eco-friendly
products [35]. Farm specialization is very crucial, in order to achieve improved manage-
ment status and efficient resources handling. Examining all inputs involved in winter
wheat production in Poland, researchers realized excessive use of fertilizers, seeds and fuel,
providing to local farmers additional information for inputs minimization [36]. Another
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survey, highlights the resource saving on energy and water by decreasing cotton seed
on optimum levels [37]. It should be underlined that no statistical differences have been
pointed out between large and small scale farms, regarding eco-efficiency.

Introduction of uncertainty to DEA approach for measuring eco-efficiency can alter the
final outcome, thus it is essential to be taken into consideration especially in systems that
are affected from various factors [38]. Statistical significance can be assessed for multiple
DMUs over frames of a certain period of time, checking results validity [39]. Defining
weights in DEA model is another approach of assuring results implementation in real case
scenarios, especially when dealing with small samples [40]. Even though there are several
studies examining environmental and economic aspects of agricultural production, only
few of them are connecting their results with society, due to lack of the appropriate data or
methodology [41].

2.4. Labor

Labor, expressed as Annual Working Units (AWU), is one of the three main production
factors in agriculture [42]. Differences in labor productivity have been observed among
EU countries, something which expected to be, because of differences of the structural
characteristics of their holdings and value chains [43]. Additionally, soil erosion, local
economic prosperity and population density seem to be the most crucial factors affecting
labor productivity. Results are correlated with educational level of farmers highlighting
the need for training, which will lead to a better communication between producers and
agricultural consultants. It should be mentioned though, that the EU is in a transitional
period of full digitalization. Automation and robotics will totally reform agriculture
globally, creating opportunities and negative externalities for labor [44].

2.5. Policy

Policy assessment can rely on DEA results. Rybaczewska-Błazejowska and Gierulski
have concluded to two large groups (efficient (10) and inefficient (18)) of EU-28 countries
according to their eco-efficiency status, examining both for environmental and operational
performance [45]. Greatest factor that limits eco-friendliness in EU agriculture is the
excessive use of fuels and fertilizers, contributing to larger releases of GHG emissions. A
controversial issue that has emerged with overpopulation is the land use for food or fuel.
DEA methodology can be used in order to assess the crops with high input-efficiencies
in certain regions and provide the appropriate answers, given the fact that there is a
clear managerial strategy [46]. Depending on the approach needed in the policy creation
procedure, Vázquez-Rowe and Iribarren have proposed a five stage Boolean tree of DEA +
LCA approach, so as to facilitate the above-mentioned procedure [47]. Risk management
can also be minimized by the usage of DEA. Proposed methodology analyzes all different
risks as inputs while all innovations are considered to be outputs [48].

DEA has been used in combination with Artificial Neural Networks (ANNs) giving
meaningful results for national agricultural sectors’ performance [49]. The greatest ad-
vantage of the previous application is the creation of emissions forecast, a handful tool
for policy makers and stakeholders involved, for making valid decisions in advance and
achieve zero emissions goals by 2030. Another survey assesses the applicability of DEA +
ANNs of ranking “green suppliers” providing future perspectives [50]. Overall, forecasts
provide the opportunity to quantify future situations with high accuracy, facilitating the cre-
ation of multiple scenarios for easier risk management. Sueyoshi and Gotohave proposed a
methodology on handling imprecise data when performing DEA for computing projected
efficiency scores, calculating upper and lower hyperplanes for values replacement when
needed [51]. In this survey, an alternative methodology of future projections regarding
benchmarking and efficiency scores is introduced, combining DEA with time series forecast
focusing on assessing input use efficiency of the EU agricultural sector, providing valid
future results.
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3. State of the Art

Mardani et al. mentioned in their extended literature review about different types
of DEA models that only 5 out of 163 papers referred to the implications of the Window
DEA model [31], proving the need for further deepening on the specific methodology.
This approach provides the ability for efficiency assessment of multiple years and DMUs,
being the reason it should be further assessed. Evolution of technology has permitted the
construction and manipulation of large datasets, while future projections with high accu-
racy can be obtained, enhancing the applicability of Window DEA. Estimating efficiency
scores for the period of 2012–2018 for Iranian ports, Zarbi et al. (2019) chose arbitrary
window width equal to 4 [52]. Changing window width would not lead to radical changes,
because of the relative short period of time analyzed. Another study that has implemented
Window DEA methodology for energy efficiency in the Spanish electricity sector, used
an arbitrary window width of five years for an overall 9-year-period (2006–2015) [53]. A
similar approach with this paper has been followed for the assessment of dairy farming
system in Iran, exploring differences between different window widths when using Win-
dow DEA [54]. Differences indicate a decreasing average score for all DMUs involved,
due to the enlargement of window width. Thus, it should be underlined that the ideal
window length has not been estimated, so that the ranking differences can become apparent
between the ideal and other window widths. Window DEA regarding energy use and
social characteristics has been perform for Chinese provinces, revealing efficiency gaps
between them [55]. In that survey, a 2-year-window length has been selected for the energy
use assessment for the years 2005–2014. Taking into consideration all the above-mentioned
papers and given the fact that window DEA is not widely explored, assessment of window
width influence has been made in an extended period of time (with actual and projected
dataset), so as to indicate the resulting differences.

4. Structure and Scope

This paper consists of the following sections. The Introduction and Literature review
highlight the contribution of DEA methodology regarding efficiency of production factors
in agriculture and environmental performance, as well as its use in combination with other
well stated methodologies such as LCA and ANNs. The State of the Art section signifies the
impact of this paper, in comparison with other similar articles. The Methodology section
presents briefly the DEA Analysis and focuses on Window DEA Analysis methodology
and selection of appropriate window width. Moreover, the Data section provides a detailed
description about data source, type of variables and overall data handling. In the Results
section, descriptive statistics of the sample provide a clear image to the reader for all inputs
and outputs involved. Moreover, estimations of ideal window width and final rankings
for actual (2005–2019) and projected (2005–2022) data set are presented, emphasizing on
differences between different window widths. The Discussion section addresses the main
findings in an applicable way for EU-members, compares findings with related surveys,
and connects findings with specific SDGs. Main findings referring to the methodological
approach and possible implementation of actual results are included in the Conclusion
section. Last but not least, this section includes limitations of this study and potential
future contribution in the field.

