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Abstract: The current energy transition and the underlying growth in variable and uncertain
renewable-based energy generation challenge the proper operation of power systems. Classical
probabilistic uncertainty models, e.g., stochastic programming or robust optimisation, have been used
widely to solve problems such as the day-ahead energy and reserve dispatch problem to enhance
the day-ahead decisions with a probabilistic insight of renewable energy generation in real-time.
By doing so, the scheduling of the power system becomes, production and consumption of electric
power, more reliable (i.e., more robust because of potential deviations) while minimising the social
costs given potential balancing actions. Nevertheless, these classical models are not valid when the
uncertainty is imprecise, meaning that the system operator may not rely on a unique distribution
function to describe the uncertainty. Given the Distributionally Robust Optimisation method, our
approach can be implemented for any non-probabilistic, e.g., interval models rather than only sets
of distribution functions (ambiguity set of probability distributions). In this paper, the aim is to
apply two advanced non-probabilistic uncertainty models: Interval and ε-contamination, where
the imprecision and in-determinism in the uncertainty (uncertain parameters) are considered. We
propose two kinds of theoretical solutions under two decision criteria—Maximinity and Maximality.
For an illustration of our solutions, we apply our proposed approach to a case study inspired by the
24-node IEEE reliability test system.

Keywords: energy and reserve dispatch; imprecise uncertainty; maximinity and maximality; optimal
decision

1. Introduction

One of the important points in our life is to deal with uncertainties. The uncertainty
is present because of lack of information or data. Philosophically, it is about ‘known
unknowns’, e.g., deterministic/classical uncertainty or ‘unknown unknowns’, e.g., in-
deterministic—imprecise (advanced) uncertainty [1]. One of the famous uncertainty models
is a probabilistic (data-driven or analytical) model. These models’ intentions are to represent
for instance agent’s belief (agents like humans, machines, or robots) about the domain they
are operating in, and which describe and even determine the actions they will take in a
diversity of situations or realisations. Probability theory provides a normative system for
reasoning and decision making in the face of uncertainty. Bayesian or precise probability
models have the property that they are completely decisive, i.e., a Bayesian agent always
has a best choice when faced with several alternatives, whatevertheir state of information
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is. While many may view this as an advantage, it is not always realistic. There are two
problems, Gilboa [2] offerstheirtorical surveys, with (precise) probabilities as a model to
describe uncertainty: (i) The interpretation is not clear or at least, the consequences in
the real world are not clear. Therefore, we want an operational and behavioural model.
(ii) The model is too precise meaning the model is unique and static (while in reality, the
uncertainty is changing dynamically). In any decision problem under precise uncertainty,
there is always an optimal solution. One can behold some degenerate cases, for instance in
gambling, decide between two actions: to buy or sell a gamble. The assumption whether
there is a fair price or is not, either to accept or reject a gamble (like a utility), is not
that crucial, merely the acknowledgement of the possibility of indecision is what counts.
Imprecise probability models deal with said problems explicitly allowing for indecision
while retaining the normative and coherent stance of the Bayesian approach. We follow
the terminology and school of thought of Walley [1,3] who follows the tradition of Frank
Ramsey [4], Bruno de Finetti [5,6] and Peter Williams [7,8] in trying to establish a rational
model for a subject’s beliefs and reasoning for modelling imprecise uncertainty.

Interpretation of Lower and Upper Previsions—Walley’s Integration

A unification of many of the above-mentioned imprecise probability theories was
proposed by Walley [1]. In terms of probability interpretations, Walley’s formulation of
imprecise probabilities is based on the subjective variant of the Bayesian interpretation
of probability. Walley defines upper and lower probabilities as particular cases of upper
and lower previsions and the gambling framework advanced by Bruno de Finetti [9]. In
simple terms, a decision maker’s lower prevision P(·) is the highest price α at which
the decision-maker is sure he or she would buy a gamble f such as utility (reward or
loss) function,

P( f ) := sup{α : f − α ≥ 0},

and the upper prevision P(·) is the lowest price β at which the decision-maker is sure he
or she would buy the opposite of the gamble (which is equivalent to selling the original
gamble) f ,

P( f ) := inf{β : β− f ≥ 0}.

If the upper and lower previsions are equal, they jointly represent the decision maker’s
fair price for the gamble f , the price at which the decision-maker is willing to take either
side of the gamble. The existence of a fair price leads to precise (classical) probabilities.
The allowance for imprecision, indecision, or a gap between a decision maker’s upper
and lower previsions, is the primary difference between precise and imprecise probability
theories—shown in Figure 1. Such gaps arise naturally, for instance, in betting markets
which happen to be financially illiquid due to asymmetric information. Henry Kyburg [10]
also gives this gap repeatedly fortheir interval probabilities, though he and Isaac Levi [11]
give other reasons for intervals representing states of belief as well.

Figure 1. Highest buying price and lowest selling price for a gamble f —imprecise models allow
for indecision.

Our case study here is an especial case of linear programming problem under uncer-
tainty. There are many applications for linear programming under uncertainty problems,



Energies 2021, 14, 1016 3 of 19

some of them are given by Dantzig in [12] (Example 2), which is about finding the min-
imum expected cost diet in a Nutrition problem. These are some examples of a broader
application on optimisation under uncertainty: generation of electrical power, operation of
reservoirs, inventory management, portfolio selection, facility planning, pollution control,
stabilisation of mechanisms, path planning problem [13], epistemic uncertainty in AI and
machine learning [14], and analysis of biological systems (another classical way to solve
Linear Programming (LP) problems under interval uncertainty is interval arithmetic [15])
see, e.g., [16].

