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Abstract: In this work, the aerodynamic performance and optimization of a vertical-axis wind
turbine with a high tip-speed ratio are theoretically studied on the basis of the two-dimensional
airfoil theory. By dividing the rotating plane of the airfoil into the upwind and downwind areas, the
relationship among the angle of attack, azimuth, pitch angle, and tip-speed ratio is derived using
the quasi-steady aerodynamic model, and aerodynamic loads on the airfoil are then obtained. By
applying the polynomial approximation to functions of lift and drag coefficients with the angle of
attack for symmetric and asymmetric airfoils, respectively, explicit expressions of aerodynamic loads
as functions of the angle of attack are obtained. The performance of a fixed-pitch blade is studied by
employing a NACA0012 model, and influences of the tip speed ratio, pitch angle, chord length, rotor
radius, incoming wind speed and rotational speed on the performance of the blade are discussed.
Furthermore, the optimization problem based on the dynamic-pitch method is investigated by
considering the maximum value problem of the instantaneous torque as a function of the pitch angle.
Dynamic-pitch laws for symmetric and asymmetric airfoils are derived.

Keywords: performance; optimization; vertical-axis wind turbine; dynamic pitch

1. Introduction

Because of advantages such as its compact configuration, safety, convenience of
installation, and the low tower effect, the vertical-axis wind turbine (VAWT) has become
an attractive system to extract wind energy. However, unlike a horizontal-axis wind
turbine (HAWT), angles of attack of VAWT blades change with azimuths. Furthermore, the
aerodynamic performance of a VAWT is more involved, and the VAWT usually has low
power efficiency and low self-starting proficiency. The performance and optimization of
VAWTs are important issues for their widespread use.

There has been significant research on the performance of VAWTs conducted at the
Sandia National Laboratories since 1970s [1–6], which provided a lot of data for designing
and optimizing VAWTs. Most of these studies focused on fixed-pitch machines in a steady
wind environment. Recently, researchers investigated the performance of VAWTs from
many other aspects. Wind is a key influencing factor, and the state of the wind field has
an important effect on the performance of a VAWT. Kooiman and Tullis [7] tested the
performance of a VAWT within the urban environment, and they discussed effects of wind
conditions on the performance of the turbine. Danao et al. [8] carried out an experimen-
tal investigation on the performance of a wind tunnel-scale VAWT in an unsteady wind
condition, and they analyzed influences of the unsteady wind and tip-speed ratio on the
power coefficient. Mertens et al. [9] carried out an experimental test on the performance
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of an H-Darrieus wind turbine in skewed flow on a roof-top, and results showed that
the H-Darrieus wind turbine produces an increased power output in skewed flow, which
contradicts the conclusion of a typical HAWT. Möllerström et al. [10] analyzed the impact
of turbulence on energy extraction of a VAWT H-rotor using data from cup anemometer
measurements over a period of about 14 months. Li et al. [11] tested the power performance
of a straight-bladed VAWT with the NACA0021 airfoil profile, and they discussed effects
of the pitch angle, Reynolds number, and wind velocity on the performance of the turbine.
Wekesa et al. [12] studied the influence of operating conditions on the performance of the
VAWT in an unsteady wind environment using the computational fluid dynamics (CFD)
method. Lei et al. [13] investigated the impact of pitch motion of the platform on the
performance of an offshore floating VAWT by applying the CFD method. Mohamed [14]
investigated effects of solidity and a hybrid system on the performance of a Darrieus wind
turbine by using numerical and experimental methods. Joo et al. [15] discussed the impact
of solidity and tip-speed ratio on the performance of a two-bladed H-Darrieus wind turbine
by using three-dimensional unsteady numerical analysis. Shahizare et al. [16] analyzed the
influence of different omni-direction-guide-vane (ODGV) angles on the performance of the
VAWT by applying the two-dimensional CFD and experimental methods. Chen et al. [17]
studied the power output of two straight-bladed VAWTs in various operating conditions
by applying the Taguchi method, and they discussed impacts of the incoming flow an-
gle, tip-speed ratio, turbine spacing, and rotational direction on the power coefficient.
Chen et al. [18] researched the effect of opening (a starting device) on the performance of
a Darrieus VAWT using CFD simulation. Fiedler and Tullis [19] investigated the impact
of the preset angle on the performance of a high-solidity VAWT by using a wind tunnel
test. Liu et al. [20] designed a new hybrid Darrieus–modified Savonius (HDMS) VAWT
and studied the self-starting capability and power efficiency under different external loads
of the turbine by using a two-way fluid–structure interaction approach.