The scope of this study is to introduce a methodological approach for assessing the
efficiency of the primary sectors of EU member states after the implementation, on an
operational level, of the AGENDA 2000 CAP. This is quite important due to the radical
characteristics of this reform, which is the reduction of intervention on the decision making
process of agricultural holdings, and the increase of market forces influence on the value
chains of agricultural products. The chosen methodological approach allows us to present
a prognosis of efficiency performance of member states, following similar approaches of
other economic sectors, where institutional intervention is either minimized or absent. The
examination of the reliability of alternative widths of Window DEA model, improves the
suitability of this model for this assessment. The contribution of this paper to academic
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literature is to highlight differences in final rankings between ideal and arbitrary chosen
window widths, due to the existence of zero technological change assumption within
window when performing Window DEA, as it is described in the Methodology section.

5. Methodology
5.1. DEA Analysis

DEA focuses on measuring productivity of the same and comparable values or groups
that can be defined as decision making units (DMUs). The first attempt to evaluate the
efficiency of DMUs was made by Farrell in 1957 [56]. Based on his work, Charnes, Cooper,
and Rhodes introduce a newer evaluation method for different DMUs with multiple inputs
and outputs [57]. More specifically, DEA is a non-parametric method, which uses linear
programming techniques to evaluate the effectiveness of DMUs. Efficiency is defined as
the ratio of inputs to outputs. Efficiency has been calculated according to the following
formula [58]:

ϕ∗ = minϕ
s.t ∑n

j=1 xijλj ≤ xi i = 1, 2, . . . , m
∑n

j=1 yrjλj ≥ ϕyr r = 1, 2, . . . , m
λj ≥ 0 j = 1, 2, . . . , n

(1)

where ϕ* represents the relative technical efficiency of xij and λj the weights in order to
define the set of DMUs where ϕ* = 1 and calculate the efficiency scores for the rest DMUs
afterwards (ϕ* < 1). It should be noted that DEA can increase efficiency of DMUs either
by minimizing inputs (input-oriented) or maximizing outputs (output-oriented) given the
same amount of all factors involved. Input-oriented DEA is preferable in most cases in
agriculture, due to the fact that limited exploitation of natural resources and reduced cash
flows for inputs from farmers’ side are preferred [35]. That is the reason input-oriented
approach has been selected for this analysis.

Furthermore, as seen in the literature review, undesirable factors can be handled with
DEA. You and Yan present four ways of treating undesirable factors: (1) complete ignorance,
(2) consider undesirable outputs as inputs, (3) non-linear monotonic decreasing approach,
(4) linear monotonic decreasing approach [59]. For the purpose of this survey option 3
has been selected in order to handle the amounts of emitted emissions by transposing the
CO2 amount. The same methodology was proposed by Scheel (2001) when dealing with
both desirable and undesirable factors in DEA model [60]. Data normalization can also be
used to deal with undesirable factors, thus it should be noted that some of the available
information is lost in the process of data manipulation, as well as results interpretation, to
people who are not familiar with the above methodology [61].

5.2. Window DEA Analysis

Although the aforementioned approach of DEA can be used in order to assess the
efficiency of different DMUs in a given period of time, thus a new approach was needed
for time series due to the fact that every unit is considered to be independent even if it
is the same DMU in another period of time. For this purpose, a window DEA has been
proposed, based on the principles of moving average [62]. Applying Window DEA, a
reference period should be defined and then data are grouped in distinct groups (windows).
This framework permits the comparison of different DMUs within the given window and
an overall average score can be retrieved in the end of this procedure as the mean of all
years involved. It should be clarified that efficiency scores for a given period and same
DMU are different, due to the fact that it is compared with a different dataset.

Window DEA implementation is summarized in Table 1. Subsets of initial dataset
are constructed in accordance with the chosen window length. Average scores per Year
and per Country (ASYC) are obtained in order to calculate mean efficiency scores for every
country in the predefined period of time.
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Table 1. Window DEA analysis.

Country (x) t t + 1 t + 2 t + 3 t + 4 t + 5 · · · t + k − 5 t + k − 4 t + k − 3 t + k − 2 t + k − 1 t + k
Window 1
Window 2
Window 3

...
...

...
...

...
Window n − 2
Window n − 1

Window n
ASYC * (1) (2) (3) (4) (5) (6) ( . . . ) (n − 2) (n − 1) (n) (n + 1) (n + 2) (n + 3)

Mean of ASYC of Each country

* ASYC = Average Efficiency Score/Year/Country.

5.3. Window Width

The selection of the DEA window width is very crucial for the result extraction. As
Asmild et al. stated, window width should be short enough so as to permit the comparison
between different windows and contain enough elements for accurate efficiency measure-
ment [63]. Although width in many papers selection is arbitrary, it is essential to use the
appropriate methodology [64,65]. For this purpose, the ideal window width has been
calculated, performing DEA model for each year (i) for the reference period (1-T) and by
window (j), acquiring the mean of every year (Mij) for any given j. The construction of a
new matrix (A) is following, calculating Equation (2), where Meani is the average value of
year (i) for every j.

vij =
Mij − Meani

Meani ∗ 100% (2)

For every year in matrix A, Absminij = |min(vij)| are selected. The window width
which acquires the greater number of Absminij is the appropriate one. Thus, it should be
underlined that window DEA imposes an assumption of zero technological change within
the window and this should be taken into consideration when performing Window DEA
Analysis [63].

5.4. Data

For data selection, variables that compose production factors in agriculture (land,
labor, and capital) were selected for efficiency estimation of EU countries (Table 2). Se-
lected variables are Total Used Agriculture Area (UAA), Labor force (L) and Fixed Capital
Consumption (FCC) which express the previous mentioned aspects. Data for standard
inputs such as Seeds and Planting Stock (SPS), Plant Protection Products (PPP), and N,
P fertilization (NFert, PFert) were taken into consideration due to the high amounts of
energy consumed for their production, especially for fertilizers. Moreover, Energy (EN)
has also been included as a separate variable due to the need for emphasizing in energy
consumption minimization, following the EU guidelines for the benchmarking process.
As outputs, monetary values of Total agriculture output (TO) and CO2eq emissions (EM)
have been taken into consideration. All data have been acquired through EUROSTAT
database and more precisely: [aact_eaa07], [nrg_bal_s], [aei_fm_usefert], [env_air_gge],
[apro_cpshr] [66].