In the electricity generation mix, the continuous growth in renewable energy genera-
tion is incentivised by governments as well as intergovernmental climate change agree-
ments. This motivation brings challenges into the safe operation of power systems. One
of these challenges is related to the uncertainty and variability stemming from weather-
dependent energy generation which may jeopardise the day-ahead scheduling of power
systems [17]. In practice, the generators are dispatched within the day-ahead energy dis-
patch for the next day, while reserve capacities are booked within the day-ahead reserve
dispatch. These reserves may be activated in real-time if needed, aiming at compensating
the potential deviations from day-ahead forecasts. In the current European regulatory pol-
icy, energy and reserve are dispatched separately and sequentially whereas a simultaneous
dispatch is considered in the U.S. liberalised framework.

Traditionally, the energy and reserve dispatch problems are solved with a determin-
istic insight of uncertainty (i.e., considering a single-point forecast of renewable-based
generators). However, the growing uncertainty stemming from weather-dependent gen-
erators requires uncertainty-aware day-ahead energy and reserve dispatch. Considering
the U.S. simultaneous energy and reserve dispatch (in the European Union, the reserve
and energy markets are cleared sequentially, while they are cleared jointly in the U.S.),
this paper focuses on the incorporation of the uncertainty into the energy and reserve
dispatch solution with two advanced uncertainty models which account for imprecision
and in-determinism, i.e., the erroneous modelling of uncertainty via a unique distribution
function. Classical uncertainty modelling techniques have been widely used in recent
literature. Stochastic programming considers the availability of a discrete set of scenarios
assigned with an occurrence probability, which approximates the ideal true distribution
function [18]. This optimisation framework is known to provide poor out-of-sample perfor-
mances unless the number of scenarios increases, which in turn increases the computational
burden to solve the problem [19]. Differently, robust optimisation minimises the energy
and reserve dispatch decision costs under the worst-case realisation of uncertainty within
an uncertainty set (i.e., the set of plausible realisations of uncertainty). However, the focus
on worst-case realisation is known to provide over-conservative solutions [20].

Differently, distributionally robust optimisation (DRO) [21,22] considers a set of po-
tential distributions, called ambiguity set, to hedge against the inevitable error made by
relying on a unique distribution which is never exact. The decisions are next selected
to be optimal for the worst-case distribution inside the ambiguity set, i.e., the one that
mostly affects the objective function. The ongoing research suggests that DRO may perform
similarly to scenario-based programming or robust optimisation by finely tuning the size of
the ambiguity set and therefore DRO may even perform better in some particular cases [23].
However, our approach does not require a set of distribution functions. The two uncer-
tainty models, given in this paper, are non-probabilistic, i.e., pure vacuous interval model
and contamination of an interval model with a single probability distribution function. In
both models, we do not need to make an ambiguity set (which requires a lot of data to
build, anyhow).

These classical probabilistic modelling frameworks (e.g., stochastic and robust optimi-
sation) are not valid when the uncertainty is imprecise, meaning that the naive reliance
on a unique distribution describing the uncertainty may result in suboptimal energy and
reserve dispatch. Imprecision or indeterminism exists when the uncertainty is changing.
For instance, (i) it is not unique and varies (ii) the uncertain model is a non-probabilistic
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indeterministic model such as interval (iii) there are missing data which is vague and
conflicting or (iv) the data deal with a belief that may be subjective such as rare event (like
weather condition). Hence, those said reasons do not allow us to build stochastic or have a
single (true) distribution about the uncertainty.

The paper is organised as follows. In Section 2, the model and theoretical results
are discussed. Section 3 talks about numerical results regarding day-ahead energy and
reverse dispatch problem and illustrates the results on a 24-node IEEE reliability test system.
Section 5 discusses the conclusion and the future works.

2. Model
2.1. Recap

This section is a quick overview of the most important concepts of imprecise decision
theory (for more details, we propose consulting [1,24,25]) and uncertain linear program-
ming (LP) problem. Since the Day-Ahead energy and reserve dispatch problem is an LP
problem we first discuss general LP problem under uncertainty in the next Section 2.1.1.

2.1.1. Linear Programming under Uncertainty

Many applications for LP under uncertainty (LPUU) problems exist, few are addressed
by Dantzig in [12] (Example 2), which is habitually about obtaining the minimum expected
cost, e.g., most inexpensive diet in a Nutrition problem. Here is some fascinating more
comprehensive application of optimisation under uncertainty: Optimisation under un-
certainty in Artificial Intelligence, Generation of electrical power, Operation of reservoirs,
Inventory management, Facility planning, Optimal portfolio selection, Pollution control,
Stabilisation of mechanisms, and Analysis of biological systems [16]. An LPUU problem is
a generalisation of the LP problem where at least one of the coefficients of the LP problem
is uncertain (meaning they are not deterministic, we do not know the exact values or the
values are not known, precisely). For instance, the only information about the coefficient is
lower or upper values in an interval or some unique probabilistic information. The generic
(standard) linear programming problem under uncertainty is defined as follows,

maximise UTx

such that Yx ≤ Z, x ≥ 0 (1)

where x ∈ Rn is an optimisation vector of variables xj, U is a random vector taking values
u ∈ Rn, the matrices Y and Z are random matrices taking values y ∈ Rm×n and z ∈ Rm,
respectively (we assumed that yij, zi and uj the elements of Y, Z and U are independent. In
this paper, we worked with the maximisation operator. Since min UTx = −max −UTx,
therefore, all results and proves can be applied and held for the minimisation operator
as well).

