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Abstract: This paper proposes an Exponentially Varying Whale Optimization Algorithm (EVWOA)
to solve the single-objective non-convex Cogeneration Units problem. This problem seeks to evaluate
the optimal output of the generator unit to minimize a CHP system’s fuel costs. The nonlinear and
non-convex characteristics of the objective function demands a powerful optimization technique.
The traditional Whale Optimization Algorithm (WOA) is improved by incorporating four different
acceleration functions to fine-tune its performance during exploration and exploitation phases.
Among the four variants of the proposed WOA, the emphasis is laid on the EVWOA which uses the
exponentially varying acceleration function (EVAF). The proposed EVWOA is tested on six different
small-scale to large-scale systems. The results obtained for these six test systems, followed by a
statistical study highlight the supremacy of EVWOA for finding the best optimal solution and the
convergence traits.

Keywords: Combined Heat and Power Unit (CHP); Non-convex Optimal Economic Scheduling;
Cogeneration plants; Whale Optimization Algorithm (WOA); Exponentially Varying Acceleration
Functions; Meta-heuristic Optimization

1. Introduction

Cogeneration units are a single entity with the ability to produce thermal and elec-
trical energy. The ever-growing need for electrical and heat energy has contributed to an
increase in demand for these systems. There are manifold advantages of these schemes.
In comparison to coal-based thermal power plants and boilers, some of them have higher
productivity, economic benefits, lower environmental emissions, etc. These CHP systems
have a performance of about 80 to 85% [1], in comparison to the lower values of around
30 to 40% [2] of coal-based power plants. In CHP systems, by using waste heat that is
supplied to different regions as per their needs, they boost the aggregate efficacy of the
system. Figure 1 shows a sample sketch of the Heat Recovery Steam Generator, which
is one of the configurations of operating a CHP unit. Holding all these advantages of
cogeneration systems in mind, having the system run at the highest possible efficiency is of
utmost importance. This is made possible by knowing the system’s best dispatch schedule.
It leads to a CHPED conundrum in which, considering all the operational constraints,
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electrical and heat energy outputs of each generator unit are computed, such that the fuel
cost is the lowest.

Figure 1. Heat Recovery Steam Generation—One of the configurations of operation of CHP units.

This CHPED conundrum becomes complicated and cumbersome due to the non-convex
and nonlinear structure of cost function and considering various operational difficulties.
Therefore, to compute the best optimal solution, a strong optimization technique is required.
The technique should be able to prevent local trapping in the optimal solution to achieve
this best optimal solution and therefore pursue a global best solution by having a better
equilibrium between the exploration and exploitation phases. To solve the above-mentioned
conundrum, several various methodologies have been used in numerous studies.

Figure 2 shows a summary of the various optimization techniques. Some of the
conventional mathematical approaches used in numerous studies include Lagrangian
Relaxation [3], Dual and Quadratic Programming [4], and Bender’s decomposition [5], etc.
However, these methods are unable to find the required solution adequately because they
are unable to work successfully with the non-convexities and hard constraints.

Figure 2. Summary of various types of optimization algorithms.

To deal with the problem of not being able to handle the complexities, researchers have
now started using meta-heuristic methods and have found a rational solution. In earlier lit-
erature, some of the methods used were: Ant Colony Optimization (ACO) [6], Gravitational
Search Algorithm (GSA) [7], Krill Herd Algorithm (KHA) [8], Particle Swarm Optimization
(PSO) [9] and its variants such as Selective PSO [10], Time-Varying Acceleration Coefficients
PSO (TVAC-PSO) [9] etc. A Self-Adaptive Real coded GA (SARGA) has been proposed
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in [11]. A penalty factor-based constraint handling is used by the writers to solve the
conundrum. Harmony Search, which is based on an analogy of music improvisation
process has been used in [12]. An Improvised HS (IHS) technique has also been suggested
by the authors to solve the problem. To find a solution to the CHPED conundrum, the au-
thors in [13] used the Teaching-Learning-Based Optimization (TLBO). TLBO is based on a
teacher’s instructional style and its influence on the pupils. To further the developments,
the authors have also proposed a modification known as Oppositional TLBO. Differential
evolution (DE) is implemented in [14], which is centered on the adaptation mechanism
during species evolution. DE was used in association with a modern mutation operator
in [15]. To solve the problem, the authors considered the valve-point effect and added a
Gaussian mutation. To address the CHPED problem, a bio-inspired algorithm known as
Group Search Optimization (GSO) was used in [16] for solving the problem. It is centered
on animals seeking each other while coexisting together. In [17], its modification, referred
to as Opposition GSO (OGSO) was used. Several limitations were considered, such as
prohibited operating zones and valve-point loading of electrical generators. Cuckoo Search
(CS) in [18] has been incorporated for solving the CHPED conundrum. The cuckoo birds’
reproductive mechanism is the foundation for it. Because it has a reduced number of
control variables, the algorithm was simple to implement. While solving the conundrum,
the authors have considered power losses in the framework. Another method used for
solving the problem is Bee Colony Optimization (BCO). It sought to duplicate the form
of food hunting followed by the honeybees. It was used in [19] and consideration was
given to valve-point loading and power losses in the system. Researchers have made
use of another bio-inspired approach called Invasive Weed Optimization (IWO) in [20].
The growth trend of unwelcome and invasive weeds at a site forms the foundation of the
technique. The Exchange Market Algorithm (EMA) has drawn researchers’ interest as one
of the best methods of optimization and is used in [21]. The methodology is based on terms
from the stock exchange. This includes the role of elite partners in the sale and purchase of
market shares. The conduct of these elite stakeholders is analyzed and measured, which
forms the basis of the algorithm. Valve-point loading and power losses in the framework
have been considered. The algorithm based on Grey Wolf (GWO) was used in [22]. It is
focused on the wolves’ social actions and hunting practices. Several limitations have been
considered when solving the problem, such as valve-point loading, system power losses,
ramp-rate limits.

Mirjalili recently implemented a similar technique called the Whale Optimization
Algorithm (WOA) [23]. This mimics how when living beneath the surface of the wa-
ter, humpback whales behave and hunt. This approach has drawn the interest of the
researchers effectively and has even been implemented in [24]. The methodology has
proved its worth based on its capability of delivering a solution to different types of test
systems, with stronger solutions, lesser computational time, and good convergence charac-
teristics ranging from small to large scales. However, the simple WOA is not capable of
offering a promising solution when dealing with the large-scale multi-model problem [25].
The key problem is poor convergence speed [26] and premature convergence [27]. This is
because of not having a proper balance between local exploration and global exploitation
in basic WOA. In previous literature, several researchers have made numerous modifi-
cations to boost the efficiency of WOA by better balancing the process of discovery and
exploitation. Hongping et al. added a new inertia weight control function similar to PSO
in papers [28,29] and obtained an improved WOA (IWOA). This control function is used
to change the effect of the best solution currently available. Kaveh et al. recommended
enhanced WOA (EWOA) to improve the speed of convergence, reliability, and solution
accuracy [30]. In addition, Majdi et. al. proposed Hybrid WOA to solve the issue of
function selection [31]. In Hybrid WOA, to improve the best solution in each iteration, the
Simulated Annealing (SA) algorithm is paired with the WOA algorithm. Improving the
exploitation phase is the key goal of integrating the Simulated Annealing (SA) algorithm
with WOA. Reference [25] suggested WOA focused on the Levy Flight Trajectory to solve
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the issue of global optimization. To ensure a better negotiation between the exploration
and exploitation of the WOA, the suggested approach is very useful. Diego et al., in [32],
introduced enhanced Chaotic WOA (CWOA) for solving solar photovoltaic cell parameter
estimation. Chaotic maps are used for calculation in this CWOA method and the internal
parameters of the method are automatically chosen. Aziz et. Mohamed Abd El Aziz et al.
to achieve the optimum multi-level thresholds for image segmentation in [33], suggested a
hybrid approach consisting of WOA and Moth-Flame Optimization (MFO). A new MLP
training method based on the recently developed WOA for the optimization of relation
weights in neural networks is proposed in Reference [34]. Mohamed Abdel-Basset et al.
presented a framework for hybrid whale optimization with a local search approach to
address the issue of permutation flow shop scheduling in [35]. Kaur et al., in [26], by
considering multiple chaotic maps, the chaotic WOA (CWOA) approach was suggested.
For fine-tuning the key parameters of the WOA system, these chaotic maps are very useful,
for maintaining the exploration and exploitation of the proposed CWOA method. A hybrid
approach consisting of Support Vector Machines and WOA for solving the challenge of
detecting spammers in the issue of online social networks is proposed in Reference [36]. An
improved WOA (IWOA) for the correct extraction of the parameters of various solar photo-
voltaic model problems is proposed in Reference [27]. Two prey-seeking techniques have
been implemented by this IWOA approach to effectively preserve the proper balancing
between exploration and exploitation to boost WOA efficiency. In addition, Jadhav et al.,
recommended a hybrid solution consisting of a grey wolf optimizer with whale optimiza-
tion to solve the optimization problem of data clustering [37]. To solve the 0–1 knapsack
problem with various scales, Mohamed Abdel-Basset et al. suggested an improved WOA
(IWOA) [38].