The data set selected refers to the time period after the implementation of AGENDA
2000 in operational terms. Cyprus, Malta, and Luxembourg were excluded due to their
relatively small agricultural sector size, when compared with the other EU countries. On
the other hand, data from the Norwegian agricultural sector was added, due to the strong
trade relationship of the country with the EU and the fact that its agricultural sector presents
similar characteristics with the rest of the Scandinavian countries. Considering that all
available data were referring to 2005 until 2019, 3-year data projection has been made with
a view to provide an up to date information, extending the reference period until 2022. It
should be underlined that EUROSTAT had already made estimations for 2020 for some of
the above-mentioned data. To avoid the confusion of projection data methodologies, 2019
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has been set as the ending year of the dataset and forecasts have been equally generated.
Data projections have been obtained using Double Exponential Smoothing for Time Series
in Minitab 17 Statistical Software [67]. DEA and window DEA results have been acquired
using Benchmarking library in R Studio [68].

Table 2. Data selection Inputs and Outputs for reference period 2005–2019.

Reference Period: 2005–2019

Variable Measurement Units

Inputs
Total Used Agriculture Area (UAA) 1000 Hectare (ha)

Labor (L) 1000 Annual Working Units (AWU)
Fixed Capital Consumption (FCC) Million Euro (€)

Energy (EN) Thousand Tonnes of oil equivalent (TOE)
Seeds and Planting Stock (SPS) Million Euro (€)
Plant Protection Products (PPP) Million Euro (€)

Consumption of N-Fertilizers (NFert) Tonnes
Consumption of P Fertilizers (PFert) Tonnes

Outputs

Crop output (TO) Production value at basic price, Million Euro
(€)

Emissions (EM) Th. Tonnes of Greenhouse gases (CO2eq)

Data source: Eurostat, 2020.

Providing a better understanding of all procedures involved, a panel of 26 EU coun-
tries, 10 different variables and a time period of 18 consecutive years has been constructed,
using EUROSTAT’s data. Figure 1 demonstrates all steps followed until the extraction of
final efficiency scores and rankings per country. Further explaining the above-mentioned
methodology and taking as an example the whole panel (actual and projected data), a
subset of initial dataset has been constructed for each reference period of window width
(9). The next step includes DEA implementation for each subset so as to acquire efficiency
scores for every window. As mentioned in the Methodology section, different efficiency
scores are obtained for the same country and year between windows. For instance, effi-
ciency scores for Austria 2015 differ in Window 1 and Window 2, due to the fact that it
is compared with a new dataset. Following steps include the construction of a new data
frame, in which all efficiency scores per window frame are collected and average scores
per year and per country are calculated. Computation of mean efficiency scores is the last
step, providing at the same time the corresponding rankings for every country after sorting
the data.

A summarized viewpoint of Window DEA analysis is presented in Table 3. Diamond-
shaped data structures are built so as to provide average scores per year for every country.
Mean of ASYC is the final score for each country but it should be stated that assessment of
final rankings is more valuable than changes in the actual values of efficiency scores.
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Table 3. Window DEA analysis representation for actual and projected dataset.

Window DEA Analysis

Actual Data Projections

Country(x) 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Window 1
Window 2
Window 3
Window 4
Window 5
Window 6
Window 7
Window 8
Window 9
Window 10

ASYC * (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

Mean of ASYC = Final Score of each Country (x)

* ASYC = Average Efficiency Score/Year/Country.

6. Results
6.1. Descriptive Statistics

Descriptive statistics of both inputs and outputs were examined before proceeding
to the main analysis (Table A1 Appendix A). According to the UAA for the period 2005–
2019, the greatest negative differences have been identified for Austria, Italy, and Poland
(−18.7%, −10.6%, −9.7%) while the agricultural area increased in the following countries:
Latvia, Croatia, and Greece (13.0%, 24.2%, and 26.6%). A slight decrease of 3.2% of UAA
was calculated for all countries involved. An overall drop of 29.0% for Labor force is being
depicted, with Ireland being the only country presenting an 8% increase. On the other
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hand, the great decreases are highlighted for Estonia (−50.1%), Slovakia (−55.0%), and
Bulgaria (−69.6%). It should be underlined that even if Labor has been decreased, annual
wage per AWU increased by approximately 20% (base year = 2010) [69].

Capital consumption from national agricultural sectors increased by 8.8%, meaning
that the EU agricultural sector is becoming more challenging, demanding higher financial
resources from all stakeholders involved. European Commission report signifies that
intermediate costs will keep increasing until 2030, leading to a more capital intensive
agricultural domain [70]. The energy sector presents great differences between countries
analyzed. Greece, Bulgaria and Ireland are the three countries achieved highest rates of
energy minimization, thus Latvia, Romania, and Germany presented increases of more than
60%. Considering Plant Protection Products, a total increase of 17.0% is being depicted,
despite the EU’s intense effort for agricultural chemicals reduction. The Netherlands
has achieved an overall reduction of (−20.4%) and (−77.4%) in NFert, PFert fertilizers
accordingly, which is the best performance from all countries involved. Crop output has
increased by 10.2% for the period 2005–2019, with Latvia, Estonia, and Lithuania presenting
the highest rates of improvement, while Italy, Germany and Finland have reduced rates
(−12.6%, −10.4%, −4.7%). Analysis of eqCO2 indicates that there is only a slight decrease
of −1.6% for the last 15 years, a not so overwhelming result, given the fact of technological
progress and global pressures for zero emissions.

Figures 2 and 3 illustrate the above-mentioned results, which have been obtained
during the initial stages of the analysis and provide a general picture of agricultural sectors
of EU countries. In Figure 2, the Netherlands is an exceptional remark with very high needs
in EN and SPS but very low needs in L and UAA achieving the fifth highest agricultural
output. This can be easily explained, based on the great number of greenhouses which can
be described as intense input, especially in energy demands for heating. Another remark
that should be highlighted is referring to the cases of Estonia and Slovenia. Both of them
have the least inputs and least outputs of all EU agricultural sectors but they present great
differences in terms of inputs use efficiency as it will be presented in the Window DEA
results section. It should be underlined that the two countries have significant differences
in their climate, which has an immediate effect on the overall production.