To obtain more accurate results, many computational methods were introduced.
Orlandi et al. [21] proposed a method based on three-dimensional unsteady Reynolds-
averaged Navier–Stokes equations to predict the influence of skewed winds on the per-
formance of an H-type VAWT, and they validated this method by using numerical and
experimental results. Peng et al. [22] introduced a hybrid double-disc multiple stream-
tube (DMST) model to optimize pitch angles and assess the performance for high-solidity
straight-bladed VAWTs. These researches provided valuable results and insights for de-
signing, controlling, and optimizing the aerodynamic performance of VAWTs.

Improving the performance of VAWTs has been a major focus for many researchers.
Many effective measures were put forward. From the aspect of changing airflow,
Zhao et al. [23] proposed a method to reformulate the flow field where energy extrac-
tion is weak, and they validated the feasibility of this method by using the DMST model.
Li et al. [24] introduced an innovative truncated-cone-shaped wind gathering device that
could improve the starting efficiency of a straight-bladed VAWT, and they discussed the
influence of the device on the performance of the turbine by using both numerical and
experimental methods. Greenblatt et al. [25] studied the impact of plasma actuators on
the performance of a small high-solidity VAWT by applying an experimental test, where
plasma actuators were used to control dynamic flow separation.

Airfoil profile optimization is another effective method to improve the performance
of a VAWT. Ma et al. [26] proposed a multi-island genetic algorithm to optimize air-
foil profiles of VAWTs with moderate tip-speed ratios to improve energy extraction.
Chen et al. [27] put forward a methodology to assess the performance of a VAWT using a
family of airfoils by employing an orthogonal algorithm and one-factor at a time (OFAAT)
algorithm with an automatic computational fluid dynamic analysis (ACFDA) module.
Ismail and Vijayaraghavan [28] carried out a profile modification of the NACA0015 airfoil
by applying the response surface approximation (RSA) method to improve the average
torque of a VAWT. Dynamic rotor morphing was considered by a few researchers. For
example, Antar et al. [29] proposed an optimized design of VAWTs that can control the
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self-start proficiency and energy extraction of the turbine by changing the rotor radius in
starting and rotating conditions.

Dynamic pitch (variable pitch) in a rotor revolution is another important measure to
improve the performance of a VAWT. Kirke and Lazauskas [30] put forward a variable-
pitch design to overcome drawbacks of the low self-start proficiency and over-speed
behavior in high winds for fixed-pitch VAWTs, and they validated this design by using
the extended DMST method. Benedict et al. [31] designed a small-scale VAWT with
periodically varying blade pitch, and they studied the influence of the dynamic pitch on the
performance of the turbine by using CFD and experimental methods. Elkhoury et al. [32]
studied the performance of a micro VAWT with the variable pitch by applying the three-
dimensional simulation and wind tunnel test, and they analyzed effects of the wind speed,
turbulence intensity, airfoil shape, strut mechanism, and variable pitch on the performance
of the turbine. Paraschivoiu et al. [33] introduced the CARDAAV code to determine the
performance of straight-bladed VAWTs, and they provided an optimization of the pitch
angle of an H-Darrieus wind turbine on the basis of this code. Li et al. [34] established a
variable-pitch automatic optimization platform composed of genetic algorithm and CFD
simulation modules to optimize the pitch angle and improve the power efficiency of a
VAWT. Kiwata et al. [35] conducted an experimental test on the performance of a micro
VAWT with variable-pitch straight blades in an open-circuit wind tunnel, and they found
that the performance of the turbine depends on the pitch angle, size of the turbine, number
of blades, and airfoil profile. Zhang et al. [36] put forward a synchronous variable-pitch
control law that can optimize pitch angles of VAWTs in the range of low tip-speed ratios.
Kirke and Paillard [37] compared the starting proficiency and over-speed control ability of
variable-pitch and fixed-pitch Darrieus VAWTs by using both DMST and CFD methods,
which showed good efficiency for the variable-pitch turbine. Horb et al. [38] discussed the
effect of optimized pitch laws on the power extraction and thrust of a VAWT using the
three-dimensional vortex method.

