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Abstract: The probabilistic safety assessment (PSA) of a nuclear power plant (NPP) under single
and multiple hazards is one of the most important tasks for disaster risk management of nuclear
facilities. To date, various approaches—including the direct quantification of the fault tree using
the Monte Carlo simulation (DQFM) method—have been employed to quantify single- and multi-
hazard risks to nuclear facilities. The major advantage of the DQFM method is its applicability to a
partially correlated system. Other methods can represent only an independent or a fully correlated
system, but DQFM can quantify the risk of partially correlated system components by the sampling
process. However, as a sampling-based approach, DQFM involves computational costs which
increase as the size of the system and the number of hazards increase. Therefore, to improve the
computational efficiency of the conventional DQFM, a two-stage DQFM method is proposed in this
paper. By assigning enough samples to each hazard point according to its contribution to the final risk,
the proposed two-stage DQFM can effectively reduce computational costs for both single- and multi-
hazard risk quantification. Using examples of single- and multi-hazard threats to nuclear facilities,
the effectiveness of the proposed two-stage DQFM is successfully demonstrated. Especially, two-stage
DQFM saves computation time of conventional DQFM up to 72% for multi-hazard example.

Keywords: single hazard; multi-hazard; risk quantification; nuclear power plant (NPP); direct quan-
tification of the fault tree using Monte Carlo simulation (DQFM)

1. Introduction

Critical infrastructure systems (CISs), which support the major functions of urban
communities, are often exposed to one or more hazards. Since community functionality
relies heavily on CISs, securing these systems against single and multiple hazards is an
essential task to communities. For example, the core damage of nuclear power plant (NPP)
from the Tohoku earthquake–tsunami (Japan, 2011), which was a beyond design basis
hazard, brought devastating consequences [1,2]. Even after a decade, the direct and indirect
effects of this multi-hazard event on Japanese communities are under recovery processes.
Considering such significant post-disaster effects of CIS failure on communities, it is
important to determine the single- and multi-hazard risks of CISs to build a risk-informed
disaster risk mitigation plan [3].

To date, various methods have been developed to determine single- [4,5] and multi-
hazard risks [6–8] of CISs for various combinations of hazards (e.g., earthquake–typhoon [6],
and earthquake main-shock and after-shock [7,8]). Still, multi-hazard assessments are at
their budding stage when compared to the single-hazard risk assessments [3]. In these
circumstances, a Boolean method is adopted for both single- and multi-hazard risk quan-
tification for systems in various research domains [9–11]. With this method, accurate
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probabilities of system failure can be evaluated with a relatively simple form. Systems
that are modeled with “and” and “or” conditions of their components and systems that
have components with an independent or a fully correlated relationship can be addressed
by Boolean methods. For example, in the structural engineering domain, Salman and Li
described the system performance of the power-grid in Boolean form to determine the
effectiveness of a multi-hazard (i.e., earthquake and hurricane) risk mitigation plan [9].
In addition, for hazard management, Prabhu et al. [10,11] also used a Boolean approach to
model the system performance of a business under both single [10] and multiple hazards [11].

In nuclear safety engineering, several methods have been developed to quantify the
seismic risk to nuclear facilities [12,13]. For instance, the seismic safety margin research
program (SSMRP) developed a method to estimate the risk of earthquake-induced release
of radioactive materials at an NPP [13]. Incorporated with Monte Carlo simulation (MCS),
SSMRP calculated an accurate probability of occurrence at a system which had compo-
nents with independent relationships. Otherwise, if the components are not independent,
the results from SSMRP give the upper bound of the probability of occurrence [14]. On the
other hand, using the Boolean arithmetic model (BAM), the seismic risk of a system that
comprises fully correlated components was estimated by the fault tree (FT) [12]. With the
Boolean logic gates, various system failure scenarios of boiling water nuclear reactor (BWR)
have also been investigated [15]. In addition, various codes for hazard quantification
of nuclear facilities (e.g., SEISMIC, SECOM2-Boolean, PARASEE) also adopted Boolean
algebra [16–18] to quantify the risk to NPP systems with the independent or fully corre-
lated components. The single- and multi-hazard risk of a system that comprises either
independent or fully dependent components can adopt the currently available codes.

However, NPP systems have numerous components that are in the same building
or on the same floor, and the spatial proximity causes partial correlation between the
components. If this partial correlation is neglected and the components are assumed to be
independent or fully correlated in the risk quantification process, the final risk could be
significantly over- or under-estimated [3]. Despite the importance of considering partial
dependency between system components, the fragility of a system with partial dependency
between its components cannot be achieved with Boolean methods or MCS-based SSMRP.
Therefore, to represent the partial correlation between system components in the risk
evaluation of nuclear facilities, several approaches have been developed [19–22]. Especially,
the direct quantification of fault tree using Monte Carlo simulation (DQFM) method is
developed to quantify both the single- and multi-hazard risk of NPP [14]. The DQFM
method generates samples of the disaster response and the capacity of the components to
determine the probability of system-level failure. During the sampling stage of DQFM,
the partial correlation between system components is considered.