Total UAA and EN were plotted together so as to examine Pellegrini’s et al. statement
about energy use in the EU agriculture [17] (Figure 4). Despite the fact that total UAA
decreased by 3% from 2005 to 2019, EN seems to have a significant increase of 16.9% from
2015 to 2019. This can be partially explained from the recovery of EU countries after a long
period of economic recession in EU countries. Moreover, it should be mentioned that the
share of renewable energies in agriculture has remained on the same levels for the last
two decades, signifying the need for finding more sustainable solutions for agricultural
energy consumption.

In Figure 5, it is pointed out that there is not a great variance among examined
countries apart from Germany and Greece regarding Annual Energy consumption. Despite
the fact that Germany has a large variance through the reference period of this paper,
other countries such as France, Portugal and the Netherlands appear with higher energy
demands. That is the reason the two outliers identified in Germany were accepted before
proceeding to the main analysis.
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2005–2019.

6.2. Window DEA Results

As described in earlier, before proceeding to Window DEA it is essential to identify the
ideal window width for this data set. For this purpose, Window DEA was performed for all
possible window widths and then results were grouped by year. Using Equation (2) results,
Table 4 was constructed. The window width with the least difference from the average
score for all possible window widths for a given year was selected. Window Width equals
to 7 was selected as the ideal one, due to the fact that it contained the highest amount of
absolute minimum difference.
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Setting window width equal to 7, Window DEA model was applied. The results
of the analysis for 26 EU agricultural sectors are presented in Figure 6. and Table A2
(Appendix A). An assumption of zero technology evolution within frames is made when
performing Window DEA. To check the interference of this assumption to the proposed
results, a narrower window width has been selected. In this case, an arbitrary window
length equals to 4 was chosen in order to identify differences between the widths. Rankings
are presenting slightly different results, concluding that technology evolution had a positive
impact for the following countries: Greece, Belgium, France, Spain, Portugal, Slovakia, and
Ireland. All previous countries confronted serious issues with the financial crisis (2008–
2014) and a narrower window frame can highlight their recovery through technological
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adaptation. Although differences in the climatic conditions which largely affect primary
production, Estonia ranks first in comparison with Slovenia which ranks third. The scores
of these countries present three points of interest: (1) apart from their relative small size, in
comparison with the other EU agricultural sectors, they achieve scores placing them in the
top-3 countries, (2) despite their climatic differences Estonia scores higher than Slovenia (3)
placement of the Netherlands in the second position assures results validity even in the
presence of large scale differences.
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Table 4. Equation (2) results (absolute values) for all possible window lengths for the reference period
2005–2019.

Possible Window Widths

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2005 4.9 4.4 3.8 2.7 1.7 1.3 0.3 0.4 0.7 1.6 2.1 2.8 3.0 4.0 4.5
2006 7.0 5.2 3.8 2.4 1.6 0.8 0.0 0.4 1.1 1.9 2.5 2.8 3.3 4.0 4.7
2007 8.4 6.0 4.5 2.9 1.7 0.8 0.0 0.7 1.4 2.2 2.7 3.3 3.9 4.7 5.6
2008 5.5 4.3 3.7 3.0 2.1 1.3 0.5 0.4 1.1 1.8 2.4 3.0 3.4 3.9 4.5
2009 2.7 2.6 2.2 1.7 1.4 0.9 0.3 0.2 0.5 0.9 1.3 1.6 2.0 2.3 2.9
2010 6.2 4.3 3.1 2.3 1.7 1.1 0.3 0.3 0.9 1.6 2.3 2.7 3.2 3.7 4.4
2011 4.8 4.0 3.0 2.3 1.5 1.0 0.5 0.2 0.7 1.4 2.0 2.5 2.9 3.3 3.9
2012 6.5 4.1 3.0 1.9 1.2 0.6 0.1 0.4 1.0 1.6 2.2 2.5 2.9 3.2 3.7
2013 4.7 3.5 2.6 2.0 1.4 0.8 0.2 0.2 0.6 1.3 1.8 2.2 2.6 3.0 3.5
2014 3.1 2.3 1.7 1.3 0.8 0.4 0.2 0.1 0.3 0.6 1.1 1.4 1.7 2.1 2.5
2015 4.2 2.4 1.8 1.1 0.5 0.3 0.0 0.3 0.6 0.8 1.0 1.4 1.7 2.1 2.4
2016 4.1 2.5 1.5 1.0 0.5 0.2 0.0 0.4 0.7 0.9 1.1 1.2 1.5 1.8 2.2
2017 3.5 2.0 1.2 0.7 0.4 0.2 0.1 0.1 0.4 0.7 1.0 1.1 1.2 1.6 2.0
2018 3.6 2.2 1.5 0.9 0.5 0.2 0.0 0.3 0.4 0.8 1.1 1.3 1.4 1.5 2.1
2019 2.0 1.4 1.0 0.9 0.4 0.1 0.1 0.1 0.1 0.2 0.9 1.0 1.1 1.1 1.2

N(MIN) 0 0 0 0 0 0 10 5 0 0 0 0 0 0 0Energies 2021, 14, 1021 15 of 26 
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6.3. Projected Efficiency Scores

Data from 2005 to 2019 for all variables involved were projected to 2022, in order to
acquire projected efficiencies. The above-mentioned procedure was followed, estimating
the ideal window width and performing DEA Window model. Table 5 indicates that ideal
window equals to 9.
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Table 5. Equation (2) results (absolute values) for all possible window lengths for the reference period
2005–2022.