In order to obtain an accurate methodology, most investigations on the performance
and optimization of VAWTs used either experimental tests or numerical simulations to solve
the problem. However, both numerical and experimental methods are less convenient,
especially for design trend studies. Furthermore, there are few works on the VAWT
performance related to theoretical methods. This work presents a theoretical analysis
of the performance and optimization of the VAWT with a high tip-speed ratio on the
basis of the two-dimensional airfoil theory. Coefficients of lift and drag forces are fitted
as polynomial functions of the angle of attack; the performance of the wind turbine is
discussed theoretically, and expressions of the dynamic-pitch rule are presented. This
method can be extended to solve the aeroelastic stability problem of VAWTs.

2. Analysis of Aerodynamic Loads

By using a two-dimensional rotating-airfoil model, the performance of a VAWT at a
fixed height can be studied. Figure 1 shows such a model by using two airfoils that rotate
around the point o counterclockwise with an angular speed Ω and a constant radius R.
The i-th airfoil is connected to struts at the point oi. Cartesian right-handed coordinate
systems (see Figure 1) are defined to describe the motion of the structure. An inertial
coordinate system o-yz has its origin at the rotating center, and the z-axis is along the wind
direction that is assumed to be fixed, where vin is the incoming wind velocity. A body
coordinate system oi-sini is fixed on the i-th airfoil at the connecting point oi, where the
si-axis is along the tangential direction, and the ni-axis is along the inner normal direction.
The counterclockwise angle Ψi(t) =

∫ t
0 Ωdt + Ψi0 from the y-axis to the si-axis is defined

as the azimuth of the i-th blade, where t is time and Ψi0 is the initial azimuth. A section
coordinate system oi-ηiζi has the ηi-axis along the chord line and the ζi-axis along the
thickness direction. The counterclockwise angle from the si-axis to the ηi-axis is the pitch
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angle θpi. Unit vectors of the coordinate systems o-yz, oi-sini, and oi-ηiζi are denoted by
(j, k), (jsi, kni), and (jηi, kζi), respectively. They satisfy the following relationships:[

jsi
kni

]
=

[
cos Ψi sin Ψi
− sin Ψi cos Ψi

][
j
k

]
and

[
jηi
kζi

]
=

[
cos θpi sin θpi
− sin θpi cos θpi

][
jsi
kni

]
. (1)
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Variable aerodynamic forces are generated when blades rotate around the tower.
In this work, the quasi-steady aerodynamic model is considered. The tip-speed ratio
λ = RΩ/vin is defined as the ratio of the blade speed RΩ to the incoming wind speed vin. It
is assumed that the tip-speed ratio λ is high here. For the i-th airfoil, the resultant wind
velocity vri at a fixed azimuth can be expressed as follows (see Figure 2):

vri = vind − vbi = vindk− RΩjsi = vind[(sin Ψi − λind)jsi + cos Ψikni], (2)

where vind and vbi are the induced wind velocity and the i-th airfoil section velocity,
respectively; λind = RΩ/vind is the induced tip-speed ratio; and expressions of vind and λind
are given at the end of this section. The acute angle between vri and vbi is denoted as ϑi.
The angle of attack at each azimuth can be obtained by dividing the rotation plane into the
following two parts (see Figure 2):

(1) Upwind Area: 2kπ− π
2 ≤ Ψi ≤ 2kπ+π

2 (k = 0, 1, 2 . . . .)

In this case, the angle ϑi satisfies tan(π− ϑi) = − tan ϑi = vind cos Ψi
vind sin Ψi−RΩ , i.e., ϑi =

arctan vind cos Ψi
RΩ−vind sin Ψi

. The angle of attack can be described as −αi = ϑi + θpi, i.e., αi =

arctan vind cos Ψi
vind sin Ψi−RΩ − θpi.

(2) Downwind Area: 2kπ+ π
2 ≤ Ψi ≤ 2kπ+ 3π

2 (k = 0, 1, 2 . . . .)

The angle ϑi satisfies tan(π+ ϑi) = tan ϑi =
vind cos Ψi

vind sin Ψi−RΩ , i.e., ϑi = arctan vind cos Ψi
vind sin Ψi−RΩ .

However, the pitch angle should be divided into the following two cases:
[A] Large positive pitch angle (θpi ≥ ϑi >0) (see Figure 2a)
The angle of attack satisfies −αi = θpi − ϑi, i.e., αi = arctan vind cos Ψi

vind sin Ψi−RΩ − θpi.
[B] Small positive or nonpositive pitch angles (0 < θpi ≤ ϑi or θpi ≤ 0) (see Figure 2b)
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The angle of attack satisfies αi = ϑi − θpi, i.e., αi = arctan vind cos Ψi
vind sin Ψi−RΩ − θpi.