When using the DQFM method, though, many samples (N) are required for each
component and each hazard condition [23]. The number of samples required increases
proportionally with the number of system components, hazard points, and N at each hazard
point. Therefore, in this paper, we aim to improve the computational efficiency of the
conventional DQFM by reducing the number of samples without losing the accuracy and
robustness of the algorithm. The number of total sample sets can be reduced by optimizing
either N at each hazard point or the number of hazard points. Recently, a method that
optimized the number of hazard points to reduce the computational cost of the conventional
DQFM was proposed [24]. However, efforts to reduce the N generated for each hazard
intensity point have not yet been extensively investigated.

Therefore, we propose a two-stage DQFM method that effectively assigns different N
to each hazard point. The proposed method assigns a small N to hazard intensity points
that make small contributions to the final risk value and a large N to those that make large
contributions. To validate and investigate the proposed method, the risk to nuclear facilities
obtained by the two-stage DQFM is compared with those computed with the conventional
DQFM, which is known to provide accurate results for a partially correlated system for
both single- and multi-hazard risk quantification [14,23]. The risks to a nuclear facility that
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has partially correlated components are calculated under both single and multiple hazards
to demonstrate the two-stage DQFM.

2. Direct Quantification of Fault Tree Using MCS (DQFM)
2.1. Basic Ideas of DQFM

This paper aims to improve the computational efficiency of the conventional DQFM [14]
to quantify the single- and multi-hazard risks to a system with partially correlated compo-
nents. To provide background information for the two-stage DQFM (Section 3), this section
summarizes the basic idea of the DQFM. As illustrated in Figure 1, the conventional DQFM
method requires a system model, information on the fragility of each component, and haz-
ard information. After setting discrete single- and multi-hazard conditions into the uniform
interval, hazard response, R, and the capacity of the components against the hazard, C,
are sampled for each hazard condition point. Both R and C are assumed to be log-normal
distributions, which can be expressed as in Equations (1) and (2).

R(a) ∼ LN(Rma, βRc) (1)

C(a) ∼ LN(Cma, βCc) (2)

where, LN (α, β) represent the log-normal distribution with median α and log-standard
deviation β. βRc and βCc denote the composite log-standard deviations of R and C, respec-
tively. While generating the R and C for each component for the given hazard condition
points, partial correlations between the components can be introduced by the correlation
coefficient matrix. Dependency measure (e.g., Pearson correlation coefficient, ρ) can be
defined through such things as expert judgment and empirical data [14].
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The generated response and capacity sample sets are compared and expressed in bi-
nary form, where 0 and 1 represent the survival and failure of the components, respectively.
Accordingly, sub-systems and the total-system failure are also determined in a binary state
using the binary condition of each component and the system model. With this approach,
system fragility is ultimately quantified as the number of system failures over the total
number of sample sets at each hazard point. Finally, the single- or the multi-hazard risk
can be determined by convoluting the system fragility curve and the given hazard curve.
The single- and multi-hazard risk can be determined as follows:

Risksingle =
∫ ∞

0
F(p)

dH(p)
dp

dp (3)

Riskmulti =
∫ ∞

0
· · ·

∫ ∞

0
F(p, · · · , q)

dH(p, · · · q)
dp · · · dq

dp · · · dq (4)

where p and q denote hazard intensity and F and H are the system failure probability and
the yearly exceedance rate of the hazard, respectively. It is important to note that the final
risk is the summation of the risks determined at each hazard point that is discretized at
the beginning of the algorithm. At each discretized hazard point, the differential value of
single and multiple hazards at each point can be determined as follows:

dH(i)/dp = H(i)− H(i + 1) (5)

dH(i, j)/dpdq = H(i, j)− H(i + 1, j)− H(i, j + 1) + H(i + 1, j + 1) (6)

where i and j indicate the intensity of each hazard. To determine the differential haz-
ard value, a mixed derivative theorem with the forward algorithm was adopted [25],
and Equation (6) indicates the differential hazard value of a multi-hazard situation with
two hazards. In addition, when i and j have the highest hazard intensity, we assume the
hazard information beyond the given boundary is zero.

2.2. Computational Cost of the Conventional DQFM

In Figure 1, it is important to note that conventional DQFM uses a uniform interval to
define hazard conditions, and it uses the constant N at all hazard points. Therefore, the con-
ventional DQFM method involves computational costs, which proportionally increase as
the number of components and hazard points increase. Since system size cannot be reduced,
the computational cost of the conventional DQFM can be reduced by optimizing the num-
ber of hazard points or by optimizing the N for each hazard point. Recently, Kwag et al. [23]
improved the conventional DQFM by reducing the hazard points for a given hazard map
by optimizing the interval of the hazard map. Yet, there has been no attempt to reduce the
N for each hazard point in the conventional DQFM. Therefore, this paper aims to reduce
the N, to increase the computational efficiency of the conventional DQFM.

2.3. Performance of the Conventional DQFM

The conventional DQFM starts its process with the chosen N, and the same N is
generated for all hazard conditions. Under the conventional DQFM algorithm, small N
cannot be selected since the accuracy and the robustness of the final results depend on the
N. For instance, boxplots of the results of single-hazard fragility analysis with different
numbers of N are shown in Figure 2. It can be noticed in the failure probabilities for given
peak ground accelerations (PGAs) that the variability of the results decreases as N increases.
The results from a large N (e.g., 104) indicate good convergence with small variability.
Therefore, an alternative method that can reduce N yet provide the same performance as
the conventional DQFM should be developed, while the conventional DQFM should use
the large N to secure the convergence of the results.