Possible Window Widths

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2005 5.9 5.4 4.8 3.7 2.8 2.3 1.3 0.6 0.3 0.7 1.1 1.8 2.0 3.0 3.6 4.0 4.9 6.1
2006 8.0 6.3 4.8 3.4 2.6 1.8 1.0 0.5 0.1 0.9 1.5 1.9 2.4 3.1 3.6 4.2 5.0 5.9
2007 9.6 7.2 5.7 4.1 2.8 1.9 1.1 0.4 0.3 1.1 1.6 2.2 2.8 3.5 4.1 4.9 5.7 6.6
2008 6.6 5.4 4.8 4.1 3.1 2.4 1.5 0.7 0.0 0.7 1.4 1.9 2.5 3.2 3.9 4.4 5.0 5.6
2009 3.4 3.3 2.9 2.5 2.1 1.6 1.0 0.5 0.2 0.2 0.6 1.0 1.4 2.0 2.4 2.8 3.2 3.7
2010 7.2 5.3 4.1 3.3 2.7 2.0 1.3 0.7 0.1 0.6 1.2 1.8 2.4 3.1 3.6 4.1 4.6 5.3
2011 5.7 4.7 3.9 3.1 2.4 1.8 1.3 0.7 0.1 0.4 1.0 1.7 2.1 2.7 3.2 3.7 4.1 4.8
2012 7.4 4.8 3.9 2.7 2.0 1.4 1.0 0.5 0.1 0.7 1.3 1.8 2.2 2.7 3.1 3.5 3.9 4.5
2013 5.6 4.4 3.8 2.9 2.2 1.6 1.1 0.6 0.1 0.6 1.2 1.6 2.0 2.5 2.9 3.3 3.8 4.5
2014 4.1 3.2 2.6 2.3 1.8 1.3 0.9 0.4 0.0 0.3 0.7 1.0 1.4 1.8 2.1 2.6 3.0 3.7
2015 5.1 3.3 2.7 2.0 1.6 1.1 0.6 0.1 0.2 0.4 0.7 1.0 1.4 1.8 2.1 2.4 2.9 3.5
2016 5.0 3.4 2.4 1.8 1.3 1.0 0.5 0.0 0.4 0.6 0.8 0.9 1.3 1.7 2.0 2.2 2.5 3.0
2017 4.4 2.9 2.0 1.5 1.0 0.6 0.5 0.2 0.1 0.3 0.6 0.7 0.9 1.4 1.7 2.0 2.4 3.0
2018 4.5 3.1 2.2 1.6 1.1 0.7 0.3 0.2 0.2 0.5 0.8 1.0 1.1 1.3 1.7 2.0 2.3 2.9
2019 3.0 2.3 1.7 1.2 0.8 0.6 0.3 0.0 0.1 0.1 0.5 0.7 0.8 1.0 1.1 1.4 1.9 2.5
2020 3.2 2.1 1.3 1.0 0.7 0.4 0.0 0.2 0.4 0.2 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.1
2021 2.4 1.8 1.3 0.8 0.6 0.4 0.0 0.3 0.3 0.4 0.3 0.5 0.6 0.7 0.8 0.8 0.9 1.6
2022 1.6 1.5 1.3 0.7 0.5 0.3 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.8 1.0

Total
MINs 0 0 0 0 0 0 3 4 11 0 0 0 0 0 0 0 0 0

Analysis was performed with window width 9 and another two sub groups of 3
and 6 have been tested in order to minimize the effect of zero technological improvement
(Figure 7 and Table A3). The four highest ranking countries remained the same for all
widths examined. The same situation is depicted for Finland, the UK, and Hungary, which
achieved the lowest efficiency scores in all estimated widths. A very interesting case in
the following benchmarking is this of Italy, in which position is downgraded (5 -> 8) in
window width 9 compared to 6 and upgraded from 8 -> 6 when window is being shorten
to three years. Constant technological improvement seems to affect Norway’s performance,
due to the fact that its rankings are higher and higher between nine and three-year frame.
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For visualization purposes, Figures 8 and 9 were created so as to depict the efficiency
scores achieved for each country from DEA Window analysis ideal window widths 7 and 9
for periods 2005–2019 and 2005–2022, accordingly. Lower efficiency scores can be observed
on central EU countries (Austria, Czech Rep., Hungary, and Croatia) and Finland presents
the lower performance. Only few changes occurred between projected and non-projected
efficiency scores. Projected data reveal higher efficiency scores for Greece, France, Romania,
Spain, Portugal, Bulgaria, and Hungary for the next three years. Italy, Denmark, Norway,
Germany, and UK obtained lower efficiency scores underlying the urge for changes in their
agricultural sectors, regarding all inputs involved in agricultural production. The greatest
difference in the ranking system is for the agricultural domain of Germany, which falls
from place 11 for actual data to place 16 for the projected data.
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7. Discussion

The main objective of this study was to assess input use efficiency for all EU countries
involved after the implementation of AGENDA 2000, assuring the validity of Window DEA
methodology and clarifying the influence of window width in the results obtained. Major
goal of Agenda 2000 was to set the base for increased efficiencies of small and medium
enterprises (SMEs) in agriculture, leading to more competitive EU primary sectors [71].
According to Agenda 2000, new technologies engagement was the key factor for improving
performance of European agriculture. Following the upcoming evolution of Agenda 2000
and CAP (2014–2020), in the new CAP programing period (2021–2027) the main strategy
is based on the same objectives, focusing even more on applying specific environmental
indicators for assessing performance of agricultural holdings. This is the rationale for the
Integrated Farm Management (IFM) approach, defining the equilibrium between economy,
environment and society [72]. On operational terms, IFM proposes the minimum use of
every input, reducing the overall cost and enhancing environmental protection. Taking
into consideration the above-mentioned approach, the DEA model was used with an input
orientation, aiming to assess in a quantified manner the efficiency distances among EU
countries, while the use of Window DEA presented in a graphical manner the evolution of
efficiencies for the specific time period. However, it should be clarified that through the
assessment of alternative window lengths, technology influence has been revealed as an
important factor for achieving efficient use of both energy and non-energy related inputs
in agriculture.

Ideal window width estimation has been calculated for creating a reference point
where according to methodology, technological change is apparent. Further limiting of
window widths leads to the emergence of countries that have adopted new changes in a
shorter period of time and these changes had an impact on the overall way they use their
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inputs. For this reason, even ideal window frame has been calculated for 7 and 9 years
accordingly, smaller window frames have been selected, pinpointing differences due to the
aforementioned assumption.