2.1.2. Reformulating LP Problem as a Decision Problem

Our approach is to reformulate the LP problem (1) to a well-posed decision problem.
In a decision problem, first we need to define a gain (loss) function Gx for each decision
x ≥ 0 in problem (1), as follows:

Gx := (UTx− L)IYx≤Z + L (2)

where IYx≤Z(v) is an indicator function which is equal to one if x is in the feasibility space
and is zero when x is infeasible for any realisations v = (y, z) that the random variable
V = (Y, Z) assumes. Maximising Gx is equivalent to solve problem (1). Because, for each
decision x ≥ 0 and any outcome or realisation (y, z) when x is feasible (or equivalently
IYx≤Z(v) = 1) then we have a reward equal to UTx otherwise we have to be punished
with real value L (or equivalently IYx≤Z(v) = 0). L ∈ R is small enough and is interpreted
as a penalty/punishment value for violating the constraints. Second, we need to define
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decision criteria. In this paper, two decision criteria are used: maximinity and maximality,
for more details, please see [24,25].

Maximality Criterion

Consider a case that a decision maker seeks decisions x—so called maximal decisions/
solutions—that are undominated in pairwise comparison with all other decisions (partial
order), i.e., no decision z is consider better than x:

x is maximal⇔ @z ∈ X , z � x

⇔ ∀z ∈ X , z 6� x

⇔ ∀z ∈ X , P(Gx − Gz) ≥ 0

⇔ inf
z∈X

P(Gx − Gz) ≥ 0. (3)

By applying the maximality criterion in (3) to the gain function which is defined in (2),
we have x ≥ 0 is maximal if and only if,

inf
w≥0

P
(
(UTx− L)IYx≤Z − (UTw− L)IYw≤Z

)
≥ 0. (4)

Maximinity (Γ-Maximin) Criterion

Maximin solutions derive from worst-case reasoning (worst-case scenario), i.e., they
are the decisions that have the highest lower expected utility (similarly, maximaxity
solutions—best-case reasoning/scenario—can be found by just replacing the lower previ-
sion P to the upper prevision P in (5)),

x is maximin or gamma maximin⇔ x ∈ argmax
z∈X

P(Gz) (5)

Note that, any maximin solutions are also in maximal solutions set [25]. In both,
maximinity and maximality criteria, argmaxz∈X P(Gz) and inf

z∈X
P(Gx − Gz) are functions

of x in X , therefore, we need to calculate and find that, (i) in maximinity: for which
z ∈ X the function—P(Gz)—has the highest value, and (ii) in maximality: the function—
inf
z∈X

P(Gx −Gz)—is positive or zero. For further information and details in decision making

with imprecise probabilities, we refer to [26].
By applying the maximinity criterion in (5) to the gain/loss function defined in (2),

we find the set of maximin solutions which are given by,

argmax
x≥0

P(Gx) = argmax
x≥0

P
(
(UTx− L)IYx≤Z + L

)
(6)

In the next two sections, we will give maximin and maximal solutions to problem (1)
in two separate uncertainty models—intervals and ε-contamination.

2.1.3. Interval Model
Maximin Solutions in Interval Case

By combining these interval prevision definitions in [25] with Equation (6), the max-
imin solutions become a classical linear programming problem is an inner feasibility space
which can be written as:

max
x∈Rn

UTx

such that Yx ≤ Z, x ≥ 0. (7)
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Maximal Solutions in Interval Case

We arrange the decision x ≥ 0 in an (partial) order so that is not dominated by any
other decisions w ≥ 0. The maximal solutions become a classical feasibility problem:{

x ∈ Rn
≥0 : x ∈ A and uTx ≥ uTxm

}
≡
{

x ∈ Rn
≥0 : Yx ≤ Z and uTx ≥ uTxm

}
. (8)

where, u = (u1, · · · , un), xm is the maximin solution and A is an outer feasibility space
defined as follows,

A :=
⋃

(y,z)∈A×B

{x ≥ 0 : yx ≤ z} :=
{

x ∈ Rn
≥0 : Yx ≤ Z

}
One of the interesting properties in these results is that the solutions in both criteria—

maximinity and maximality—do not depend on L. For more details, see [27,28],

2.1.4. ε-Contamination Model
Maximin and Maximal Solutions in Contamination Case

By combining the general maximin solution in (6) and the general maximal solutions
in (4) with the lower prevision definition in [25], the maximin solution xε

M ∈ Xε
M can be

found by solving the linear optimisation problem which are defined as follows (0 < ε < 1),

Xε
M :=

{
argmax

x≥0
P
(
(UTx− L)IYx≤Z

)
ε
}
∪
{

argmax
{x∈Rn

≥0 :yx≤z}

(
(1− ε)uTx

)}
. (9)

The maximal solutions are given as a convex set and can be found by vertex enumera-
tion or more advance Lagrange Duality method (see, e.g., [29]){

argmax
x≥0

P
(
(UTx− L)IYx≤Z

)
ε
}
∪
{
(1− ε)x ∈ Oε

}
(10)

where Oε is the outer feasibility space (which turns out to be convex) and is defined
as follows,

Oε :=
⋃

(y,z,u)∈B

{
x ∈ Rn

≥0 : yx ≤ z ∧ uTx ≥ uTxε
M

}
=
{

x ≥ 0 : yx ≤ z ∧ uTx ≥ uTxε
M

}
.