One can see from the above analysis that the angle of attack always satisfies the
following equation:

αi = arctan
vind cos Ψi

vind sin Ψi − RΩ
− θpi = arctan

cos Ψi
sin Ψi − λind

− θpi. (3)

By transforming the right-handed inertial coordinate system o-yz of this work to the left-
handed system o-xy in [23] and neglecting the pitch angle, the expression of the angle of
attack in Equation (3) is the same as that in [23].

The lift force Li and drag force Di acting at the aerodynamic center oai of the i-th airfoil
element in a rotating circle are shown in Figure 3. According to the positive regulations,
the real direction of Li is opposite to that given in Figure 3, and the real direction of Di that
is along the resultant wind velocity vri coincides with its positive direction. Expressions of
Li and Di can be written as follows [22,39]:

Li =
1
2

CL(αi)clρav2
ri, Di =

1
2

CD(αi)clρav2
ri, (4)

where c is the chord length, l is the length of an airfoil element, ρa is the air density, and
CL and CD are lift and drag coefficients that depend on the angle of attack αi, respectively.
There is also a residual aerodynamic moment Mri for unsteady flow. One can obtain the
instantaneous torque Mi of the i-th airfoil element according to Figures 2 and 3 as

Mi =

{
−(Li sin ϑi + Di cos ϑi)R + Mri

(
2kπ− π

2 ≤ Ψi ≤ 2kπ+π
2
)

(Li sin ϑi − Di cos ϑi)R + Mri
(
2kπ+ π

2 ≤ Ψi ≤ 2kπ+ 3π
2
) . (5)
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The instantaneous torque coefficient CMi of the i-th airfoil element can be derived as
follows [23]:

CMi =
Mi

0.5ρav2
in AR

, (6)

where A = Dl is the swept area, D = 2R = Nc/σ is the rotor diameter, N is the number of
blades, and σ is the solidity. The average torque Miav, average torque coefficient CMiav,
instantaneous power Pi, average power Piav, instantaneous power coefficient Cpi, and
average power coefficient Cpiav corresponding to the i-th airfoil element can be defined as
follows [23]:

Miav = 1
2π

∫ 2π
0 MidΨi, CMiav = Miav

0.5ρav2
in AR

,

Pi = MiΩ, Piav = 1
2π

∫ 2π
0 PidΨi, Cpi =

Pi
0.5ρav3

in A
= λCMi, CPiav = 1

2π

∫ 2π
0 CPidΨi.

(7)

Induced flow can be expressed by defining induction factors au and ad in the upwind
and downwind areas, respectively. The upstream velocity vu, equilibrium velocity ve in the
downwind area, downstream velocity vd, upstream tip-speed ratio λu, and downstream
tip-speed ratio λd can be written as follows [34]:

vu = (1− au)vin, ve = (1− 2au)vin, vd = (1− ad)ve = (1− ad)(1− 2au)vin,
λu = RΩ

vu
= λ

1−au
, λd = RΩ

vd
= λ

(1−ad)(1−2au)
. (8)

Induction factors au and ad depend on many factors such as the azimuth, rotational speed,
wind speed, and solidity, which can be obtained by using the methods in [23,34]. Integrating
quantities of airfoil elements along blade expansion, one can obtain the aerodynamic
performance of the whole wind turbine [23,34]. Changes in incoming wind speed in the
vertical direction should be considered for large wind turbines (e.g., [2,5]). The shear flow
model vin2/vin1 = (h2/h1)p can be adopted in analysis, where vin1 and vin2 are incoming
wind speeds at two heights h1 and h2, respectively, and p is the velocity gradient constant
that depends on the geographical position of a turbine.
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3. Performance Analysis of a Fixed-Pitch VAWT
3.1. Analytical Method for the Turbine Performance