Window DEA has the unique feature of using the same DMU multiple times in the
same window, being considered to be a different one. Benchmarking of agricultural sector
regarding crop production highlighted that Estonia, the Netherlands, Slovenia, Greece,
and Italy have the best performance, while Finland, UK and Hungary should reconsider
their inputs’ usage. The results of this analysis have been compared with previous survey
examining eco-efficiency in agricultural sectors of EU countries with as base year 2015 [45].
Similar results been exported despite the fact that previous stages of LCA have been
performed. A point of particular interest is that Bulgaria and Romania were characterized
as environmentally friendly, but presented decreased economic performance. In this
study, where both environmental and economic factors consist this model, Romania and
Bulgaria achieve moderate scores. Another great remark is the difference in ranks between
agricultural sectors of common input and output characteristics (Estonia (1) and Slovenia
(3)), despite the negative impact of climatic conditions for the first one. Validity of the
results between agricultural sectors with moderate scale differences is proven, due to the
fact that the Netherlands, which handles much greater amounts of inputs and outputs from
Slovenia and Estonia, ranks second.

Both the literature review [17,24] and descriptive statistics revealing the need for
further training and information in the agricultural sector regarding energy minimization.
Despite the efforts of the EU to mitigate energy consumption in agriculture, it seems that
only very few changes have occurred in recent decades. As Eurostat’s data reveal, there is a
5% increase in energy, while total used agricultural area has a slight decrease of 3%. Overall
energy consumption should have been dropped, due to the increased energy efficiency
of technological equipment and the need for minimizing agricultural expenditures and
environmental impact. It should be also pointed out that share of renewable energy sources
has not changed for the last two decades, while amounts of fertilizers have remained
stable for the examined period. This fact should be severely considered from policy makers,
linking payments with energy efficiency for farmers’ side, leading to minimized production
needs for fertilizer industry. Skjærseth states that European Commission should gain a
higher level of control from member states in order to achieve sustainable goals of 2050,
leading to minimized energy exploitation and limited GHG emissions [73].

Figure 4 indicates a geographical pattern, where neighboring countries of central
Europe achieve lower scores than the others. The comparison of results obtained from past
studies [13,41] with the results of this one, lead to the need for further studies to clarify the
reasons which lead to lower efficiency use of inputs involved in agricultural production.
Factors such as climate conditions, support on a national level, by providing sufficient
financial and administrational aid, and farm structure characteristics should be taken into
consideration.

Risk management in case of extreme weather conditions and environmental protec-
tion are highly considered in the upcoming CAP (2021–2027). Thus, there is lack of data
regarding the quality and quantity of the equipment used on a national level for agricul-
tural production, and R&D support. Emphasis should be given in the amounts of water
used for irrigation. Although the existence of data referring to irrigated agricultural area
and water exploitation index is confirmed, monitoring of amounts consumed remains
insufficient on EU level, taking also into consideration that agriculture is the greater water
consumer [74]. All the above-mentioned factors are crucial for effective benchmarking and
targeted decision making for each EU country.

It is very prominent that European Commission has just released a dedicated webpage
to energy consumption indicating the enhanced importance for energy monitoring. It
referred that the overall energy dependency of EU is around 60% (2018) [75], while 1 out of
3 crude oil barrels comes from Russia. Moreover, energy efficiency results are displayed for
every EU country, but the results are not linked to the agricultural domain. An addition of
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energy use efficiency per sector is proposed both for the information of the public but also
for immediate comparisons among EU countries.

Sustainable Development Goals and especially those referring to food security, sus-
tainable production, and climate change mitigation (SDG2, 12, 13) have to be adopted from
all EU countries. Climate change already has various effects on agricultural production,
creating new geographical pattern both for productive species and their pests. Assuring
that every EU country can produce with high efficiency input use rates, resilience can be
built up for all member states, especially under the existence of unpredictable phenomena
such as prolonged drought, very low temperatures, or a potential increase in prices of
imported inputs from non-EU countries.

8. Conclusions

To conclude, an alternative method for prognosticate future efficiency scores is pro-
posed. Window DEA has been performed multiple times, assessing differences between
various window widths and reference periods. From an academic point of view this paper,
provides multiple nested comparisons between actual and projected data. Differences be-
tween optimal window width and arbitrary chosen window length have been highlighted.
Due to the fact that DEA is a benchmarking technique, emphasis has been given in the
final rank of each EU agricultural sector and not in the actual values of efficiency scores.
It has been notified several times in this paper that researchers should be aware of the
assumption of zero technological change within frames, when performing Window DEA;
for this reason, window width should be resized accordingly. This need becomes more
apparent when dealing with large time series when window width selection can influence
final rankings. A possible limitation of this survey, regarding future projections, is its actual
dataset. For instance, EUROSTAT database had a panel of full data from 2005 until 2019.
To assure projections’ validity, only a 3-year period time data have been forecasted. With a
larger dataset, a projection of an elongated period would have been possible and maybe a
larger variation in the rankings between actual and projected data would be apparent.

Implication of the results signify differences between alternative window widths,
meaning that external factors within frame had influence on input use efficiency of the
examined countries. Moreover, projected data have been calculated by identifying 2019
as the ending year of the dataset. Few changes occurred between projected and non-
projected efficiency scores, underlying the need for the following countries: Czech Republic,
Finland, Ireland, Hungary, and the UK should reconsider their production protocols and
the usage of their production factors. Despite the fact that this survey has pointed out the
above-mentioned countries as the least efficient, a following analysis is needed in order
to highlight the inefficiencies of each variable leading to more applicable results. Thus, it
should be stated that this paper’s goal was mostly to identify differences between different
window widths rather than focusing on DEA slacks. Results indicate the importance of
continuous monitoring, so as to assure sustainable exploitation of the involved inputs,
mainly regarding energy consumption. Figures 8 and 9 pinpoint lower efficiency scores for
countries of central Europe Austria, Czech Republic, Hungary, and Croatia, meaning that
they should be supported accordingly. It should not be neglected that the above-mentioned
countries will have to restrain climate change effects, partially replacing the production
of Mediterranean countries such as Italy, Spain, and Greece. For this reason, emphasis
should be given on the development of their agricultural sectors, maintaining low emission
levels at the same time. Moreover, ranking differences for Germany, between actual and
projected data, should act as a warning notification. Projected data are referring to an
extra 3-year period time, which can be considered to be a short one for large changes in
agricultural sector.