2.2. Day-Ahead Energy and Reserve Dispatch Problem

The Day-Ahead (DA) energy and reserve dispatch problem (11) aims at minimising
the social electricity costs (which is equivalent to maximising the social welfare when
the load is considered inelastic) by properly scheduling the generators. These costs are
composed of (i) the cost of energy generation cT p where c ∈ R|G| represents the generation
costs in ($/MWh) and p ∈ R|G| represents the energy generation from the generators in
(MWh), (ii) the cost of procuring upward/downward reserve capacity cTr + cTr where
c, c ∈ R|G|, respectively represent the upward/downward reserve procurement costs in
$/MW and r, r ∈ R|G| represents the reserve procurement of the generators in MW and, (iii)
the real-time cost of balancing actions cTYξ where Y ∈ R|G|×|W|≤0 is a matrix containing the
participation factor of each generator to the per-unit uncertain renewable energy deviation
from day-ahead forecast ξ ∈ R|W|, such that Yξ represents the balancing action in real-time
of the generators in MW. The set of decision variables is given by {p, r, r, Y} whereas the
uncertainty stems from the deviation in renewable-based energy generation from day-
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ahead forecast ξ. The mathematical model of the joint DA-energy and reserve dispatch
problem is,

min
p,r,r,Y

cT p + cTr + cTr + cTYξ (11)

s.t. p + r ≤ pmax (12)

p− r ≥ pmin (13)

0 ≤ r, r ≤ rmax (14)

eT
|G|p + eT

|W|Wµ− eT
|D|d = 0 (15)

eT
|G|Y + eT

|W|W = 0 (16)

− r ≤ Yξ (17)

Yξ ≤ r. (18)

From our definition of variables Y (MW) and ξ (p.u.), the mathematical interpretation
of the cost function is still consistent concerning the units. Because, in this paper, the
energy and reserve dispatch problem solved for a single period of one hour. This means
that power and energy have the same numerical value (E (MWh) = P (MW)× ∆t (h)) ,
where ∆t = 1 (h). For clarity and unit consistency, we may multiply the real-time costs
cTYξ by a constant ∆t = 1 (h) but this will not affect the final results. The constraints
(12) and (13) verifies that the schedule respects the generator upper and lower capacity
limits, i.e., pmax ∈ R|G| and 0 ∈ R|G|. Equation (14) imposes the maximum allowed
capacity for reserve procurement of each generator as rmax ∈ R|G|. The day-ahead energy
balance is required by Equation (15) where e. is a vector of ones which dimension is given
by the index, W ∈ R|W|×|W| is a diagonal matrix containing the renewable generator
capacity and µ ∈ R|W| represents the day-ahead renewable generation forecast such
that eT

|W|Wµ is equal to the scheduled sum of renewable power generation; d ∈ R|D|

corresponds to the vector of demands. The real-time balance is required by (16) where the
participation factors are selected in such a way that any deviation ξ will be compensated by
the generators. Constraints (17) and (18), respectively imposes that the downward/upward
reserve activation in real-time does not exceed the booked reserve capacity in day-ahead.

The problem (11) is a linear programming problem under uncertainty, where the
uncertainty is in the goal function as well as the constraints. There are 84 optimisation
variables and 161 constraints (which is consist of 84 sign constraints, 72 inequality, and 5
equality constraints). In this paper, we use the imprecise decision theory (for more info
and deeper insight concerning the theory of imprecise probability and imprecise decision
theory, we refer the reader to [24,25]) to solve the problem. Some of the theories and
definitions, which are used in this paper, are explained in Section 2.1. In the next section,
first, we explain about the use case on DAERD problem, then we will talk about the
theoretical results for the problem (11) under two imprecise uncertainty models: Interval
and ε-contamination, wherein each model, we propose the solutions under two decision
criteria—Maximinity and Maximality.

2.3. Use Case—Data and DA-Problem Modelling

As our case study, we use an adapted version of the IEEE 24-node reliability test
system [30], which is composed of 12 conventional generators, 4 wind farms and 17 loads,
shown in Figure 2 as follows.

The total generation capacity is equal to 2835.1 (MW), in which 1600 (MW) correspond
to the sum of renewable generators capacity. Reserves can be booked up to 798 (MW)
out of the maximum conventional generator capacity. The total load, which is assumed
inelastic, equals to 2207 (MW). The costs and capacity parameters are given in Table 1 for
each (individual) actor connected to the grid, as follows,
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Figure 2. DA-Energy and Reserve Dispatch problem—Adapted IEEE 24-node reliability test system.

Table 1. Network parameters.