A theoretical analysis for the performance of fixed-pitch VAWTs is presented in this
section. In order to obtain explicit expressions of aerodynamic loads on each airfoil element,
the lift coefficient CL (αi) and drag coefficient CD (αi) as functions of the angle of attack
αi should be obtained first, but these coefficients depend on the Reynolds number and
airfoil profile. The polynomial approximation is a simple method to fit curves of CL and
CD that can be obtained from experiments or numerical simulations (e.g., [28,36,37]), and
there have been several experimental results for classic airfoils [39,40]. If one can use
simple-type polynomials to describe CL and CD curves, the analysis is simplified. For
example, Afzali et al. [41] used polynomials to express CL and CD curves of the NACA0012
airfoil in analyzing vibrational responses of a VAWT blade. There should be a correction for
aerodynamic loads when dynamic stall occurs. However, dynamic stall is avoided, and the
stall correction is not needed for high tip-speed ratios. Figure 4 shows change trends of the
angle of attack with the azimuth at five different tip-speed ratios λ = 3, 4, 5, 6, and 7, which
are obtained from Equation (3) by letting λind = λ and θp = 0◦. It reveals that the angle of
attack α at each azimuth ψ is no more than 15◦ when the tip-speed ratio λ is larger than
4, and α is less than 10◦ when λ is larger than 6. Therefore, dynamic stall is avoided for
large tip-speed ratios. This work focuses on the performance of a wind turbine with a high
tip-speed ratio, where the stall correction is not needed. Some future work can emphasize
the case of low tip-speed ratios, where the stall correction needs to be studied.
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Symmetric airfoils are researched first, and the NACA0015 airfoil is used as an exam-
ple. Figure 5 shows steady aerodynamic experimental results of CL and CD with respect
to α at different Reynolds numbers for NACA0015 before stall, which were obtained by
using the software Profili from steady aerodynamic experimental results (e.g., [39,40]). One
can find that these curves have similar shapes in the region of small angles of attack; thus,
they can be fitted to polynomials of the same form. CL-functions are odd, and CD-functions
are even, approximately; hence, they can be expressed as the following polynomials with
orders no more than four:
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CL(αi) ≈ c1αi + c3α3
i , CD(αi) ≈ c0 + c2α2

i . (9)

Equation (9) is also available for other symmetric airfoils (e.g., NACA0012, NACA63-018,
etc.), although it is derived on the basis of the NACA0015 airfoil.
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Next, asymmetric airfoils (e.g., NACA6409, NACA6411, etc.) are studied by selecting
the NACA6409 airfoil as an example. Figure 6 presents variations of CL and CD with α at
different Reynolds numbers for the NACA6409 airfoil before stall, which were obtained
using the software Profili from steady aerodynamic experimental results [39]. One can
observe from Figure 6 that forms of CL- and CD-functions are the same as those of symmetric
airfoils if axis translations are used. Therefore, CL- and CD- functions of asymmetric airfoils
can be described as

CL(αi) ≈ c0L + c1(αi + bL) + c3(αi + bL)
3, CD(αi) ≈ c0D + c2(αi + bD)

2, (10)

where bL and bD reflect translations of CL and CD in the horizontal direction, respectively,
and c0L and c0D reflect translations of CL and CD in the vertical direction, respectively.
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In order to verify the accuracy of Equations (9) and (10), comparisons of original
values and polynomial values for symmetric airfoils (NACA0012 and NACA0015) and
asymmetric airfoils (NACA6409 and NACA6411) at different Reynolds numbers are shown
in Figures 7 and 8, respectively. Original values are experimental results in the database
of airfoils in the software Profili. Good correlations are observed except for the CD-curve
of asymmetric airfoils at Re = 3 × 105 for large angles of attack. This is the case because
pressure drag is influenced by the airfoil profile dramatically at a low Reynolds number
and a higher angle of attack, and the translation of the Cd expression from Equation (9) to
Equation (10) generates a poor fitting. However, this difference disappears with increasing
Reynolds numbers (see Re = 5× 105). In fact, very good fitting can be obtained by using the
fourth-order polynomial approximation for asymmetric airfoils, but it can result in a more
involved analysis. Equations (9) and (10) are accurate enough for lift-type VAWTs because
the drag force plays a minor role. Furthermore, the Reynolds number of a wind turbine
with a high tip-speed ratio is about 106, which can avoid this deviation. Substituting
Equations (9) and (10) into Equations (4)–(7) for symmetric and asymmetric airfoils, one
can obtain explicit expressions of aerodynamic loads and power and solve the performance
problem analytically.
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airfoil; and (b1,b2) the NACA6411 airfoil.