In this paper, an Exponentially Varying WOA (EVWOA) is proposed to improve
and enhance the performance of the basic WOA in terms of convergence, maintaining
the balancing between global exploration and local exploitation throughout the search
process and improving its efficiency. The performance of basic WOA is improved by
introducing an exponentially varying acceleration function. This helps the proposed
EVWOA method for providing proper balancing of both exploration and exploitation
phases throughout the search process. The solution in the proposed EVWOA converges
faster, is robust and efficient, and obtains a better optimal solution without premature
convergence. The proposed EVWOA technique is implemented in this paper for giving a
better optimal solution than the traditional WOA along with different variants of WOA.
The proposed WOA and its different variants have been tested on six different test systems
ranging from a small-scale system of four units to a large-scale system comprising of 96
units with several related constraints. The results obtained by the proposed EVWOA
method after 100 different unbiased trials are compared with the basic WOA, its variants,
and different published recent algorithms. It can be observed that the proposed WOA
method provides good quality solutions in terms of cost, robustness, feasible and obtain
effective convergence characteristic.

The main highlights of the paper are as follows:

• Four different variants of WOA are considered for improving and enhancing the
performance of the basic WOA. In the first variant of WOA, the acceleration function
is randomly selected, and it is written as Randomly Varying WOA (RVWOA). In the
second variant of WOA, the acceleration function is linearly varied and is called
Linearly Varying WOA (LVWOA), the third variant is Sinusoidally Varying WOA
(SVWOA), where the acceleration function is varied Sinusoidally. In addition, in the
proposed variant, Exponentially Varying WOA (EVWOA), the exponentially varied
acceleration function is used.

• All the four variants of WOA and basic WOA are tested on well-known and standard
benchmark functions for performance evaluation and later on six small to large
different CHP case studies.
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• Simulation results generated by EVWOA after independent 100 different trials are
compared with basic WOA, other remaining variants of WOA, and recently published
results obtained by different latest methods. The comparison results show that the
proposed EVWOA performs much better than other latest methods.

The paper is organized as: the problem formulation is explained in Section 2; a de-
scription of the basic WOA and its shortcomings is given in Section 3. This section also
explains, in brief, the proposed Exponentially Varying WOA (EVWOA); Section 4 presents
the simulation results and discussion; the conclusion is presented in Section 5.

2. Problem Formulation

The objective of the CHPED conundrum is to obtain the best output values for the
interconnected electrical energy, heat energy, and CHP plants in a manner that the total
fuel cost is minimum, and all the related constraints are satisfied, and energy demands
are met.

This can be stated as [3]:
Min[Cost f uel]

where

Cost f uel =

[
NEG

∑
l=1

Cl

(
EEEG

l

)
+

NCG

∑
m=1

Cm(EECG
m , HECG

m ) +
NHG

∑
n=1

Cn(HEHG
n )

]
(1)

where NEG are the number of electrical generator units, NCG are the number of CHP units
and NHG are the number of heat generator units. EE and HE are the electrical and heat
energy outputs of the units. Cl

(
EEEG

l

)
, Cm(EECG

m , HECG
m ) and Cn(HEHG

n ) are the fuel cost

of the lth electrical, mth CHP and heat generator units for the generation of EEEG MW and
HEHG MWth for an hour.

The equation of the electrical energy generators taking into account valve-point load-
ing is given as [7]:

Cl

(
EEEG

l

)
=

[
el

(
EEEG

l

)2
+ fl(EEEG

l ) + gl +
∣∣∣ hl sin

(
il
(

EEEGmin
l − EE

))∣∣∣] (2)

where el , fl and gl are the cost coefficients for the lth electrical energy generator unit and
hl and il are the coefficients for modeling the valve-point. The non-convex nature of the
CHPED problem can be attributed to this sinusoidal term. Figure 3 shows graphically the
effect of valve-point loading.

Figure 3. Valve-point loading effect of electrical energy generator units.
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The fuel cost for the CHP plants is given by [6]:

Cm(EECG
m , HECG

m ) = em(EECG
m )2 + fm(EECG

m ) + gm + hm(HECG
m )2 + im(HECG

m ) + jmHECG
m (EECG

m )]$/h (3)

where em, fm, gm, hm, im and jm are the coefficients of the mth CHP unit.
The fuel cost for the heat energy generators is given by [7]:

Cn(HEHG
n ) = en(HECG

n )2 + fn(HECG
n ) + gn$/h (4)

where en, fn and gn are the cost coefficients of the nth heat energy generator.

2.1. Constraints

The equality and inequality constraints, which form the energy balance equations are
stated as [18]:

2.1.1. Equality Constraints

The electrical energy balance equation is stated as:

NEG

∑
l=1

EEEG
l +

NCG

∑
m=1

EECG
m = EEdemand + EELoss (5)

The above Equation (5) signifies that the total electrical energy output from the elec-
trical energy generators and the CHP units should be sufficient to satisfy the electrical
energy demand, as well as certain energy losses that may arise in the system in due course
of transmission from the plant to the consumer. This electrical energy loss is modeled using
Kron’s loss formula and is stated as below:

EELoss =
NEG

∑
l=1

NEG

∑
m=1

EEEG
l BlmEEEG

m +
NEG

∑
l=1

NCG

∑
m=1

EEEG
l BlmEECG

m (6)

+
NCG

∑
l=1

NCG

∑
m=1

EECG
l BlmEECG

m +
NEG

∑
l=1

B0lEEEG
l +

NCG

∑
l=1

B0lEECG
m + B00

In addition, the heat energy balance equation is given as:

NCG

∑
m=1

HECG
m +

NHG

∑
n=1

HEHG
n = HEdemand (7)

Equation (7) signifies that the total heat energy output from the CHP units and heat
generator units should be sufficient to meet the thermal energy requirement.