Future studies can focus on the infrastructures of EU agricultural sectors defining
the variables that mostly affect the extracted results, giving insights for every agricultural
sector in order to clarify the reasons which affect most efficiency shortage (e.g., lack of
information, aged population, soil of decreased productivity, climatic conditions etc.).
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In addition, this paper has an on farm approach while future studies can implement
Window DEA methodology in whole supply chains. Energy use in packaging, storage
and transportation will largely affect the extracted results, providing an overall inputs use
efficiency from farm to fork. Additionally, technological evolution will bring more changes
for arable land crops and greenhouse farming, gradually decreasing the need for human
labor but increasing the need for energy use.

In the present paper, energy use factor affected the extracted results both directly
as an input, but also indirectly with the use of fertilizers and GHG emissions. Energy
prices influence immediately the primary production by increasing the cost of all inputs
involved. A combination of the results with Skjærseth statements (Discussion section) [73]
will enhance the argument of augmented control from national sectors, in order to deal with
their challenges in local level. Benefits for greater input use efficiencies can be provided, in
order to motivate more individuals or groups in this direction. Given the fact that energy
dependency of EU is high [75], measures that assure energy security in the agricultural
sector should be taken, in order to prevent future energy instability situations such as the
case of Russia–Ukraine gas disputes. Extensive on-farm use of sensors technology will
permit the accurate data recording and monitoring, leading in optimized decisions for
everyday tasks and it will also provide insights for policy making both on national and
European level, in order to achieve greater energy use efficiency. Moreover, Perpiña Castillo
et al. survey states the remarkable dynamic for establishment of large scale photovoltaic
systems in Southern European countries regarding sunlight, population distance, land use,
morphological characteristics and policy [76]. It should be underlined that implementation
of solar power generation could be a great alternative for covering EU countries energy
needs while preserving natural resources from exploitation.

Cost parameter regarding energy use is very crucial due to the fact that it affects
both in a direct (oil, electricity, gasoline) or in an indirect way inputs such as fertilizers,
agro-chemicals, or transportation costs. As it is stated in the latest European Report about
energy prices, share of energy costs in fertilizers’ industry is 71% [77]. Furthermore, it can
immediately influence supply and demand curves leading to either increased or decreased
consumption. However, pricing strategies applied by agrochemical industries are not
usually based on production costs but in a close relation with the upcoming benefits derived
from their use. Therefore, we assume that energy cost is still an important parameter for
the overall production cost in every European country, being at the same time a top priority
target for the significant reduction of it for both operational and environmental purposes.

Furthermore, agricultural inputs have to be limited preventing degradation of nat-
ural resources and mitigating environmental consequences. To conclude, all the above-
mentioned parameters should be taken into consideration from EU countries for the up-
coming CAP (2021–2027), so as to adjust their national strategies and achieve Sustainable
Development Goals.
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Appendix A

Table A1. Descriptive statistics of Inputs and Outputs for reference period 2005–2022.

Year UAA L CC EN SPS PPP NFert PFert TO EM

2005
Min 511 37.8 49.3 75.1 5.7 6.9 20,083 2743 272 1194
Max 29,588 2596 10,189 4438 1952 2742 2,346,289 300,652 39,435 77,314
Avg. 7182 492 2050 1077 383 377 417,244 54,076 7521 17,074

2006
Min 491 37.4 58.2 75.4 5.7 7.1 22,610 3536 229 1193
Max 32,346 2527 32,345 4130 1929 2676 2,163,040 258,427 38,280 76,913
Avg. 7175 482.3 482.3 1019.7 396.0 368.2 411,693 51,577 7393 16,912

2007
Min 498 32.9 67.4 74.4 7.4 10.1 24,982 3520 316 1251
Max 29,414 2299 29,413 4032 2005 2821 2,198,141 243,318 38,810 77,811
Avg. 7070 458 458 1002 404 375 415,116 52,235 7305 17,019

2008
Min 492 31.2 77.0 76.4 10.6 13.2 25,039 4187 289 1309
Max 29,385 2299 10,320 4119 2076 3148 2,425,221 282,425 40,125 78,496
Avg. 7060 447 2143 997 416 406 425,737 48,340 7743 16,916

2009
Min 469 29.3 82.2 66.3 11.2 10.6 27,328 2471 299 1252
Max 35,178 2213 10,305 4206 1992 2997 2,098,801 163,851 41,119 77,674
Avg. 7258 433 2156 972 401 395 388,395 33,785 7798 16,664

2010
Min 483 25.4 82.4 69.5 14.7 15.6 27,486 2671 275 1278
Max 29,311 1914 10,270 4121 2016 2755 2,080,333 177,025 39,164 76,456
Avg. 6957 399 2165 1022 437 386 402,166 40,991 7611 16,488

2011
Min 458 24.4 85.2 67.5 16.4 16.3 27,134 2680 311 1294
Max 28,853 1914 10,449 4141 2220 2754 2,332,390 218,428 40,235 75,763
Avg. 6927 389 2186 998 437 399 421,528 44,329 7844 16,507

2012
Min 480 23.2 92.0 71.0 17.3 18.3 26,300 2955 348 1375
Max 29,001 1914 10,648 4014 2236 2951 2,024,929 189,633 39,632 75,656
Avg. 6882 387 2206 989 423 410 402,175 42,477 7448 16,435

2013
Min 479 22.3 101.0 70.0 20.9 19.0 27,263 3129 352 1407
Max 28,976 1937 10,653 4247 2084 3125 2,143,821 217,184 39,185 75,170
Avg. 6878 383 2222 1008 430 430 422,080 46,067 7,745 16,568

2014
Min 482 22.0 100.9 75.3 21.8 19.7 28,612 3775 375 1446
Max 28,930 1937 10,508 4185 2262 3222 2,190,930 206,798 43,218 77,204
Avg. 6890 376 2223 989 441 448 431,685 45,887 8264 16,860

2015
Min 477 20.3 100.9 74.2 26.2 19.7 28,319 3522 451 1446
Max 29,115 1937 10,493 4211 2460 3235 2,208,168 187,054 41,554 76,992
Avg. 6912 369 2226 971 450 451 442,059 44,896 7997 16,927