Energies 2021, 14, 1017 5 of 21

Energies 2021, 14, x FOR PEER REVIEW 5 of 21 
 

 

ground accelerations (PGAs) that the variability of the results decreases as N increases. 
The results from a large N (e.g., 104) indicate good convergence with small variability. 
Therefore, an alternative method that can reduce N yet provide the same performance as 
the conventional DQFM should be developed, while the conventional DQFM should use 
the large N to secure the convergence of the results. 

  
(a) N = 10 (b) N = 102 

  
(c) N = 103 (d) N = 104 

Figure 2. The variability of seismic fragility curves by the conventional DQFM for various Ns: (a) 
N = 10, (b) N = 102, (c) N = 103, (d) N = 104.  

3. Development of Two-Stage DQFM for Single- and Multi-Hazard Risk Quantification 
For effective quantification of single- and multi-hazard risk to nuclear facilities, a 

two-stage DQFM is proposed in this section. To improve the computational efficiency of 
the conventional DQFM, this research aims to reduce the N without losing the accuracy 
or the robustness of the algorithm. When estimating single- and multi-hazard risk using 
DQFM, we found that the contribution of each hazard point to the final risk value varied 
by the hazard point. When the contribution of a certain point to the final risk is trivial, the 
difference between the probability of system failure estimated at that point from small N1 
and large N2 could be negligible. For such hazard points, by using the small N1 instead of 
large N2 with less-significant hazard points, computational cost can be reduced. 

With this inspiration, we developed a two-stage DQFM that generates a relatively 
small N1 (e.g., 102) for hazard points that make a small contribution to the final hazard 
risk, while generating large enough N2 (e.g., 104) for only those hazard points that make a 
large contribution to final risk. By dividing the hazard points by their contributions to the 
final risk value, the sampling cost that occurred in the hazard points that make a negligible 
contribution to the final risk value can be reduced. Since the purpose of the proposed 
method is to assign different Ns according to their contributions to the final system risk 
value, hazard points can be categorized into two or more groups (e.g., m-stage DQFM). 
However, we divided hazard points into only two groups to simplify the procedure and 
save the cost that occurred to divide the hazard groups. A flowchart of the two-stage 
DQFM is presented in Figure 3. The modified and extended modules that were first intro-
duced in this paper are highlighted in blue. 

Figure 2. The variability of seismic fragility curves by the conventional DQFM for various Ns:
(a) N = 10, (b) N = 102, (c) N = 103, (d) N = 104.

3. Development of Two-Stage DQFM for Single- and Multi-Hazard Risk Quantification

For effective quantification of single- and multi-hazard risk to nuclear facilities, a two-
stage DQFM is proposed in this section. To improve the computational efficiency of the
conventional DQFM, this research aims to reduce the N without losing the accuracy or
the robustness of the algorithm. When estimating single- and multi-hazard risk using
DQFM, we found that the contribution of each hazard point to the final risk value varied
by the hazard point. When the contribution of a certain point to the final risk is trivial,
the difference between the probability of system failure estimated at that point from small
N1 and large N2 could be negligible. For such hazard points, by using the small N1 instead
of large N2 with less-significant hazard points, computational cost can be reduced.

With this inspiration, we developed a two-stage DQFM that generates a relatively
small N1 (e.g., 102) for hazard points that make a small contribution to the final hazard
risk, while generating large enough N2 (e.g., 104) for only those hazard points that make a
large contribution to final risk. By dividing the hazard points by their contributions to the
final risk value, the sampling cost that occurred in the hazard points that make a negligible
contribution to the final risk value can be reduced. Since the purpose of the proposed
method is to assign different Ns according to their contributions to the final system risk
value, hazard points can be categorized into two or more groups (e.g., m-stage DQFM).
However, we divided hazard points into only two groups to simplify the procedure and
save the cost that occurred to divide the hazard groups. A flowchart of the two-stage DQFM
is presented in Figure 3. The modified and extended modules that were first introduced in
this paper are highlighted in blue.
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In the first DQFM stage, a system failure probability is determined for all hazard
points with a small N1. system fragility curve is developed by the same procedure as
the conventional DQFM. Later, hazard points are divided into two groups, and hazard
points that have a non-negligible contribution to the final risk value are selected to be
sampled again at the second DQFM stage with large N2. To this end, “resampling rank” is
assigned to hazard points. The resampling rank is the value that identifies the importance
of each hazard point with respect to its contribution to the final risk. Once hazard points
are divided into two groups, only the selected points are resampled in the second DQFM
stage with a large N2. Finally, the hazard risk of the system is determined by a convolution
of the hazard information and the updated fragility curve.

The key process of the two-stage DQFM is to select hazard points, which will be
updated in the second DQFM stage. The selection of these hazard points affects the
accuracy and efficiency of the two-stage DQFM. In the following sub-sections, we describe
the detailed process that we proposed to select the hazard points that have a non-negligible
contribution to the final risk value.