2.1.2. Inequality Constraints

EEEGmin
l ≤ EEEG

l ≤ EEEGmax
l ; l = 1 to NEG (8)

EECGmin
m

(
HECG

m

)
≤ EECG

m ≤ EECGmax
n

(
HECG

m

)
m = 1 to NCG (9)

HECG
m

(
EECG

m

)
≤ HECG

m ≤ HECGmax
m

(
EECG

m

)
m = 1 to NCG (10)

HEHGmin
n ≤ H EHG

n ≤ HEHGmax
n n = 1 to NHG (11)

where EEEGmin
l and EEEGmax

l are lower and upper boundary values of the outputs of the lth

electrical energy generator in MW, EECGmin
m

(
HECG

m

)
,EECGmax

n

(
HECG

m

)
,HECG

m

(
EECG

m

)
and
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HECGmax
m

(
EECG

m

)
are linear inequalities, which define the feasible operating region of the

mth CHP plant, and HEHGmin
n and HEHGmax

n are the lower and upper boundary values
of the of the nth heat energy generator.

Equations (8) to (11) form the heat-power Feasible Operating Region (FOR) of the
CHP units. The FOR, as the name suggests is the zone in which CHP units should have
their heat and electrical energy outputs to operate. A sample sketch of this FOR is shown
in Figure 4.

Figure 4. Heat-Power Feasible Operating Region (formed using Equations (8)–(11)).

3. Proposed Exponentially Varying Whale Optimization Algorithm (EVWOA)

This section discusses the equations which form the WOA and some limitations which
hampers its performance. Later, an acceleration function term [ζ(itr)] is proposed, which is
then appended in the characteristic equations of the WOA.

The WOA is an experience-based algorithm which is having a hunting strategy
adopted by humpback whales. The peculiar bubble-net hunting pattern of these whales is
the inspiration for the exploitation strategy. The characteristic equations of the WOA are
given as: [23–27].

3.1. Encircling Prey

The location of the prey is traced by the leader whale and is then encircled by the
other whales. Initially, a leader whale is selected among the group and the others follow it.
This phenomenon is given by [23]:

~Dist =
∣∣∣~β× ~Zbest∗(itr)− ~Z(itr)

∣∣∣ (12)

~Z(itr + 1) = ~Zbest∗(itr)− ~α× ~Dist (13)

Here,~α and ~β are the coefficient vectors, itr is the present iteration, while ~Z and ~Zbest∗

are the position and best position vectors respectively, which are updated in each cycle.
The coefficient vectors are given as:

~α = 2~τ × ~rand − ~τ (14)

~β = 2× ~rand (15)

where ~τ varies from 2 to 0 in a decreasing manner, while ~rand is a random value in [0,1].
In basic WOA, as per Equation (13), the updated position is regulated by multiplication

of coefficient vector (~α) and distance of the ith whale to the prey ( ~Dist) which is subtracted
from current best position, which is further dependent upon coefficient vector (~α), where~α
is calculated from Equation (14). From Equation (12), ~Dist is dependent upon coefficient



Energies 2021, 14, 1008 8 of 30

vector (~β) and from Equation (15), it can be said that ~β is dependent upon ~rand which
is a random vector. It can be observed that~α is dependent upon ~τ which is decreasing
linearly with respect from 2 to 0 as per the iterations. This may cause uncontrolled updated
positions during the iterations. It may also create an unbalance between local exploration
and global exploitation in the search space and further it may result in poor convergence.
For improving this, ref. [39,40] introduced an inertia weight into WOA similar to the PSO
to fine-tune the influence of the current best solution. According to references [39,40], in the
proposed WOA, an acceleration function (ζ) is introduced.

In proposed EVWOA, Equations (12) and (13) for Encircling prey are modified as and
referred from [28,29]:

~Dist =
∣∣∣~β× ζ(itr)× ~Zbest∗(itr) − ~Z(itr)

∣∣∣ (16)

~Z(itr + 1) = ζ(itr)× ~Zbest∗(t)− ~α× ~Dist (17)

3.2. Exploitation Phase

As stated earlier, the exploitation phase is based on the bubble-net hunting pattern
of the whales. Here, two different techniques are used to mimic this behavior.

3.2.1. Shrinking Encircling

Shrinking encircling is obtained when ~τ reduces to 0 from 2 in Equation (14). Hence
as ~τ decreases, a lesser variation is seen in the value of~α, which lies in [−~τ,~τ].

3.2.2. Spiral Updating Position

In this method, it is assumed that the whale and the prey are present at (Z,W) and
(Zbest, Wbest). The following equation defines the helical movement of the whale towards
the prey [24]:

~Z(itr + 1) = ~Dist′timesγη × cos (2πη)+ ~Zbest∗(itr) (18)

~Dist′ is the distance between the ith whale and the prey. It is written as:

~Dist′ =
∣∣∣ ~Zbest∗(itr)− ~Z(itr)

∣∣∣ (19)

′γ′ lies between [−1,1] and is fixed valued and helps to model the spiral shape
of the path.

By assuming that around the prey, whales either swim in a spiral path or a shrinking
encircling path, an equal probability is assumed for selecting either of the paths. This is
stated as [25]:

~Z(itr + 1) = ~Zbest∗(itr) − ~α× ~Dist, prob ≤ 0.5 (20)

~Z(itr + 1) = ~Dist′ × eγη × cos (2πη)+ ~Zbest∗(itr), prob ≥ 0.5

where prob is the chance of selecting either path.
In the proposed EVWOA, the above equations are modified as:

~Z(itr + 1) = ~Dist′ × eγη × cos (2πη)+ ζ(itr)× ~Zbest∗(itr) (21)

~Dist′ =
∣∣∣ζ(itr)× ~Zbest∗(itr) − ~Z(itr)

∣∣∣ (22)

~Z(itr + 1) = ζ(itr)× ~Zbest∗(itr) − ~α× ~Dist, prob < 0.5 (23)

~Z(itr + 1) = ~Dist′ × eγη × cos (2πη) + ζ(itr)× ~Zbest∗(itr), prob ≥ 0.5
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3.3. Exploration Phase

This phase comprises searching for the prey, in which the value of~α can be changed
for locating the prey. Whenever |α| > 1, the current search agent is to be moved away
from the leader agent. The location of an agent in this phase is improved by erratically
selecting a particle. This phase is described by the following [26]:

~Dist =
∣∣∣~β× ~Zrand − ~Z

∣∣∣ (24)

~Z(itr + 1) = ~Zrand −~α× ~Dist (25)

In the proposed EVWOA, these equations are varied as [28,29]:

~Dist =
∣∣∣ζ(itr)× ~β× ~Zrand − ~Z

∣∣∣ (26)

~Z(t + 1) = ζ(itr). ~Zrand − ~α× ~Dist (27)

3.4. Choice of Acceleration Function

Four different variants of WOA are considered by incorporating different acceleration
functions for improving and enhancing the WOA performance. These different variants
are as follows:

• Randomly Varying WOA (RVWOA)

• Linearly Varying WOA (LVWOA)

• Sinusoidally Varying WOA (SVWOA)

• Exponentially Varying WOA (EVWOA)

The detailed description of these above-mentioned different variants of WOA is as
explained below:

1. Randomly Varying WOA (RVWOA): In the first variant of WOA, acceleration function
is randomly selected between [0,1] as in Reference [29].

2. Linearly Varying WOA (LVWOA): In the second variant of WOA, acceleration function
is linearly varied and decreasing from 0.9 to 0.1 as in References [29,39,40]. The ex-
pression is written below:

ζ(itr) = ζmin +
(ζmax − ζmin)× (itrmax − itr)

itrmax
(28)

3. Sinusoidally Varying WOA (SVWOA): In this variant, the acceleration function (ζ) is
varied sinusoidally from 0.9 to 0.1 as in [39]. The mathematical expression is given
below:

ζ(itr) = ζmin + (ζmax − ζmin)cos2
(

θ

2

)
; 0 ≤ θ ≤ π (29)

where θ = X * itr + Y and the coefficients X and Y are calculated by Equations (30)
and (31) and iteration (itr) is varied from itrmin to itrmax.