Generators 1 2 3 4 5 6 7 8 9 10 11 12

cg ($/MWh) 13.32 13.32 20.7 20.93 26.11 10.52 10.52 6.02 5.47 7 10.52 10.9

cg ($/MW) 1.68 1.68 3.3 4.07 1.89 5.48 5.48 4.98 5.53 8 3.45 5.11

cg ($/MW) 2.32 2.32 4.67 3.93 3.11 3.52 3.52 5.02 4.97 6.00 2.52 2.9

Pmax
g (MW) 127.7 127.7 294 496.5 50.4 130.2 130.2 336 336 252 260.4 294

Pmin
g (MW) 0 0 0 0 0 0 0 0 0 0 0 0

rmax (MW) 48 48 84 216 42 36 36 60 60 48 72 48

Wind Farms 1 2 3 4

W (MW) 500 500 300 300

Loads 1 2 3 4 5 6 7 8 9 10 11 12 13–17

d (MW) 84 75 139 58 55 106 97 132 135 150 205 150 ...
...245 77 258 141 100

2.4. Interval Model—DA-Energy and Reserve Dispatch Problem

We assume ξs are given by interval models and µs are mean values in each interval,

min
p,r,r,Y

cT p + cTr + cTr + cTYξ

s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ & Yξ ≤ r

ξi := [ξ i, ξ i] (19)

where,

e1 = 1|G|, e2 = 1|W|, e3 = 1|D| are unit metrics,

p, r , r ∈ R|G|≥0, and Y ∈ R|G|×|W|≤0 are the optimisation variables,
W, c, c, c, pmax, pmin, rmax, d are given via Table 1,
g ∈ G, W ∈ W , d ∈ D represent the set of generators, wind farms, and demands,
respectively.

This problem—because of the term cTYξ in the goal function—is an uncertain Sym-
bolic Linear Programming (S-LP).
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2.4.1. Maximin Solutions in Interval Case

According to the theoretical maximin solution given by (7), the worst-case scenario
theoretical solution is formulated as a classical LP problem under the smallest (inner)
feasibility space.

min
p,r,r,Y

cT p + cTr + cTr + cTYξ

s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ & Yξ ≤ r (20)

where, ξi := [ξ i, ξ i] and this is a classical S-LP problem.

2.4.2. Maximal Solutions in Interval Case

According to the theoretical maximal solutions which are given by (8) in Section 2.1,
we consider a bigger feasibility space (i.e., the uncertainty space is shrunk) to compute a
set of feasible solutions (which may or may not be optimal). This problem can be expressed
as a classical feasibility problem as follows,

∀X := (p, r, r, Y) ∈



cT p + cTr + cTr + cTYξ ≤ k
0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0
−r ≤ Yξ & Yξ ≤ r


(21)

where, ξi := [ξ i, ξ i] and k is the maximin solution given by (20). Equation (21) thereby
represents a set potential solution to the initial problem (11), that perform better than the
maximin (worst-case) solution in terms of the optimal objective function, but maybe less
restrictive on the consideration of uncertainty. Since this feasibility space is convex, we
need to find the vertices (i.e., forming the convex hull). Therefore, the complexity of the
solution is not NP-hard and represents the potential of our approach.

2.5. ε-Contamination Case—DA-Energy and Reserve Dispatch Problem

Definition 1. An ε-contamination model is a convex combination of two uncertainty models.
(i) Probabilistic model, e.g., probability measure P, (ii) non-probabilistic (imprecise) model, e.g.,
interval model (in this paper) Q, which is defined as follows:

P(Gx) = (1− ε)P(Gx) + εQ(Gx) (22)

The uncertainty about ξ is given by an ε-contamination model, which are the proba-

bilistic model, for instance, normal distribution function ξP
i and interval model ξ

Q
i as fol-

lows,
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min
p,r,r,Y

cT p + cTr + cTr + cTYξ

s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ & Yξ ≤ r

ξ
Q
i := [ξ

Q
i , ξ

Q
i ] & ξP

i ∼ Ni(µξ , σξ) (23)

This problem—because of the term cTYξ in the goal function—is an uncertain (S-

LP) problem and we have two independent probabilistic (ξP
i ) and non-probabilistic (ξ

Q
i )

uncertain models for each ξi. The ε-contamination model is more advanced that considers
both precise and imprecise models. A precise model, for instance, a probabilistic model
such as probability distributions. An imprecise model, for instance, a non-probabilistic
model such as intervals. One technique to construct these two independent models is via
two different tests—Robustness test and Reliability/Sensitivity test.

2.5.1. Maximin Solutions in ε-Contamination Case

From the theoretical solution (9), the maximin solution is a classical symbolic pro-
gramming problem as follows,

ε
(

argmin
p,r,r,Y

cT p + cTr + cTr + cTYξP
) ⋃

s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ YξP & YξP ≤ r

ε
(

argmin
p,r,r,Y

cT p + cTr + cTr + cTYξQ
)

s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ
Q

& YξQ ≤ r

(24)

where, 0 < ε < 1 (for the spacing, we assume ε := 1− ε), the elements of ξP are given by

the normal distribution functions Ni(µξ , σξ), and the elements of ξQ, ξ
Q

are the lower and

upper bounds of given interval models: [ξ
Q
i , ξ

Q
i ].

2.5.2. Maximal Solutions in ε-Contamination Case

Considering the theoretical maximal solutions (10), the less conservative maximal
scheduling parameter for the problem (11) is given as a convex combination of linear
optimisation problem and a classical convex hull problem as follows,

(
argmin

p,r,r,Y
cT p + cTr + cTr + cTYξ

)
ε

⋃
s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ & Yξ ≤ r

ε



cT p + cTr + cTr + cTYξ ≤ kε

0 ≤ p + r ≤ pmax

p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0
−r ≤ Yξ & Yξ ≤ r


(25)

where,

0 < ε < 1 (for the spacing, we assume ε := 1− ε),
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kε is the maximin solution,
ξi := [ξ i, ξ i], and
ξ is the mean value from the given probabilistic model.