3.1. Sorting Hazard Points

To identify the resampling points that make a non-negligible contribution to the final
risk value, we employed two measures for each point as criteria: hazard information and
risk information. It should be noted in Equations (3) and (4) that a large differential hazard
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value or risk value at a certain point indicates a large contribution to the final hazard risk.
Therefore, to prioritize the hazard points by their importance, they are first sorted by their
hazard and risk information. While differential hazard values can be determined by a
given hazard map, risk information uses the results from the first DQFM stage. The risk
value that is used to sort hazard points can be determined as follows:

Risksingle(i) = F1(i)× dH(i)/dp (7)

Riskmulti(i, j) = F1(i, j)× dH(i, j)/dpdq (8)

where F1 is the approximated probability of system failure determined in the first DQFM
stage. While the risk value itself contributes proportionally to the final risk value, a dif-
ferential hazard value (see Equations (5) and (6)) can be considered as a weight of the
error in the first DQFM stage. The results from the first stage, determined with a small N1
(e.g., 102), are expected to have high variability. The errors that occurred in this stage are
convoluted with the hazard information, so they decrease the accuracy of the final risk.
Since the error increases in proportion to the differential hazard value, the hazard points
with large differential hazard values should be sampled again in the second DQFM stage
to secure the accuracy of the final risk. Without including the hazard points with high
differential hazard values, the accuracy of the final risk cannot be preserved.

3.2. Evaluating Cumulative Rates

After sorting the hazard points by their differential hazard and risk values in the
first step, adequate threshold values are required to divide the points into two groups.
The optimal threshold is expected to vary according to the diverse shapes of the system
fragility curves. Therefore, rather than choose a certain value, we propose to use the
cumulative rate as the threshold. The cumulative rate can represent the contribution of
the hazard points as a group to the final risk value. The cumulative rate of the differential
hazard value for single and multiple hazards at each point can be determined as follows:

Hc,single(a) =
a

∑
i∗=1

dH(i∗)/dp/
max

∑
i∗=1

dH(i∗)/dp (9)

Hc,multi(a) =
a

∑
i∗=1

dH(i∗)/dpdq/
max

∑
i∗=1

dH(i∗)/dpdq (10)

where Hc,single and Hc,multi are the cumulative rates of the differential hazard values for
single and multiple hazards, respectively. i* is the newly given order that was achieved
through the sorting process (Section 3.1), and a denotes the ath order among the total hazard
points of the single and multiple hazards. Similarly, the cumulative rate of the risk value
for single and multiple hazards at each point can be determined as follows:

Rc(a) =
a

∑
i∗=1

Risk(i∗)/
max

∑
is=1

Risk(i∗) (11)

where Rc is the cumulative rate of the risk value of single and multiple hazards. For ex-
ample, if Hc is 10−3, then the group of points lower than the hazard threshold contributed
0.1% to the total differential value of the hazard. As another example, if Rc is 10%, it means
that the group of points lower than the risk threshold contributed 10% to the final risk
value. By adopting this standard, the groups of points that make a trivial contribution to
the final risk value can be identified.

3.3. Selecting Threshold Values and Assigning the Resampling Rank

In the last step, the hazard points that make non-negligible contributions to the final
risk or that have a large differential hazard value are selected as critical hazard points that
need resampling in the second DQFM stage. Thus, one Hc value and one Rc value are
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selected as the thresholds (See Equations (9)–(11)). With the selected thresholds, we assign
the binary “resampling rank” to each point in terms of Hc and Rc. For points smaller
than the threshold, a resampling rank of 0 is assigned. For hazard points larger than the
threshold, a resampling rank of 1 is assigned. Eventually, the combination of the critical
points which were assigned a non-zero value is sampled again in the second DQFM stage.

Figures 4 and 5 illustrate the assignment of resampling ranks for single and mul-
tiple hazards. They are expressed in a string and a matrix, respectively. It can be no-
ticed in both figures that points with values smaller than the thresholds received the
rank 0. After assigning the resampling rank according to the hazard and risk values
(i.e., sub-system failures and total-system failure), the sum of the multiple strings
(single hazard) or multiple matrices (multi-hazard) becomes the final resampling rank.

Energies 2021, 14, x FOR PEER REVIEW 8 of 21 
 

 

3.3. Selecting Threshold Values and Assigning the Resampling Rank 
In the last step, the hazard points that make non-negligible contributions to the final 

risk or that have a large differential hazard value are selected as critical hazard points that 
need resampling in the second DQFM stage. Thus, one Hc value and one Rc value are se-
lected as the thresholds (See Equations (9)–(11)). With the selected thresholds, we assign 
the binary “resampling rank” to each point in terms of Hc and Rc. For points smaller than 
the threshold, a resampling rank of 0 is assigned. For hazard points larger than the thresh-
old, a resampling rank of 1 is assigned. Eventually, the combination of the critical points 
which were assigned a non-zero value is sampled again in the second DQFM stage. 