X = π/(itrmax − itrmin) (30)

Y = −π × itrmin/(itrmax− itrmin) (31)

4. Exponentially Varying WOA (EVWOA): In this proposed variant, the acceleration
function (ζ) is varied exponentially as in [40]. The exponential variation of ζ is
calculated by the following relation:

ζ(itr) = exp(−l ln kw) (32)
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where l = itr
itrmax

, itrmin ≤ itr ≤ itrmax and kw is the ratio of maximum minimum
bounds of the acceleration function.

The linear, sinusoidal, and exponential variations of acceleration function with itera-
tions are shown in Figure 5. It can be analyzed from the figure that ζ-linear is decreasing
linearly. By this, there may be a chance of local trapping or premature convergence during
the iterations. Moreover, in the case of ζ-sinusoidal, during the first half (50%) of iterations,
ζ is maintained higher for wider exploration, and in the second half, ζ is lower for better
exploitation during the computation process. However, when ζ-exponential is considered,
initially exploration is wider and exploitation capability is improved by a sharp fall in
ζ during the iterations. This will improve and efficiently maintain the exploration and
exploitation phase of the proposed method. Hence, it is favorable that ζ exponential is se-
lected for the best performance for the WOA. Therefore, further in this paper, the emphasis
is laid on the EVWOA.

Figure 5. Linear, Sinusoidal and Exponential variation of acceleration function (ζ) with respect
to iterations.

The flowchart of the Exponentially Varying WOA (EVWOA) is shown in Figure 6.
The flowchart in a concise manner explains the various phases of the EVWOA, right from
the selection of the EVAF up to displaying the results of the CHPED problem.

Figure 6. Flowchart of Exponentially Varying Whale Optimization Algorithm (EVWOA).
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Figures 7 and 8 show a sample 2D representation of the exploration and the exploita-
tion phases of the proposed EVWOA. These figures help understand the movement of
a whale graphically.

Figure 7. Exploration phase of the proposed EVWOA.

Figure 8. Exploitation phase of the proposed EVWOA.

For the above Figures 7 and 8, the population of whales considered was 100 whales
and number of generators considered were 60.

3.5. Testing of the WOA Variants on Well-Known Benchmark Functions

The proposed EVWOA is tested on ten different well-known benchmark functions.
The benchmark functions are defined in Table 1 and their optimum and bound limits are
known to be a priori. The functions used are Ackley, Generalized Griewank, Generalized
Rastrigin, Generalized Rosenbrock, Schwefel 1.2, Generalized Schwefel 2.26, Sphere, Six-
hump Camel-back, and Goldstein-Price. The data for the benchmark functions are referred
from [41].

The parameters for EVWOA are: Population of whales = 100 and the Maximum
number of iterations (itrmax) = 1000. The results obtained using proposed EVWOA after
100 different trials are compared with some of the well-known optimization algorithms
in Table 2.

MATLAB ver. 2020a is used to simulate these benchmark functions. The computer
specifications are Processor—Intel i5 7th Generation @ 2.50 GHz, RAM – 8 GB, and Storage
Capacity—1TB.
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Table 1. Description of the Benchmark Functions.

Function Expression D Search Space

Ackley 20exp(−0.2
√

1
D ∑D

i=1 x2
i )− exp( 1

D ∑D
i=1 cos(2πxi)) 30 (−32, 32)D

+20 + exp(1)

Generalized 1
4000 ∑D

i=1 x2
i − ∏D

i=1 cos( xi√
i
) + 1 30 (−600, 600)D

Griewank

Generalized ∑D
i=1 x2

i − 10 cos(2πxi) + 10 30 (−5.12, 5.12)D

Rastrigin
Generalized ∑D−1

i=1 100(xi+1 − x2
i )

2
+ (xi − 1)2 30 (−30, 30)D

Rosenbrock

Schwefel 1.2 ∑D
i=1 (∑

i
j=1 xj)

2
30 (−100, 100)D

Schwefel 2.26 418.9829 ∗ D − ∑D
i=1 xisin

√
xi 30 (−500, 500)D

Sphere ∑D
i=1 x2

i 30 (−100, 100)D

Six-hump 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 (−5, 5)D

Camel-back

Goldstein- 1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 2 (−5, 5)D

Price +3x2
2)× 30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2−

36x1x2 + 27x2
2)

Table 2. Comparison of the Results of Benchmark Functions.

F PSO HS EFWA IFWA RV LV SV EV
[42] [42] [41] CSO [41] WOA WOA WOA WOA

F1 2.00 × 10−2 2.94 × 10−3 - - 0 0 0 0
F2 5.50 × 10−2 5.00 × 10−1 9.64 × 10−2 0 0 0 0 0
F3 7.28 × 102 4.27 × 10−2 4.02 × 10−1 0 0 0 0 0
F4 1.70 × 103 7.64 × 101 1.01 × 102 3.02 × 101 0 0 0 0
F5 2.90 × 103 3.66 × 103 2.36 × 10−1 5.30 × 10−4 0 0 0 0
F6 - - −1.12 × 104 −1.26 × 104 0 0 0 0
F7 5.00 × 10−2 5.14 × 10−4 - - 0 0 0 0
F8 - - −1.03 −1.03 0 0 0 0
F9 - - 3.00 3.00 3.00 3.00 3.00 0

From Table 2 it can be observed that for the non-shifted functions F1, F2, F3, F5, and
F7, the proposed EVWOA can obtain the local minima of an absolute zero, compared to
some of the other algorithms considered for comparison. For the shifted functions F4, F6,
F8, and F9, the performance of the proposed EVWOA is found to be satisfactory compared
to the other algorithms, where except in F9, EVWOA obtains the minima of 0, especially
when compared with FWA variants [41], PSO [42] and HS [42].

4. Results and Discussions

In this paper, six different case studies have been considered and solved using WOA
and all the different variants of the proposed WOA, i.e., RVWOA, LVWOA, SVWOA, and
EVWOA. A summary of the six different case studies is presented in Table 3.
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Table 3. Case Studies Data for solving CHPED Problem.

Case Study NEG NCG NHG Total EEDemand HEDemand

1 1 2 1 4 200 115
2 1 3 1 5 300 150
3 4 2 1 7 600 150
4 13 6 5 24 2350 1250
5 26 12 10 48 4700 2500
6 52 24 20 96 9400 5000

For solving the proposed problem, WOA and different proposed variants of WOA are
implemented in MATLAB ver. 2020a on PC with 8 GB RAM, 1 TB storing capacity, and
an Intel i5 processor. Each case study is simulated 100 different times, and the schedule
obtained for the best cost using EVWOA is presented in this paper. For showing the
algorithm’s robustness, the best, mean and worst cost, along with the standard deviation
(STD) of cost and computation time is also presented. These factors would establish the
algorithm’s superiority compared to the basic WOA and other latest techniques in the
literature. For each of the case studies, the population of whales and iterations, both are
considered to be 100.

4.1. Case Study 1

This case study data has been referred from [3] and is given in Appendix A. The elec-
trical and thermal energy requirement of the whole system is 200MW and 115MWth. This
system is considered to be a small-scale system. The optimal schedule obtained by the
proposed EVWOA for the best cost is presented in Table 4.

Table 4. Optimal schedule for the best cost obtained for Case study 1.

P1 P2 P3 H2 H3 H4

0 159.99 39.99 0 115 0

The results obtained by the proposed EVWOA after 100 different trials are presented
in Table 5. It can be observed from Table 5 that the results obtained by WOA, and other
variants of WOA are giving much better results as compared with recently published
methods such as Firefly Algorithm (FA) [43], Genetic Algorithm (GA) [44], Differential
Evolution (DE) [15] and Grey Wolf Algorithm (GWO) [22].

Table 5. Comparison of quality solution for Case Study 1.