3. Numerical Maximin and Maximal Solutions for the DA-Energy and Reserve
Dispatch Problem

In our past works [25], we have done theoretical and numerical studies about the
generic LPUU problem. In this section, we present numerical solutions. We discuss the
potential benefits of our methods compare to the classical uncertainty modelling techniques.
To describe the uncertainty stemming from the deviation ξ in wind power generation from
a day-ahead forecast µ, we use a dataset [31] which is composed of 1000 historical obser-
vations of wind power generation for four wind farms. We calculate the expected value
over this dataset and use it as forecasted wind power generation µ; i.e., the deviations are
computed by retrieving µ to each sample in the dataset, such that the resulting distribution
has a zero-mean. These new samples are used in Sections 3.1 and 3.2 to to define intervals
and Gaussian distributions to model the uncertainty, respectively.

3.1. Interval Case

We assume ξs are given as four intervals for four farms and µs are mean values in
each interval,

min
p,r,r,Y

cT p + cTr + cTr + cTYξ

s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ & Yξ ≤ r

ξi ∈
{
[−0.2313, 0.3999], [−0.2305, 0.4007], [−0.1705, 0.2719], [−0.1110, 0.3166]

}
µi ∈ {0.08437, 0.085105, 0.050705, 0.10279} (26)

where,

e1 = 11×12, e2 = 11×4, e3 = 11×17,

p, r , r ∈ R|G|=12
≥0 , Y ∈ R|G|×|W|=12×4

≤0 are the optimisation variables,
W, c, c, c, pmax, pmin, rmax, d are given via Table 1, and
g ∈ G, W ∈ W , d ∈ D represent the set of generators, wind farms, and demands,
respectively.

This problem—because of the term cTYξ in the goal function—is a (S-LP) problem.

3.1.1. Numerical Maximin Solution in Interval Case

Considering maximin solution (20), the worst case scenario solution for the prob-
lem (19) is given as a classical LP problem under the smallest (inner) feasibility space:

min
p,r,r,Y

cT p + cTr + cTr + cTYξ

s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ & Yξ ≤ r (27)

where,



Energies 2021, 14, 1016 12 of 19

µi ∈
{

0.08437, 0.085105, 0.050705, 0.10279
}

,
ξ i ∈

{
− 0.2313,−0.2305,−0.1705,−0.1110

}
, and

ξ i ∈
{

0.3999, 0.4007, 0.2719, 0.3166
}

.

We solve the S-LP via Julia tool [32] with Gurobi optimiser [33]. Julia tool uses Gurobi
optimiser which, is very powerful to solve symbolic optimisation problems. For a detailed
comparison to the other tools see [34]. The numerical solutions are as follows. The objective
value is 29184.94 := k,

p = [98.28, 97.58, 84, 168.11, 0, 117.58, 117.58, 314.77, 336, 252, 218.76, 271.55],

r = [29.40, 30.10, 48.59, 96.71, 0, 12.62, 12.62, 21.23, 0, 0, 41.64, 22.45],

r = [48, 48, 84, 168.11, 0, 36, 36, 36.74, 0, 0, 72, 48],

YT = −


36.1 0 210.1 0 0 0 0 73.8 0 0 180.1 0

0 0 0 419.6 0 0 0 18.01 0 0 0 62.44
123.5 176.5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 113.7 113.7 0 0 0 0 72.6


Under the worst-case scenario, the decisions are immunised against a higher set of

potential realisation of uncertainty in real-time. This intuition suggests that the solution of
(27) may be less risky (i.e., more conservative). This insight can be confirmed by the high
total amount of booked reserves (required to compensate for the potential high deviations
when the uncertainty is high). This is worth ∑ r = 315.36 [MW] and ∑ r = 576.85 [MW],
respectively for upward and downward reserves [35].

3.1.2. Numerical Maximal Solutions in Interval Case

Considering maximal solutions (21), the less conservative theoretical solution for
problem (19) is given as a classical convex hull problem which is the largest (outer) feasibil-
ity space:

∀X := {p, r, r, Y} ∈



cT p + cTr + cTr + cTYξ ≤ k = 29184.94
0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0
−r ≤ Yξ & Yξ ≤ r


(28)

where,

µi ∈
{

0.08437, 0.085105, 0.050705, 0.10279
}

,
ξ i ∈

{
− 0.2313,−0.2305,−0.1705,−0.1110

}
,

ξ i ∈
{

0.3999, 0.4007, 0.2719, 0.3166
}

.

The calculation is also done via Julia tool to find the vertices of the convex hull. The
vertices are saved as an output file (because of the big dimension for this problem).

Maximin solution is about the worst-case scenario solution. In other words, working
with the worst-case solution gives the least risks that a decision-maker could make. We
take the worst-case (maximin) solution as the lowest risky solution. Since a final decision
maker may not always need to take the lowest risky solution, the maximal solutions could
be better candidates (optimal decision) by accepting some risks. One way to calculate these
risks is to easily measure the distance between the maximal solutions and the worst-case
solution (for the objective values). We use L1 norm to calculate the distances (risks) and
normalise the result for comparison. Meaning, for every maximal solution, we measure the
distance between those solutions and the maximin solution using the L1 norm. Figure 3
shows the optimality versus (accepted) risk.
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Figure 3. Optimality versus Risk (distance).

We observe that the costs decrease when the distance between the decision set and the
benchmark solution set (which is taken as the less risky set) increases. This means that lower
operating costs may be achieved by the system operator via reducing the conservativeness
of the scheduling decisions. However, this may result in penalties related to the higher
reliability risks endorsed by the decision-maker (e.g., load shedding costs if the demand is
not satisfied in real-time which are not considered in this study).