Figures 4 and 5 illustrate the assignment of resampling ranks for single and multiple 
hazards. They are expressed in a string and a matrix, respectively. It can be noticed in both 
figures that points with values smaller than the thresholds received the rank 0. After as-
signing the resampling rank according to the hazard and risk values (i.e., sub-system fail-
ures and total-system failure), the sum of the multiple strings (single hazard) or multiple 
matrices (multi-hazard) becomes the final resampling rank. 

 
Figure 4. Illustration of the assignment of resampling ranks for a single-hazard example. 

 
Figure 5. Illustration of the assignment of resampling ranks for a multi-hazard example. 

Figure 4. Illustration of the assignment of resampling ranks for a single-hazard example.

Energies 2021, 14, x FOR PEER REVIEW 8 of 21 
 

 

3.3. Selecting Threshold Values and Assigning the Resampling Rank 
In the last step, the hazard points that make non-negligible contributions to the final 

risk or that have a large differential hazard value are selected as critical hazard points that 
need resampling in the second DQFM stage. Thus, one Hc value and one Rc value are se-
lected as the thresholds (See Equations (9)–(11)). With the selected thresholds, we assign 
the binary “resampling rank” to each point in terms of Hc and Rc. For points smaller than 
the threshold, a resampling rank of 0 is assigned. For hazard points larger than the thresh-
old, a resampling rank of 1 is assigned. Eventually, the combination of the critical points 
which were assigned a non-zero value is sampled again in the second DQFM stage. 

Figures 4 and 5 illustrate the assignment of resampling ranks for single and multiple 
hazards. They are expressed in a string and a matrix, respectively. It can be noticed in both 
figures that points with values smaller than the thresholds received the rank 0. After as-
signing the resampling rank according to the hazard and risk values (i.e., sub-system fail-
ures and total-system failure), the sum of the multiple strings (single hazard) or multiple 
matrices (multi-hazard) becomes the final resampling rank. 

 
Figure 4. Illustration of the assignment of resampling ranks for a single-hazard example. 

 
Figure 5. Illustration of the assignment of resampling ranks for a multi-hazard example. Figure 5. Illustration of the assignment of resampling ranks for a multi-hazard example.



Energies 2021, 14, 1017 9 of 21

Subsequently, in the second DQFM stage, the points with non-zero resampling ranks
are resampled with a large N2 (e.g., 104). The points that make a negligible contribution
to the accuracy of the final risk value receive the resampling rank 0, and they are skipped
in the second DQFM stage. Since the accuracy, robustness, and efficiency of the proposed
method are subject to the threshold selection, choosing the optimal threshold is important.
In Sections 4 and 5, an extensive parametric study is presented to suggest the optimal
thresholds for single- and multi-hazard risk quantification problems, respectively.

4. Single Hazard Example: Seismic Hazard
4.1. Setting the Problem

In this section, a two-stage DQFM is used to quantify the seismic risk to the Limerick
Generating Station (LGS, Philadelphia, USA) NPP. The LGS NPP was selected to test
the efficiency of the two-stage DQFM. To perform two-stage DQFM, hazard information,
the system model, and the fragility model are required. First, the seismic hazard informa-
tion from Kim et al. [17] is used (Figure 6), and the peak ground acceleration (PGA) from
0.05 to 2 g was uniformly divided into 196 hazard points. Second, the system model and
the fragility information of the components were taken from Ellingwood [26]. The fragility
information of each component is described in Table 1, and the detailed sub-system failure
scenarios of the LGS NPP are as presented in Equations (12)–(18).

A = S11 ∪ S12 ∪ S13 ∪ S14 ∪ S15 ∪ S16 ∪ DGR (12)

TsEsUX = S11 ∩ A (13)

TsRb = S4 (14)

TsRpv = S6 (15)

TsEsCmC2 = S1 ∩ (S3 ∪ CR) ∩ (A ∪ S10 ∪ SLCR) (16)

TsRbCm = S4 ∩ (S3 ∪ CR) (17)

TsEbWm = S1 ∩ A ∩
((

S17 ∩WR
)
∪
(
S2 ∪ S17

))
(18)
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Table 1. Seismic fragility and random failure probability information of Limerick Generating Station nuclear power plant
(LGS NPP) components (adapted from Ref. [23]).

Component Rms (Ams) βRcs BCcs Mean Failure Rate (Per year)

S1 Offsite power 0.20 g 0.226 0.226 -
S2 Condensate storage tank 0.24 g 0.273 0.273 -
S3 Reactor internals 0.67 g 0.300 0.300 -
S4 Reactor enclosure structure 1.05 g 0.282 0.282 -
S6 Reactor pressure vessel 1.25 g 0.252 0.252 -
S10 Standby liquid control system tank 1.33 g 0.233 0.233 -
S11 440 V bus/steam generator breakers 1.46 g 0.411 0.411 -
S12 440 V bus transformer breaker 1.49 g 0.397 0.397 -
S13 125/250-V DC bus 1.49 g 0.397 0.397 -
S14 4 kV bus/steam generator 1.49 g 0.397 0.397 -
S15 Diesel generator circuit 1.56 g 0.368 0.368 -
S16 Diesel generator heat and vent 1.55 g 0.363 0.363 -
S17 Residual heat removal system heat exchangers 1.09 g 0.330 0.330 -