Technique Best ($/h) Mean ($/h) Worst ($/h) STD Time(s)Cost Cost Cost

FA [43] 9257.1 - - - -
GA [44] 9267.2 - - - -
DE [15] 9236.14 - - - 1.0674

GWO [22] 9257.07 - - - 1.33
WOA 9089.446 9108.160 9496.51 0.019422 0.23

RVWOA 9089.440 9089.489 9089.498 0.000001 0.27
LVWOA 9089.432 9089.488 9089.497 0.000001 0.24
SVWOA 9089.429 9089.486 9089.497 0.000002 0.22
EVWOA 9089.420 9089.441 9089.442 0.000001 0.26

It can also be analyzed from Table 5 that among WOA and different variants of
WOA, the basic WOA is improved by adding different acceleration functions, the quality
of solution in terms of best cost (minimum cost), mean cost (average cost) and Standard
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Deviation (STD) is also improved. From Table 5, proposed EVWOA gives minimum best
cost, minimum average cost, and minimum STD than WOA and other different variants
of WOA. This establishes the robustness of the proposed EVWOA. The average CPU time
taken by the proposed EVWOA is less than DE [15] and GWO [22]. It shows that the
proposed EVWOA converges faster with less CPU time. Figure 9 compares the best cost
of all the above-mentioned algorithms in a graphical format. Among recently published
methods i.e., DE [15], GWO [22], FA [43] and GA [44], DE [15] has the lowest cost of
$9,236.14/h. By comparing the minimum cost obtained by DE [15] and the proposed
EVWOA, EVWOA gives an hourly saving of $146.72, which means that $1,285,267 could
be saved annually. This leads to the fact that the proposed EVWOA is capable of obtaining
better quality solutions compared to other methods in terms of the best and average fuel
cost and is also an efficient optimization algorithm to solve dispatch problems.

Figure 9. Best Cost Comparison for Case Study 1.

4.2. Case Study 2

This case study data has been taken from [45] and is given in Appendix B. The optimal
generator output schedule obtained by the proposed EVWOA is given in Table 6.

Table 6. Optimal schedule for the best cost obtained for Case study 2.

P1 P2 P3 P4 H2 H3 H4 H5

135 40.77 19.23 105 73.64 36.73 0 39.63

The best optimal solution generated by WOA and different variants of WOA after
independence 100 trials are compared with the cost obtained with Firefly Algorithm
(FA) [43], Harmony Search (HS) [45], Invasive Weed Optimization (IWO) [20], Cuckoo
Optimization Algorithm (COA) [46] and Exchange Market Algorithm (EMA) [21] in Table 7.
It is observed from this Table 7 that WOA and other different proposed variants of WOA
provide best minimum best cost as compared with latest published methods i.e., FA [43],
HS [45], IWO [20], COA [46] and EMA [21].
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Table 7. Comparison of quality solution for Case Study 2.

Technique Best ($/h) Mean ($/h) Worst ($/h) STD Time(s)Cost Cost Cost

FA [43] 13,683.22 - - - -
HS [45] 13,723.2 - - - -

IWO [20] 13,683.65 - - - 1.0674
COA [46] 13,672.83 - - - 1.33
EMA [21] 13,672.84 - - - 1.33

WOA 13,672.8211 13,686.0696 13,738.7084 0.001269 0.179
RVWOA 13,672.7970 13,673.5999 13,715.5134 0.000403 0.178
LVWOA 13,672.7964 13,673.4296 13,694.7275 0.000311 0.161
SVWOA 13,672.7961 13,673.1225 13,681.8538 0.000073 0.162
EVWOA 13,672.7889 13,672.7911 13,672.8052 0.000000 0.229

It can also be observed from this Table 7 that the proposed EVWOA again obtained the
best quality solution with almost 0 STD than WOA and RVWOA, LVWOA, and SVWOA.
This shows that EVWOA is efficient, robust, and feasible. Figure 10 compares the best cost
obtained by all the above-mentioned algorithms. From Table 7, COA [46] has the lowest
hourly cost of $13,672.83/h. Therefore, by implementing EVWOA for this test system,
hourly savings of $0.04 are possible, which amounts to a yearly saving of $350.40. It still
proves that EVWOA can work more efficiently than other latest techniques.

Figure 10. Best Cost Comparison for Case Study 2.

4.3. Case Study 3

The case study parameters have been taken from [47] and are also provided in Ap-
pendix C. Power system transmission losses are taken into account for this system.

The optimal generator schedule by EVWOA is provided in Table 8.

Table 8. Optimal schedule for the best cost obtained for Case study 3.

P1 P2 P3 P4 P5 P6 H5 H6 H7

58.81 98.54 112.67 209.82 81 40 0 95.18 54.82

The quality solution obtained by WOA and its proposed variants after 100 trials
are compared with the best cost obtained using Teaching-Learning-Based Optimization
(TLBO) [13], Gravitational Search Algorithm (GSA) [7] and Differential Evolution (DE) [48]
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in Table 9. This shows that the minimum cost of WOA and its proposed variants are much
better than TLBO [13], GSA [7] and DE [48] with less CPU time.

Table 9. Comparison of quality solution for Case Study 3.

Technique Best ($/h) Mean ($/h) Worst ($/h) STD Time(s)Cost Cost Cost

TLBO [13] 10,094.84 - - - 2.86
GSA [7] 9912.69 - - - 2.578
DE [48] 10,317 - - - 5.26
WOA 9798.9957 10,025.0678 10,445.6392 0.015587 0.84

RVWOA 9745.6136 9820.6379 10,052.4499 0.005443 0.764
LVWOA 9742.9177 9819.7254 10,048.6937 0.005436 0.637
SVWOA 9741.0869 9818.4077 10,030.7712 0.004869 0.643
EVWOA 9739.5049 9810.4882 10,003.2598 0.004716 0.767

From this comparison, it can be concluded that EVWOA provides minimum best
cost and minimum average cost than the WOA and other variants of WOA i.e., RVWOA,
LVWOA, and SVWOA. The standard deviation of EVWOA is also quite good and is about
0.005, meaning that in almost each trial best cost is achieved.

Figure 11 compares the best cost achieved by all the above algorithms in a graphical
format. Among the other published algorithms TLBO [13], GSA [7] and DE [48], GSA [7]
provides the lowest cost of $9,912.69/h. However, by using the proposed EVWOA an
hourly saving of $173.18 is achieved, which leads to a yearly saving of $1,517,057, which is
a huge amount. This high figure of saving re-establishes the superiority of the proposed
EVWOA as it can provide a better solution with less CPU time for a system where system
transmission losses and other constraints are considered.

Figure 11. Best Cost Comparison for Case Study 3.

4.4. Case Study 4

The data for this test system is referred from [24] and is given in Appendix D.
The schedule for the best cost obtained by EVWOA is provided in Table 10.
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Table 10. Optimal schedule for the best cost obtained for Case study 4.

P1 628.32 P7 159.73 P13 55 P19 35 H19 45

P2 298.65 P8 60 P14 81 H14 180 H20 158.79

P3 286.85 P9 60 P15 40 H15 135.6 H21 60

P4 109.86 P10 40 P16 81 H16 180 H22 60

P5 109.86 P11 40 P17 40 H17 135.6 H23 120

P6 159.73 P12 55 P18 10 H18 55 H24 120

The solutions obtained by WOA and its variants after 100 trials are presented in Table 11.
It can be observed from this table that the quality solution of WOA and different vari-
ants of WOA are much better than Oppositional Teaching-Learning-Based Optimization
(OTLBO) [13], Exchange Market Algorithm (EMA) [21], Improved Group Search Optimiza-
tion (IGSO) [49] and Civilized Swarm Optimization (CSO) [48].

Table 11. Optimal schedule for the best cost obtained for Case study 4.