3.2. ε-Contamination Case

In this case, we assume that ξs are given as four intervals and four independent
Normal Distribution Functions, which are estimated from the data in Table 1. As shown in
Figures 4 and 5. For four farms, µs are mean values of each distribution functions.

Figure 4. The first hour measured power error variations.
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Figure 5. The first hour measured power error distributions.

3.2.1. Numerical Maximin Solutions in ε-Contamination Case

Considering the theoretical solution (24), the numerical solution for the problem (23)
is a classical symbolic programming problem as follows,

ε
(

argmin
p,r,r,Y

cT p + cTr + cTr + cTYξ
) ⋃

s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ & Yξ ≤ r

ε
(

argmin
p,r,r,Y

cT p + cTr + cTr + cTYξ
)

s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ & Yξ ≤ r

(29)

where,

0 < ε < 1 (ε := 1− ε),
µi ∈

{
0.08437, 0.085105, 0.050705, 0.10279

}
,

ξ i ∈
{
− 0.2313,−0.2305,−0.1705,−0.1110

}
,

ξ i ∈
{

0.3999, 0.4007, 0.2719, 0.3166
}

, and
ξ ∈ {0.2367, 0.2325, 0.1774, 0.1321}.
The numerical solution for the probabilistic-part—left side in (24)—is calculated by

Julia tool (with Gurobi optimiser) as follows. The objective value: 15535.715,

p =
[
48, 57.96, 0, 189.45, 42, 130.2, 130.2, 336, 336, 252, 260.4, 294

]
,

r =
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
,

r =
[
48, 48, 0, 189.45, 42, 0, 0, 0, 0, 0, 0, 0

]
, and

YT =


−35.36 0 0 −309.25 −155.39 0 0 0 0 0 0 0

0 0 0 −500 0 0 0 0 0 0 0 0
0 −270.58 0 0 −29.43 0 0 0 0 0 0 0

−300 0 0 0 0 0 0 0 0 0 0 0

 (∗).

For all 0 < ε < 1 (and ε := 1− ε) the numerical maximin solutions are: The objective
value: 15535.715ε + 29184.94ε,

p =
[
48ε + ε98.3, 58ε + ε97.6, ε84, 189.5ε + ε168.1, 42ε, 130.2ε + ε117.6 + ...

... 130.2ε, ε117.6, 336ε + ε314.8, 336, 252, 260.4ε + ε218.8, 294ε + ε271.6
]
,

r =
[
29.40, 30.10, 48.59, 96.71, 0, 12.62, 12.62, 21.23, 0, 0, 41.64, 22.45

]
ε,
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r =
[
48, 48, ε84, 189.5ε + ε168.1, 42ε, ε36, ε36, ε36.8, 0, 0, ε72, ε48

]
, and

YT = −


35 + ε36 0 ε210 ε309 ε155 0 0 ε73 0 0 ε180 0
0 0 0 500ε + ε420 0 0 0 ε18 0 0 0 ε62
ε124 271ε + ε177 0 0 29ε 0 0 0 0 0 0 0
300ε 0 0 0 0 ε114 ε114 0 0 0 0 ε73

 (+)

3.2.2. Numerical Maximal Solutions in ε-Contamination Case

Considering the theoretical maximal solutions (25), the less conservative maximal
scheduling parameter for the problem (23) is given as a convex combination of linear
optimisation problem and a classical convex hull problem as follows,(
argmin

p,r,r,Y
cT p + cTr + cTr + cTYξ

)
ε

⋃
s.t. 0 ≤ p + r ≤ pmax, p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0

− r ≤ Yξ & Yξ ≤ r

ε



cT p + cTr + cTr + cTYξ ≤ 29184.94
0 ≤ p + r ≤ pmax

p− r ≥ pmin

0 ≤ r , r ≤ rmax

eT
1 p + eT

2 Wµ− eT
3 d = 0

eT
1 Y + eT

2 W = 0
−r ≤ Yξ & Yξ ≤ r


(30)

where,

0 < ε < 1 (ε := 1− ε),
µi ∈

{
0.08437, 0.085105, 0.050705, 0.10279

}
,

ξ i ∈
{
− 0.2313,−0.2305,−0.1705,−0.1110

}
,

ξ i ∈
{

0.3999, 0.4007, 0.2719, 0.3166
}

, and
ξ ∈ {0.2367, 0.2325, 0.1774, 0.1321}.
The numerical results are calculated by Julia tool (with Gurobi optimiser) and the

output file contains convex combination of the vertices.

4. Discussion
4.1. Numerical Results

To better show the high potential outcome of the interval and the contamination
numerical results, we focus on three cases.

Case (i) where the epsilon is very close to zero. In this case, the contamination solution
coincides with the purely probabilistic uncertain model (normal distribution) solution.
When ε = 1 then the imprecise part of contamination model is zero and we have a
pure precise case. In this case, the maximin and maximal solutions are the same as
(∗) in the solutions proposed in Section 3.2.1. In this case, the cost is equal to 15535.72
which is almost half of the interval case solution 29184.94 discussed in Section 3.1.1.
Case (ii) where the epsilon is very close to zero. In this case, the contamination
solution coincides with the interval solution. When ε = 0 then the precise part of
the contamination model is zero and we have a pure imprecise case. In this case,
the maximin and maximal solutions are equal to the interval solutions discussed in
Sections 3.1.1 and 3.1.2. We have discussed that maximal solutions are more optimal
and riskier than the maximin solution. The most optimal solution has the highest
risk, and the cost value is 21130, while the lowest risky solution has the cost value of
29184.94.
Case (iii) where the epsilon is between zero and one. In this case the contamination
maximin (maximal) solution(s) given in Section 3.2.1, is defined based on the selected
ε value. The cost value in this case is between 15,535.72 and 29,184.94. For instance, if
a decision maker chooses ε ∈ (0, 0.5), e.g., ε = 0.35, then he trusts less (%35) to the
probabilistic model and %65 to the imprecise model. The cost value with ε = 0.35
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is equal to 15,535.72 × 0.35 + 29,184.94× 0.65 = 18,970.2 + 5437.5 = 24,407.7 which is
lower than the interval case and higher than the pure probabilistic case.