DGR DGR—diesel generator common mode - - - 0.00125
WR WR—containment heat removal - - - 0.00026
CR CR—scram system mechanical failure - - - 1.00 × 105

SLCR SLCR—standby liquid control - - - 0.01

The total-system failure scenario, or so-called core meltdown (CM), can be expressed
as the union of all the sub-system failure scenarios (see Equations (13)–(18)), which can be
simplified as follows:

CM = S4 ∪ S6 ∪ S1 ∩ [A ∪ (S3 ∪ CR) ∩ (S10 ∪ SLCR) ∩ (S17 ∪WR)] (19)

Among the system components, four components, S11, S12, S13, and S14, in the same
reactor building, and two components, S15 and S16, in the same diesel generator building,
are assumed to be partially correlated because of their spatial adjacency. The correlation
coefficient between the partially correlated components is assumed to be 0.7 (ρs = 0.7),
while the other components are assumed to be independent.

As discussed in Section 3, two thresholds should be selected to perform the two-stage
DQFM. Combinations of three hazard thresholds (i.e., 10−3, 10−3.5, and 10−4, denoted by
H3, H3.5, and H4, respectively) and six risk thresholds (i.e., 100%, 30%, 20%, 10%, 5%,
and 1%, denoted by R100, R30, R20, R10, R5, and R1, respectively) are investigated to
identify the optimal combination of thresholds. For instance, the H3R10 threshold means
that any point which has an Hc larger than 10−3 or an Rc larger than 10% is resampled in
the second DQFM stage with large N2.

Lastly, to perform conventional DQFM and the two-stage DQFM, the number of
sample N and sampling method must be defined. The conventional DQFM generated
N = 104 samples for all hazard points, while the two-stage DQFM generated N1 = 102

and N2 = 104 samples for the first and second DQFM stages, respectively. In terms of the
sampling method, both the conventional DQFM and the proposed two-stage DQFM used
MCS to generate the samples. To investigate the variability of the two-stage DQFM due
to MCS, every condition is performed 500 times, which is sufficient value based on test
run. The numerical investigations were conducted by MATLAB code using a personal
computer with Windows 10 (64 bit) operating system equipped with an Intel(R) Core(TM)
i7-9700K CPU @ 3.6 GHz and 16 GB RAM.

4.2. Results and Discussion

Figure 7 shows the resampling points selected by the proposed two-stage DQFM with
18 thresholds. Each result was achieved by a single run of the proposed two-stage DQFM,
and the colors represent the resampling rank of each hazard point. It should be noted
that high PGAs are more likely than small PGAs to have a resampling rank of zero. So,
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they make a negligible contribution to the final risk value, and they are skipped in the
second DQFM stage. The two-stage DQFM selects diverse resampling hazard points based
on the threshold selection. As a result, the accuracy, results, and computational efficiency
of the algorithm vary by the threshold selection.
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In addition, to show the difference between the proposed DQFM and conventional
DQFM, the system fragility curves from both approaches are compared in Figure 8. The sys-
tem fragility curves from two-stage DQFM are not as smooth as those from the conventional
DQFM at points that are larger than 1.4 g, since the results from the two-stage DQFM were
achieved with a small N1. The difference between the two fragility curves occurred only at
the points that made a small contribution to the final risk value. Therefore, the accuracy
of the final result was not affected by the gaps in the fragility curves. To validate the
accuracy and the robustness of the proposed method, despite the rougher system curve
shown in Figure 8, 500 different sample sets were generated for each threshold condition.
The means and the standard deviations of the 500 sets of results, the average Ns, and the
computational costs of the conventional and the two-stage DQFM with various thresholds
were compared.
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First, to investigate the accuracy of the proposed method, the normalized means of the
500 sets of the failure risk values of sub-systems and the total system (See Equations (13)–(19))
were determined. The results for the 500 sets from the two-stage DQFM were divided
by those from the conventional DQFM. The results in Figure 9 show that there was little
difference between the risk values from the conventional and the proposed methods.
Besides the TsEsWm scenario (“
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After validating the accuracy of the proposed method, the robustness and the efficiency
of the algorithm were also examined by comparing the variability of the results and the
corresponding resampling ratios. For each sub-system and total-system failure scenario,
the standard deviation of the 500 results from the two-stage DQFM was divided by that
from the conventional DQFM. Later, the mean of the normalized standard deviations was
determined as follows:

σTS
σDQFM

=
∑k+1

i=1 σi,TS/σi,DQDM

k + 1
(20)

where σTS and σDQFM are the means of σi,TS and σi,DQFM, and these denote the standard
deviations of the ith failure scenario by the two-stage DQFM and the conventional DQFM,
respectively. k is the number of sub-system failure scenarios (see Equations (13)–(19)).
In addition, the ratio of resampling points was computed as follows:

resampling points ratio =
resampling points

number o f hazard points
(21)

In this example, the number of hazard points is 196. Figure 10 presents the mean of
normalized standard deviations and resampling ratios from the two-stage DQFM with
different thresholds. The balance between the number of samples and the performance
of the two-stage DQFM can be indicated in this figure. In general, the two-stage DQFM
with any threshold conditions that have a resampling ratio higher than 70% delivered
a variability similar to that from the conventional DQFM. Especially, consideration of
accuracy, variability, and efficiency, the H4R30 condition is suggested as the optimal
threshold for a single-hazard risk assessment with the two-stage DQFM.
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The detailed results determined by conventional DQFM and two-stage DQFM with
H3R30 threshold are presented in Table 2. The means, standard deviations, and the average
Ns show that the two-stage DQFM used only 70% of the samples from the conventional
DQFM while delivering similar accuracy and variability. Also, the computational times
required for conventional DQFM and the two-stage DQFM with the H4R30 condition were
about 529.0 and 424.5 s, respectively. This improvement in performances proves that the
proposed two-stage DQFM is effective even when the number of generated samples is
smaller than conventional DQFM.