Technique Best ($/h) Mean ($/h) Worst ($/h) STD Time(s)Cost Cost Cost

OTLBO [13] 57,856.27 57,883.22 57,913.77 - -
EMA [21] 57,825.48 57,832.74 57,841.15 - -
IGSO [49] 58,049.02 58,156.52 58,219.14 - -
CSO [21] 57,907.12 57,908.31 579,11.95 - -

WOA 53413.4800 53,985.95 55,991.7200 0.011879 0.513
RVWOA 53,370.3314 53,766.9799 55,314.1664 0.005630 0.560
LVWOA 53,288.2511 53,737.1996 55,253.9625 0.005256 0.564
SVWOA 53,275.6137 53,730.6929 54,805.6054 0.004046 0.564
EVWOA 53,167.3683 53,373.1923 53,813.7479 0.002577 0.587

It can also be analyzed from this table that again proposed EVWOA gives minimum
cost and minimum average cost with a lesser standard deviation of around 0.003 than
WOA, RVWOA, LVWOA, and SVWOA. Figure 12 compares the best cost of all the above
algorithms graphically.

EMA [21] among other published algorithms OTLBO [13], IGSO [49] and CSO [48]
has the lowest best and average costs. When comparing the average cost obtained by
EMA [21] and proposed EVWOA, it can be said that the proposed EVWOA provides an
hourly saving of $4459.5447 and this leads to a yearly saving of $39,065,637.852 which is
indeed a huge sum. This high figure is due to better handling of the related constraints
while using EVWOA to solve the dispatch problem.
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Figure 12. Best Cost Comparison for Case Study 4.

4.5. Case Study 5

In this case study, 48 units large test system is considered. The data is referred from [9]
and is provided in Appendix E. The optimal generator outputs obtained by EVWOA are as
shown in Table 12.

Table 12. Optimal schedule for the best cost obtained for Case study 5.

P1 616.01 P16 360 31 10 H34 135.6

P2 0 P17 179.99 P32 35 H35 180

P3 0 P18 179.99 P33 81 H36 135.6

P4 60 P19 179.99 P34 40 H37 55

P5 60 P20 179.99 P35 81 H38 45

P6 60 P21 179.99 P36 40 H39 176.41

P7 60 P22 179.99 P37 10 H40 60

P8 60 P23 119.99 P38 35 H41 60

P9 60 P24 119.99 H27 179.98 H42 120

P10 40 P25 119.99 H28 135.6 H43 120

P11 40 P26 120 H29 144.74 H44 176.46

P12 55 P27 81 H30 135.6 H45 60

P13 55 P28 40 H31 55 H46 60

P14 679.99 P29 81 H32 45 H47 120

P15 359.99 P30 40 H33 180 H48 120

The cost obtained by WOA and its variants are compared with the costs obtained using
Cuckoo Optimization Algorithm (COA) [46], Crisscross Optimization Algorithm (CSO) [50],
Modified Particle Swarm Optimization (MPSO) [51] and Group Search Optimization
(GSO) [52] in Table 13. It can be said that the quality solution, i.e., minimum cost, average
cost, and STD obtained by WOA, RVWOA, LVWOA, SVWOA, and EVWOA are much
better than the solution presented by COA [46], CSO [50], MPSO [51] and GSO [52].
It shows that WOA and its variants perform superior to other established methods with
less CPU time.
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Table 13. Optimal schedule for the best cost obtained for Case study 5.

Technique Best ($/h) Mean ($/h) Worst ($/h) STD Time(s)Cost Cost Cost

COA [46] 116,789.92 116,835.55 117,068.27 - -
CSO [50] 115,967.72 115,995.88 116,047.22 - -

MPSO [51] 116,465.54 116,471.36 116,482.44 - -
GSO [52] 116,457.96 116,463.65 116,473.22 - -

WOA 99,136.8303 107,026.2565 116,304.7858 0.033216 0.471
RVWOA 99,136.8303 107,026.2565 116,304.7858 0.033216 0.471
LVWOA 97,958.8952 104,552.0051 111,761.6686 0.026202 0.559
SVWOA 97,774.6398 104,342.2406 111,088.5884 0.023165 0.540
EVWOA 92,887.876940 96,657.722614 105,615.720811 0.021991 0.617

It can also be observed from Table 13 that minimum cost, average cost, and STD
obtained by the proposed EVWOA outperforms WOA, RVWOA, LVWOA, and SVWOA.
It implies that the proposed EVWOA dominates all other techniques. Figure 13 compares
the best cost of all the above algorithms graphically. GSO [52] has better best minimum
cost and average costs among COA [46], CSO [50] and MPSO [51]. When comparing
the average cost of $116,463.65/h obtained by GSO [52] and EVWOA’s average cost of
$96,657.72/h, it can be observed that EVWOA gives an hourly saving of $19,805.93 and the
yearly savings are $173,499,947 which is a very huge amount. This again is attributed to
better constraint handling employed while solving with EVWOA.

Figure 13. Best Cost Comparison for Case Study 5.

4.6. Case Study 6

This is also considered to be a large system consisting of 96 units. This case study
is included in this work to highlight the superiority of EVWOA in efficiently handling
large test systems. The data is taken from [24] and is included in Appendix F. The optimal
generator outputs using EVWOA are presented in Table 14.
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Table 14. Optimal schedule for the best cost obtained for Case study 6.

P 1 630.39 P 21 109.69 P 41 294.73 P 61 81 H 57 0.014 H 77 0.014

P 2 294.73 P 22 109.91 P 42 294.73 P 62 40 H 58 0.014 H 78 0.014

P 3 294.73 P 23 40 P 43 109.91 P 63 10 H 59 0.014 H 79 0.014

P 4 109.91 P 24 40 P 44 109.91 P 64 35 H 60 0.014 H 80 0.014

P 5 109.91 P 25 55 P 45 109.91 P 65 81 H 61 0.014 H 81 0.014

P 6 109.91 P 26 55 P 46 108.22 P 66 40 H 62 0.014 H 82 2499.70

P 7 109.91 P 27 630.39 P 47 109.69 P 67 81 H 63 0.014 H 83 0.014

P 8 109.91 P 28 294.73 P 48 86.79 P 68 40 H 64 0.014 H 84 0.014

P 9 109.91 P 29 294.73 P 49 40 P 69 10 H 65 0.014 H 85 0.014

P 10 40 P 30 109.91 P 50 40 P 70 35 H 66 0.014 H 86 0.014

P 11 40 P 31 109.91 P 51 55 P 71 81 H 67 0.014 H 87 2499.70

P 12 55 P 32 109.91 P 52 55 P 72 40 H 68 0.014 H 88 0.014

P 13 55 P 33 109.91 P 53 81 P 73 81 H 69 0.014 H 89 0.014

P 14 630.39 P 34 109.91 P 54 40 P 74 40 H 70 0.014 H 90 0.014

P 15 294.73 P 35 109.91 P 55 81 P 75 10 H 71 0.014 H 91 0.014

P 16 294.73 P 36 40 P 56 40 P 76 35 H 72 0.014 H 92 0.014

P 17 109.91 P 37 40 P 57 10 H 53 0.014 H 73 0.014 H 93 0.014

P 18 109.91 P 38 55 P 58 35 H 54 0.014 H 74 0.014 H 94 0.014

P 19 109.91 P 39 55 P 59 81 H 55 0.014 H 75 0.014 H 95 0.014

P 20 109.91 P 40 630.39 P 60 40 H 56 0.014 H 76 0.014 H 96 0.014

The quality solution obtained by WOA and its different variants after 100 trials
are presented in Table 15 and is compared with Real Coded Genetic Algorithm with
improved Muhlenbein mutation (RCGA-IMM) [53]and TVAC-PSO [9]. It can be observed
that WOA and its variants perform superior to RCGA-IMM [53] and TVAC-PSO [9] with
less CPU time.