2016
Min 478 20.3 107.4 73.4 24.4 21.1 27,095 3444 323 1402
Max 29,089 1675 10,417 4086 2433 3308 2,221,231 191,677 37,653 75,753
Avg. 6903 367 2224 1010 456 454 438,584 45,836 7989 16,942

2017
Min 481 20.3 111.0 72.9 29.5 21.5 27,084 3988 383 1443
Max 29,101 1675 10,352 4003 2357 3063 2,248,277 190,414 40,501 76,190
Avg. 6905 362 2223 1024 466 449 448,763 47,084 8144 17,080

2018
Min 478 20.1 113.1 74.5 28.1 20.8 27,293 4062 315 1438
Max 29,020 1675 10,312 4082 2392 3093 2,141,553 190,597 40,967 74,774
Avg. 6918 355 2226 1111 475 443 435,668 47,694 8092 16,865

2019
Min 480 18.9 127.8 73.8 26.7 19.4 28,048 3538 483 1457
Max 29,024 1675 10296 4050 2486 3092 2,130,800 185,252 40,637 74,573
Avg. 6946 347 2231 1134 477 442 418,517 47,456 8292 16,804

2020
Min 482 18.8 122.1 73.2 25.2 17.7 27,219 3421 427 1472
Max 28,678 1643 10,240 4069 2511 3076 2,167,584 335,222 40,804 74,284
Avg. 6940 340 2235 1143 484.5 441.8 420,848 54,225 8334 16,779

2021
Min 482 18.0 125.4 72.8 23.5 15.3 27,174 2602 439 1486
Max 28,556 1610 10,253 41,22 2535.1 3077 2,167,076 389,930 40,875 73,995
Avg. 6939 331.9 2242 1162 488.8 442.6 420,572 56,972 8414 16,755

2022
Min 482 17.2 128.7 49.3 21.8 12.9 27130 1783 451 1500
Max 28,434 1577 10,266 4417 2559 3078 2,166,569 444,639 40,947 73,707
Avg. 6938 323 2248 1180 493 443 42,0296 59,720 8494 16,730

Table A2. Window analysis results with different window width for the reference period 2005–2019.

Win(4) Win(7)

Country Value Country Value

1. Estonia 0.9999 Estonia 0.9998

2. Netherlands 0.9999 Netherlands 0.9995
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Table A2. Cont.

Win(4) Win(7)

Country Value Country Value

3. Slovenia 0.9989 Slovenia 0.9944

4. Greece 0.9934 Italy 0.9861

5. Belgium 0.9887 Greece 0.9842

6. France 0.9886 Belgium 0.9841

7. Italy 0.9874 Denmark 0.9820

8. Denmark 0.9873 France 0.9812

9. Norway 0.9842 Norway 0.9759

10. Romania 0.9792 Romania 0.9730

11. Germany 0.9756 Germany 0.9641

12. Spain 0.9736 Lithuania 0.9526

13. Portugal 0.9723 Spain 0.9518

14. Lithuania 0.9641 Portugal 0.9495

15. Poland 0.9627 Poland 0.9494

16. Bulgaria 0.9579 Bulgaria 0.9479

17. Latvia 0.9425 Latvia 0.9171

18. Slovakia 0.9325 Austria 0.9037

19. Austria 0.9226 Slovakia 0.9020

20. Croatia 0.9101 Croatia 0.8984

21. Sweden 0.8750 Sweden 0.8562

22. Ireland 0.7947 Czechia 0.7591

23. Czechia 0.7847 Ireland 0.7589

24. UK 0.7696 UK 0.7394

25. Hungary 0.7629 Hungary 0.7295

26. Finland 0.6551 Finland 0.6364

M(4) 0.9255 M(7) 0.9106
M(x) is the mean value of acquired results for window width 4 or 7.

Table A3. Window analysis results with different window width for the reference period 2005–2022.

Win(3) Win(6) Win(9)

Country Efficiency Country Efficiency Country Efficiency

1. Estonia 1.0000 Estonia 0.9999 Estonia 0.9998

2. Netherlands 0.9999 Netherlands 0.9996 Netherlands 0.9993

3. Slovenia 0.9994 Slovenia 0.9968 Slovenia 0.9948

4. Greece 0.9969 Greece 0.9894 Greece 0.9851

5. France 0.9925 France 0.9866 Italy 0.9806

6. Italy 0.9914 Belgium 0.9846 Belgium 0.9799

7. Norway 0.9912 Denmark 0.9830 France 0.9762

8. Belgium 0.9909 Italy 0.9821 Denmark 0.9760

9. Denmark 0.9902 Norway 0.9800 Romania 0.9737

10. Romania 0.9857 Romania 0.9778 Norway 0.9711
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Table A3. Cont.

Win(3) Win(6) Win(9)

Country Efficiency Country Efficiency Country Efficiency

11. Spain 0.9841 Portugal 0.9645 Spain 0.9547

12. Portugal 0.9819 Spain 0.9635 Lithuania 0.9525

13. Lithuania 0.9793 Lithuania 0.9635 Portugal 0.9486

14. Poland 0.9746 Poland 0.9562 Bulgaria 0.9441

15. Bulgaria 0.9704 Bulgaria 0.9556 Poland 0.9427

16. Latvia 0.9662 Germany 0.9519 Germany 0.9402

17. Germany 0.9655 Latvia 0.9397 Latvia 0.9168

18. Slovakia 0.9488 Slovakia 0.9216 Austria 0.8973

19. Austria 0.9306 Austria 0.9128 Slovakia 0.8903

20. Sweden 0.8918 Croatia 0.8696 Croatia 0.8548

21. Croatia 0.8884 Sweden 0.8683 Sweden 0.8521
22. Ireland 0.7830 Czechia 0.7552 Czechia 0.7297

23. Czechia 0.7799 Ireland 0.7445 Ireland 0.7280

24. Hungary 0.7714 Hungary 0.7341 Hungary 0.7076

25. UK 0.7552 UK 0.7274 UK 0.7017

26. Finland 0.6703 Finland 0.6464 Finland 0.6320

M(3) 0.9300 M(6) 0,9136 M(9) 0.9011
M(x) is the mean value of acquired results for window width 3,6 or 9.
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