Table 2. Results of 500 sets of seismic risk to the LGS NPP using the conventional DQFM and the
two-stage DQFM.

System Failure Scenario
DQFM Two-stage DQFM *

µ σ µ σ

TsEsUX 2.57 × 106 2.16 × 108 2.57 × 106 1.95 × 108

TsRb 1.14 × 106 6.31 × 109 1.14 × 106 6.33 × 109

TsRpv 4.96 × 107 2.01 × 109 4.94 × 107 2.22 × 109

TsEsCmC2 1.17 × 106 7.29 × 109 1.17 × 106 7.32 × 109

TsRbCm 6.65 × 107 2.46 × 109 6.64 × 107 2.52 × 109

TsEsWm 1.13 × 107 3.79 × 108 1.15 × 107 3.80 × 108

CM 4.32 × 106 4.34 × 108 4.32 × 106 4.41 × 108

Average Ns ** 196 × 2 × 104
First stage

Second stage
Total

196.00 × 2 × 102

135.71 × 2 × 104

137.67 × 2 × 104

Total computation time 529.0 s 424.5 s
* Results with the H4R30 threshold. ** Average number of samples generated for each component.

Saving approximately 20% of the computational time in a single-hazard risk quantifica-
tion problem might seem trivial, and may not have the advantage when risk quantification
is performed for a single time. yet it can be an important difference when repeated hazard
risk quantifications are required (e.g., system maintenance optimization problem [27] which
uses the system risk value as one of the objective functions [28]). Moreover, computational
cost reduction during single-hazard risk quantification means that further computational
costs can be reduced in the higher dimension (i.e., multiple hazards). Therefore, the ef-
ficiency of the two-stage DQFM in multi-hazard risk quantification is investigated in
Section 5.

5. Multi-Hazard Example: Earthquake and Tsunami
5.1. Setting the Problem

To further examine the benefit of using two-stage DQFM for risk quantification,
a multi-hazard example, the LGS NPP under earthquake–tsunami hazard, was inves-
tigated. The earthquake–tsunami hazard information was taken from a report by the
Korea Atomic Energy Research Institute (KAERI) [29]. As shown in Figure 11, the seis-
mic intensity (PGA, g) was uniformly divided into 21 points, and the tsunami inten-
sity (inundation depth, m) was uniformly divided into 41 points. Accordingly, the final
multi-hazard grid has 861 points. While the same system model and seismic fragility
model were adopted (See Equations (13)–(19) and Table 1), tsunami fragility information
is adopted from Kwag et al. [23] and summarized in Table 3. Like the previous example,
two groups of components are assumed to be partially correlated because of spatial prox-
imity (ρs = ρt = 0.7): S11, S12, S13, and S14 are in the same reactor building, and S15 and
S16 are located in the same diesel generator building.
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Table 3. Tsunami fragility of the LGS NPP components (adapted from Ref. [23]).

Component Rmt (Amt) βRct BCct

S1 Offsite power 10 m 0.354 0.354
S2 Condensate storage tank 10 m 0.212 0.212
S11 440 V bus/SG * breakers 11 m 0.212 0.212
S12 440 V bus transformer breaker 11 m 0.212 0.212
S13 125/250 V DC ** bus 11 m 0.212 0.212
S14 4 kV bus/SG 11 m 0.212 0.212
S15 Diesel generator circuit 11 m 0.212 0.212
S17 RHR *** heat exchangers 10 m 0.212 0.212

* Steam generator. ** Direct current. *** Residual heat removal.

To perform two-stage DQFM, the 18 threshold combinations used in the single hazard
risk assessment are used. The two-stage DQFM with various thresholds and the con-
ventional DQFM are compared using the means and standard deviations of the results
from 500 sets of evaluation, the number of total samples, and computation time. Also,
this example adopts same options, i.e., N = 104 for conventional DQFM, and N1 = 102

and N2 = 104 for two-stage DQFM. The numerical investigations were conducted using a
personal computer with Windows 10 (64 bit) operating system equipped with an Intel(R)
Core(TM) i7-9700K CPU @ 3.6 GHz and 16 GB RAM.