Table 15. Optimal schedule for the best cost obtained for Case study 6.

Technique Best ($/h) Mean ($/h) Worst ($/h) STD Time(s)Cost Cost Cost

RCGA-IMM [53] 239,896.4082 - - - 280.47
TVAC-PSO [9] 239,139.5018 - - - 198.25

WOA 166,598.2166 172,476.1561 190,501.0311 0.019690 2.555
RVWOA 166,017.3783 170,507.9580 182,953.4631 0.018518 1.922
LVWOA 165,290.1180 170,003.9993 176,234.0878 0.014683 1.749
SVWOA 165,224.8771 168,008.8607 173,527.3772 0.010526 1.922
EVWOA 164,691.7101 167,690.1798 171,696.4346 0.008756 2.600

Again, it can be said by analyzing the results in Table 15 that proposed EVWOA per-
forms better than WOA, RVWOA, LVWOA, and SVWOA. This shows that by introducing
exponentially varying acceleration function in basic WOA, the proposed method performs
well and during the computation process, the exploration and exploitation are properly
balanced for getting the best optimal quality solution.

Figure 14 compares the best cost of all the above algorithms graphically. The best
minimum cost of EVWOA $164,691.71/h is compared to the best minimum cost of TVAC-
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PSO [9], i.e., $239,139.5018/h. The hourly savings are calculated and found by EVWOA to
be $74,447.7918, which when seen yearly, amounts to $652,162,656. These high figures prove
the worthiness of EVWOA for obtaining a good solution, with good standard deviation
and a good computation time compared to other different published algorithms. The main
objective of including this case study in this paper is to highlight the supremacy of the
EVWOA algorithm compared to others. Lesser minimum cost and average cost obtained
by EVWOA prove the point. The standard deviation is also very low, i.e., 0.009.

Figure 14. Best Cost Comparison for Case Study 6.

4.6.1. Discussion about Convergence Characteristics

The convergence characteristics obtained by WOA, RVWOA, LVWOA, SVWOA, and
EVWOA for best cost vs no. of iterations for this large test system during sample trial are
shown in Figure 15. It can be observed from this figure that initially basic WOA explores
the search area very well but in the latter part of the iterations, it traps in local optima.
However, by incorporating randomly varying acceleration function in basic WOA, during
initial iterations, exploration of RVWOA is not proper but in the latter half exploitation is
improved but it is not able to get an optimal solution. Next, LVWOA is not performing
better because there is an unbalance between local exploration and global exploitation.
It can be observed from Figure 15 that during some initial iterations it explores well, but
after that, it remains constant till the end of iterations. In SVWOA, a sinusoidally varying
acceleration function is used. The basic tendency of the sinusoidal function is that for the
initial half, it provides sufficient search space for exploration, and later half this search
space is reduced for exploitation. It can be seen from this figure that the exploration of
SVWOA is good but still, the exploitation potential remains weak. For improving the
efficiency and maintaining the balance between exploration and exploitation, an exponen-
tially varying acceleration function is used in the proposed EVWOA. It can be observed
from Figure 15. that by adding exponentially varying acceleration function, EVWOA well
explores the search area in a better way during the initial half and in the remaining half,
the proposed method getting the best optimal solution because of better exploitation by
avoiding the local optima. This proves that the proposed EVWOA obtains better qual-
ity solutions by properly managing the balance between exploration and exploitation
throughout the search process.
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Figure 15. Convergence Curve for Case Study 6 obtained by WOA, RVWOA, LVWOA, SVWOA
and EVWOA.

5. Conclusions

The optimal scheduling of non-convex CHP units is a highly complex, non-convex,
and hard constrained nonlinear optimization problem. In this paper, an Exponentially
Varying WOA (EVWOA) method is proposed and implemented to enhance and improve
the performance of basic WOA in terms of convergence, maintaining the balance between
global exploration and exploitation throughout the search process, and improving its effi-
ciency. This variation is done by the introduction of an exponentially varying acceleration
function in the characteristic equations of the original WOA.

This proposition, as well as the other variations of WOA, namely RVWOA, LVWOA,
and SVWOA, are tested on several well-known standard benchmark functions to test their
ability and effectiveness in finding the solution. The obtained results are compared to some
of the existing optimization algorithms in the literature. It is found that all the variations
perform satisfactorily and can get the desired results.

Next, the proposed EVWOA is tested on six small to large different test systems of
CHPED problem consisting of several related operational constraints. The simulation
results provided by the proposed EVWOA after 100 independent trials are compared with
basic WOA, other remaining variants of WOA, and recently published results obtained
by different methods. The comparison results show that the proposed EVWOA performs
much better than other latest published methods and can obtain a much better optimal
quality solution in terms of best minimum cost, mean of cost, and STD of cost in less CPU
time. It can also be said that the proposed EVWOA is providing promising results with an
efficient constraint handling method for solving the CHPED problem.

Apart from the conventional single-objective CHPED problem, the proposed EVWOA
can be used for solving various other power system optimization problems. Some of
them to be named are the multi-objective CHP economic emission dispatch (CHPEED),
combining economic load dispatch consisting of conventional electrical generator units
with renewable energy sources, multi-area economic dispatch, dynamic load dispatch, etc.
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Appendix A

Case Study 1 details are referred from Reference [3].
Electrical energy generator units data is as per Table A1.

Table A1. Electrical Energy Generator unit data for Case Study 1.

Unit a ($/MW2) b ($/MW) c ($) Pmin (MW) Pmax (MW)

1 0 50 0 0 150

Cogeneration unit data is as per Table A2.

Table A2. Cogeneration unit data for Case Study 1

Unit a
($/MW2)

b
($/MW)

c
($)

d
($/MWth2)

e
($/MWth)

f
($/MW.MWth)

FOR
(P,H)

2 0.0345 14.5 2650 0.030 1.200 0.031

[98.8, 0],
[81, 104.8],
[215, 180],

[247, 0]

3 0.0435 36.0 1250 0.027 0.600 0.011

[44, 0],
[44, 15.9],
[40, 75],

[110.2, 135.6],
[125.8, 32.4],

[125.8, 0]

Heat energy generator unit data is as per Table A3.

Table A3. Heat energy generator unit data for Case Study 1.

Unit a ($/MW2) b ($/MW) c ($) Hmin (MWth) Hmax (MWth)

4 0 23.4 0 0 2695.2

Appendix B

Case Study 2 details are taken from [47].
Electrical energy generator data is as per Table A4.

Table A4. Electrical Energy Generator unit data for Case Study 2.

Unit h ($/MW3) a ($/MW2) b ($/MW) c ($) Pmin (MW) Pmax (MW)

1 0.000115 0.00172 7.6997 254.8863 0 35

Cogeneration unit data is as per Table A5.
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Table A5. Cogeneration unit data for Case Study 2.

Unit a
($/MW2)

b
($/MW)

c
($)

d
($/MWth2)

e
($/MWth)

f
($/MW.MWth)

FOR
(P,H)

2 0.0435 36.0 1250 0.027 0.600 0.011

[44, 0],
[44, 15.9],
[40, 75],

[110.2, 135.6],
[125.8, 32.4],

[125.8, 0]

3 0.1035 34.5 2650 0.025 2.203 0.051

[20, 0],
[10, 40],
[45, 55],
[60, 0]

4 0.072 20 1565 0.02 2.340 0.04

[35, 0],
[35, 20],
[90, 45],
[90, 25],
[105, 0]

Heat energy generator data is as per Table A6.

Table A6. Heat energy generator unit data for Case Study 2.

Unit a ($/MW2) b ($/MW) c ($) Hmin (MWth) Hmax (MWth)

5 0.038 2.0109 950 0 60

Appendix C

Details of Case Study 3 are referred from ref. [45].
Electrical energy generator data is as per Table A7.