In other words, the decision-maker has more freedom and measures (for risk and
optimality) to decide either less (more) risky solutions or less (more) optimal solutions
based on the other preferences/conditions such as economic situation, weather status,
safety measure, social status, and many more.

4.2. Comparison

In this paper, we focus on providing two sets of solutions based on two decision
criteria under the imprecise models (imprecise decision approach). These imprecise models
which are presented in this paper are rather new in the DA-Energy and Reserve Dispatch
Problems. To measure and quantify the imprecise uncertainty we use (coherent) lower and
upper previsions which is one of the advanced measures to deal with the imprecision. For
reasoning we have implemented the imprecise decision approach. As a comparison to
other methods dealing with uncertainty models for instance combined hybrid uncertainty
model proposed in [36] we have the following arguments. The approach in [36] is based
on propagation of uncertainty (the sensitivity analysis) and mainly focuses on the classical
interval arithmetic rather than providing direct (less/more conservative) solutions, see
Equation (15) in [36]. Although, the Contamination model is another Hybrid or even called
Mixed Model to contaminate non-probabilistic with probabilistic models via choosing
proper tuning factor (ε).

Contamination model is a probabilistic model when the epsilon is one which is out-
scope because 0 < ε < 1. In general, from the definition, the Contamination model is
convex combination of precise and imprecise uncertainty models which in this paper we
assumed a normal distribution for precise case and the interval for imprecise case. One of
our future work will be using other distributions in the Contamination model, e.g., Weibull
model, or more advanced and more informative Probability Box model for the imprecise
part of the contamination model.

Another argument is to the interval rough number which is more commonly used
in decision theory [37,38] rather than the pure interval variables proposed in this paper.
Generally, the interval rough number is based on the interval arithmetic which usually
used for propagating the uncertainty, while in our approach we use the imprecise decision
approach [24,25] to quantify and measure the imprecise uncertainty. We use two imprecise
decision criteria for reasoning about the solutions (is not propagating of the uncertainty).
More specifically, the problem which we have focused in this paper is a 161× 84 linear
system with a symbolic linear cost function where for the propagation method/s would be
too hard problem to be considered.

5. Conclusions

In this paper, we envisage the use of non-probabilistic uncertainty modelling tech-
niques such as interval model and more advanced, ε-contamination model (a mixture of
non-probabilistic and probabilistic models) for solving the day-ahead energy and reserve
dispatch problem under renewable generation uncertainty. We provide the novel theo-
retical background required for solving this problem under two criteria, i.e., maximum
and maximal criteria via more generic advanced theory—imprecise decision theory. We
solve the problem and discuss the potential trade-off between reliability risks and optimal
costs of day-ahead scheduling decisions. We observe that the decision-maker can achieve
lower costs by endorsing a riskier attitude. The risk is defined by the distance from the
worst-case solution via L1 norm. Furthermore, by using these advanced models we con-
sider imprecision in the uncertainty rather than a unique distribution from the classical
uncertainty models. An additional interesting result is to help the decision-maker to select
the optimal decision set within the available solutions. This method can be related to a
given risk threshold, and therefore improve the applicability of the proposed approach.
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As prospect to the current work, Probability Box (P-BOX) uncertainty modelling
technique [39], which is also an advanced and more informative model, may allow the
decision-maker to account for the uncertainty in the input distribution function to hedge
against erroneous distributions. Since we are focusing here on more advanced models
like Contamination which we need a probabilistic (non-probabilistic) model(s) we used
the simple Normal Distribution case. However, we will be applying more advanced
uncertainty using, e.g., Weibull Distribution for our future work.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

DA day-ahead
LP linear programming
S-LP symbolic linear programming
LPUU LP under uncertainty
sup supremum
inf infimum
DRO distributionally robust optimisation
G(n) set of generators (connected to busn)
g ∈ G generator
D(n) set of loads (connected to bus n)
d ∈ D load
W(n) set of wind farms (connected to bus n)
w ∈ W wind farm
cg production cost of generator g [€/MWh]
cT p cost of energy generation
c ∈ R|G| the generation costs in $/MWh
p ∈ R|G| the energy generation from the generators in MWh
cTr + cTr the cost of procuring upward/downward reserve capacity
c, c ∈ R|G| the upward/downward reserve procurement costs in $/MW
r, r ∈ R|G| the reserve procurement of the generators in MW
cTYξ the real-time cost of balancing actions
Y ∈ R|G|×|W| participation factor of each generator per-unit uncertain renewable energy deviation
ξ ∈ R|W| day-ahead forecast
Yξ the balancing action in real-time of the generators in MW
X := {p, r, r, Y} scheduling decision parameter
{p, r, r, Y} the set of decision variables
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