5.2. Results and Discussion

Figure 12 shows the resampling points selected by a single run of the proposed two-
stage DQFM with 18 thresholds. It should be noted that the resampling ratio varies by the
threshold selection, and hazard points with high PGAs or high inundation depth were more
likely to have a resampling rank of zero, while those with low values had a resampling
rank of one. The two-stage DQFM selected diverse resampling hazard points based on
the threshold selection, which affects the accuracy and the computational efficiency of
the algorithm.
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In addition, the system fragility curves from the conventional DQFM and the two-
stage DQFM with H3.5R20 and H4R1 thresholds are compared in Figure 13 with their
corresponding resampling ranks. Figure 13a shows that the system fragility curve of
the two-stage DQFM was not as smooth as that from the conventional DQFM because
there were very few resampling points. On the other hand, Figure 13b shows that a
smoother system fragility curve can be achieved with a larger number of resampling points.
As Figure 13a,b show, the number of resampling points and the convergence of the system
fragility curve have a tradeoff relationship. To validate the two-stage DQFM and to find
the most efficient combination of thresholds, results from 500 different sets were further
investigated by each approach and threshold.
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First, to validate the accuracy of the results, the means of the multi-hazard risks from
the two-stage DQFM were compared with that of the conventional DQFM. The normalized
means of 500 sets, which divided the results from the two-stage DQFM by the conventional
DQFM, are plotted in Figure 14. In general, the results from the two-stage DQFM show
a high level of accuracy. There is less than a 0.5% difference from the results from the
conventional DQFM. The results from the TsEsWm (“
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have a relatively larger difference than other scenarios, yet still show the good agreement
between the two approaches regardless of the threshold selection.
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tsunami risk to the LGS NPP from various thresholds.

Second, to validate the efficiency of the two-stage DQFM, the mean of normalized
standard deviations (See Equation (20)) was determined and plotted in Figure 15 with
the corresponding resampling ratio. Results show the tradeoff between the number of
resampling points and the standard deviation at the Pareto surface. As the resampling ratio
increases, the mean of normalized standard deviations converges toward 1, which means
that the variabilities of the two approaches are the same. Among the threshold combina-
tions, H3.5R20 was identified as the optimal threshold; there is little benefit of increasing
resampling points larger than H3.5R20. Including the H3.5R20 threshold, most of the
threshold combinations with a resampling ratio higher than 20% show the similar or less
variability than that of the conventional DQFM.
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Table 4 summarizes the means and the standard deviations of the sub-systems and
total-system risks determined by the conventional DQFM and the two-stage DQFM with
the H3.5R20 threshold. The computational time required for conventional DQFM and
the two-stage DQFM with the H3.5R20 condition was about 3128.5 s and 862.9 s, respec-
tively. The two-stage DQFM required about 28% of the computational time needed by the
conventional DQFM, yet it did not lose the accuracy and variability of the results.

Table 4. Results of 500 sets of earthquake-tsunami risk scenarios at the LGS NPP using the conven-
tional DQFM and the two-stage DQFM.

System Failure Scenario
DQFM Two-Stage DQFM *

µ σ µ σ

TsEsUX 5.53 × 106 3.62 × 108 5.53 × 106 3.67 × 108

TsRb 1.04 × 106 5.84 × 109 1.04 × 106 5.65 × 109

TsRpv 4.10 × 107 2.24 × 109 4.10 × 107 2.41 × 109

TsEsCmC2 1.10 × 106 6.71 × 109 1.10 × 106 6.92 × 109

TsRbCm 5.83 × 107 2.73 × 109 5.83 × 107 2.82 × 109

TsEsWm 8.51 × 107 2.84 × 108 8.50 × 107 2.83 × 108

CM 8.20 × 106 4.63 × 108 8.21 × 106 4.72 × 108

Average Ns ** 861 × 4 × 1× 104
First stage

Second stage
Total

861.00 × 4 × 102

175.47 × 4 × 104

184.08 × 4 × 104

Total computation time 3128.5 s 862.9 s
* Results with the H3R30 threshold. ** Average number of samples generated for each component.

A comparison of the results of the single- and multi-hazard examples (Sections 4 and 5)
shows that the efficiency of the two-stage DQFM is more notable for risk assessment
with multiple hazards than with a single hazard. The efficiency of the developed method
disproportionally increases for higher dimensions since the resampling ratio quickly de-
creases as the hazard dimension increases. It could be expected from this result that the
two-stage DQFM can further increase computational efficiency for multi-hazard situations
with more than two hazards. Such computational benefits of the two-stage DQFM would
contribute to multi-hazard risk reduction by allowing multi-hazard risk planning with
reduced computational costs.

6. Conclusions

This paper proposed a two-stage DQFM method to improve the computational effi-
ciency of the conventional DQFM method without losing the accuracy or variability of the
results. To this end, the two-stage DQFM divides the hazard points into two groups based
on their contribution to the final hazard risk values, and it assigns a different number of
samples to each group. Two measures (i.e., the cumulative rate of the differential hazard
value and the risk value) were adopted to classify the hazard points by their importance.
The validity and the improved efficiency of the two-stage DQFM were demonstrated using
both single- and multi-hazard risk assessment problems. Especially in the multi-hazard
risk quantification problem, the proposed method showed a significant reduction of com-
putational cost: it required only 28% of the cost of the conventional DQFM. As a result,
the proposed method is expected to support single- and multi-hazard risk quantification of
nuclear facilities with improved computational efficiency.
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