Table A7. Electrical Energy Generator unit data for Case Study 3.

Unit a ($/MW2) b ($/MW) c ($) d ($) e (rad/MW) Pmin (MW) Pmax (MW)

1 0.008 2 25 100 0.042 10 75

2 0.003 1.8 10 140 0.04 20 125

3 0.0012 2.1 100 160 0.038 30 175

4 0.001 2 120 180 0.037 40 250

Cogeneration unit data is as per Table A8.
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Table A8. Cogeneration unit data for Case Study 3.

Unit a
($/MW2)

b
($/MW)

c
($)

d
($/MWth2)

e
($/MWth)

f
($/MW.MWth)

FOR
(P,H)

5 0.0345 14.5 2650 0.030 1.200 0.031

[98.8, 0],
[81, 104.8],
[215, 180],

[247, 0]

6 0.0435 36.0 1250 0.027 0.600 0.011

[44, 0],
[44, 15.9],
[40, 75],

[110.2, 135.6],
[125.8, 32.4],

[125.8, 0]

Heat energy generator data is as per Table A9.

Table A9. Heat energy generator unit data for Case Study 3.

Unit a ($/MW2) b ($/MW) c ($) Hmin (MWth) Hmax (MWth)

7 0.038 2.0109 950 0 2695.2

Transmission line losses for electrical generator units are given by:

B =



49 14 15 15 20 25
14 45 16 20 18 19
15 16 39 10 12 15
15 20 10 40 14 11
20 18 12 14 35 17
25 19 15 11 17 39

 ∗ 10−7

B0 = [−0.3908 −0.1297 0.7047 0.0591 0.2161 −0.6635] ∗ 10−3

B00 = 0.056

(A1)

Appendix D

Data of Case Study 4 are referred from ref. [24].
Electrical energy generator data is as per Table A10.

Table A10. Electrical Energy Generator unit data for Case Study 4.

Unit a ($/MW2) b ($/MW) c ($) d ($) e (rad/MW) Pmin (MW) Pmax (MW)

1 0.00028 8.1 550 300 0.035 0 680

2,3 0.00056 8.1 309 200 0.042 0 360

4,5,6,7,8,9 0.00324 7.74 240 150 0.063 60 180

10,11 0.00284 8.6 126 100 0.084 40 120

12,13 0.00284 8.6 126 100 0.084 55 120

Cogeneration unit data is as per Table A11.
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Table A11. Cogeneration unit data for Case Study 4.

Unit a
($/MW2)

b
($/MW)

c
($)

d
($/MWth2)

e
($/MWth)

f
($/MW.MWth)

FOR
(P,H)

14,16 0.0345 14.5 2650 0.030 1.200 0.031

[98.8, 0],
[81, 104.8],
[215, 180],

[247, 0]

15,17 0.0435 36.0 1250 0.027 0.600 0.011

[44, 0],
[44, 15.9],
[40, 75],

[110.2, 135.6],
[125.8, 32.4],

[125.8, 0]

18 0.1035 34.5 2650 0.025 2.203 0.051

[20, 0],
[10, 40],
[45, 55],
[60, 0]

19 0.072 20 1565 0.02 2.340 0.04

[35, 0],
[35, 20],
[90, 45],
[90, 25],
[105, 0]

Heat energy generator data is as per Table A12.

Table A12. Heat energy generator unit data for Case Study 4.

Unit a ($/MW2) b ($/MW) c ($) Hmin (MWth) Hmax (MWth)

20 0.038 2.0109 950 0 2695.2

21,22 0.038 2.0109 950 0 60

23,24 0.052 3.0651 480 0 120

Appendix E

Details of Case Study 5 are taken from [51].
Electrical energy generator data is as per Table A13.

Table A13. Electrical Energy Generator unit data for Case Study 5.

Unit a ($/MW2) b ($/MW) c ($) d ($) e (rad/MW) Pmin (MW) Pmax (MW)

1,14 0.00028 8.1 550 300 0.035 0 680

2,3,15,16 0.00056 8.1 309 200 0.042 0 360

4,5,6,7,8,9,
17,18,19,20,

21,22
0.00324 7.74 240 150 0.063 60 180

10,11,23,24 0.00284 8.6 126 100 0.084 40 120

12,13,25,26 0.00284 8.6 126 100 0.084 55 120

Cogeneration unit data is as per Table A14.
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Table A14. Cogeneration unit data for Case Study 5.

Unit a
($/MW2)

b
($/MW)

c
($)

d
($/MWth2)

e
($/MWth)

f
($/MW.MWth)

FOR
(P,H)

27,29,
33,35 0.0345 14.5 2650 0.030 1.200 0.031

[98.8, 0],
[81, 104.8],
[215, 180],

[247, 0]

28,30,
34,36 0.0435 36.0 1250 0.027 0.600 0.011

[44, 0],
[44, 15.9],
[40, 75],

[110.2, 135.6],
[125.8, 32.4],

[125.8, 0]

31,37 0.1035 34.5 2650 0.025 2.203 0.051

[20, 0],
[10, 40],
[45, 55],
[60, 0]

32,38 0.072 20 1565 0.02 2.340 0.04

[35, 0],
[35, 20],
[90, 45],
[90, 25],
[105, 0]

Heat energy generator data is as per Table A15.

Table A15. Heat energy generator unit data for Case Study 5.

Unit a ($/MW2) b ($/MW) c ($) Hmin (MWth) Hmax (MWth)

39,44 0.038 2.0109 950 0 2695.2

40,41,45,46 0.038 2.0109 950 0 60

42,43,47,48 0.052 3.0651 480 0 120

Appendix F

Case Study 6 data are referred from ref. [24].
Electrical energy generator data is as per Table A16.
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Table A16. Electrical Energy Generator unit data for Case Study 6.

Unit a ($/MW2) b ($/MW) c ($) d ($) e (rad/MW) Pmin (MW) Pmax (MW)

1,14,27,40 0.00028 8.1 550 300 0.035 0 680

2,3,15,16,
28,29,41,42 0.00056 8.1 309 200 0.042 0 360

4,5,6,7,8,9,
17,18,19,20,
21,22,30,31,
32,33,34,35,
43,44,45,46,

47,48

0.00324 7.74 240 150 0.063 60 180

10,11,23,24,
36,37,49,50 0.00284 8.6 126 100 0.084 40 120

12,13,25,26,
38,39,51,52 0.00284 8.6 126 100 0.084 55 120

Cogeneration unit data is as per Table A17.

Table A17. Cogeneration unit data for Case Study 6.

Unit a
($/MW2)

b
($/MW)

c
($)

d
($/MWth2)

e
($/MWth)

f
($MW.MWth)

FOR
(P,H)

27,29,
33,35 0.0345 14.5 2650 0.030 1.200 0.031

[98.8, 0],
[81, 104.8],
[215, 180],

[247, 0]

28,30,
34,36 0.0435 36.0 1250 0.027 0.600 0.011

[44, 0],
[44, 15.9],
[40, 75],

[110.2, 135.6],
[125.8, 32.4],

[125.8, 0]

31,37 0.1035 34.5 2650 0.025 2.203 0.051

[20, 0],
[10, 40],
[45, 55],
[60, 0]

32,38 0.072 20 1565 0.02 2.340 0.04

[35, 0],
[35, 20],
[90, 45],
[90, 25],
[105, 0]

Heat energy generator data is as per Table A18.

Table A18. Heat energy generator unit data for Case Study 6.

Unit a ($/MW2) b ($/MW) c ($) Hmin (MWth) Hmax (MWth)

39,44 0.038 2.0109 950 0 2695.2

40,41,45,46 0.038 2.0109 950 0 60

42,43,47,48 0.052 3.0651 480 0 120
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