3.2. Performance of a Fixed-Pitch Turbine

Next, the performance of a straight blade with length L = 1 m is analyzed by selecting
the NACA0012 airfoil element from the Sandia 17 m diameter Darrieus VAWT [2] as a
computational model. Parameters are set as follows: the chord length c = 0.53 m, the rotor
radius R = 3.79 m, the air density ρa = 1.25 kg/m3, and the average Reynolds number
Re = 3.23 × 106. Expressions of the lift and drag coefficients are given as CL(αi) ≈
4.4287αi − 2.9916α3

i and CD(αi) ≈ 0.0094 + 1.185α2
i , respectively [39,41], where the unit of

αi is rad. The residual aerodynamic moment Mr is neglected since it is very small for a
high tip-speed ratio. The single-stream-tube aerodynamic model is used for performance
prediction, where the induction factors are defined as au = Nc

2πR
RΩ
vin

cos(Ψi) and ad = 0 [42].

3.2.1. Validation of Results

In order to validate the method and accuracy of results, the output power of the
Sandia 17 m diameter Darrieus VAWT [2] is calculated. The present theoretical predictions
are compared with the test data [2] for zero-pitch setting by selecting two experimental
rotational speeds: (1) Ω = 42 rpm (Figure 9a) and (2) Ω = 52.5 rpm (Figure 9b). Variation
of power with the incoming wind speed vin at the 44 ft (13.4 m) height is presented. The
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comparison shows a good agreement of the predicted results here with test data for two
cases except some differences occurring in regions near peak values, possibly due to stalled
flow or test error. Overall, the results in this work appear acceptable. As expected, the
output power increases with the incoming wind speed, reaches the maximum value, and
then decreases with the wind speed when the turbine operates at a constant rotational
speed. This may be attributed to stalled flow after reaching the maximum power value. As
the rotational speed is increased, the maximum output power increases, because stalled
flow takes place at a high wind speed. The maximum value of the power is the optimal
power of the turbine at this fixed rotational speed. The power efficiency of the turbine can
be improved by operating at the optimal rotational speed that corresponds to the optimal
power for each specific wind speed. Figure 10 presents comparison results of Cp–λ curves
derived from experimental tests and current analytical predictions; it shows that the two
results coincide well.
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The influence of pitch setting on the power is discussed according to theoretical
predictions by selecting seven pitch angles θp = 0◦, ±4◦, ±8◦, and ±10◦ for two constant
rotational speeds Ω = 42 rpm (Figure 11a) and Ω = 52.5 rpm (Figure 11b), where “±”
denotes directions of the pitch angle (“+” stands for turning the leading edge toward
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the tower). The largest value of the power appears at θp = 0◦ for each fixed rotational
speed and fixed wind speed, which implies that the optimal pitch angle is near zero for
this turbine. The direction of the pitch angle has little influence on the output power of
the turbine at a low wind speed; this is the case because the natural angle of attack (no
pitch setting) at each azimuth is very small (see Equation (3)), and the torque is symmetric
about the zero pitch when the pitch setting is considered. However, the natural angle of
attack corresponding to the zero pitch becomes large at a high wind speed. Thus, setting
the same pitch at two different directions brings two different angles of attack; this can
influence the output of the power. This reveals that using a negative pitch (i.e., putting
the trailing edge toward the tower) can extract more power than setting the same positive
pitch. This is the case because a negative pitch setting can reduce the angle of attack and
influence of stalled flow. The power at each fixed wind speed is reduced by setting a large
pitch angle, which is the case because a larger pitch is prone to introducing a larger angle
of attack and causing stall of a blade. The influence of rotational speed setting on the
power of the turbine with a constant rotational speed is analyzed by taking five constant
rotational speeds Ω = 35 rpm, 42 rpm, 48 rpm, 52.5 rpm, and 55 rpm for two fixed pitch
settings θp = 0◦ and 8◦. One can see that the optimal rotational speed that corresponds to
the maximum value of power increases with the wind speed; thus, increasing the rotational
speed at a high wind speed can extract more power. However, the wind speed needed to
start the wind turbine increases somewhat with a higher rotational speed.

3.2.2. Performance of a Constant-Speed Blade

Blades rotate around the tower with a constant speed to obtain constant power in
the region of rated wind speed. The performance of the turbine is influenced by the pitch
setting, rotational speed setting, wind velocity, and solidity. A discussion of these effects
is given by using the blade model. Figure 12 shows variation of the instantaneous torque
coefficient CM (see Figure 12a) and instantaneous power coefficient CP (see Figure 12b)
of the blade with respect to the azimuth Ψ at two sets of induction factors au = 0 (ne-
glecting induced flow) and au 6= 0 (considering induced flow), where the rotational speed
Ω = 37.84 rpm, pitch angle θp = 0◦, and incoming wind speed vin = 11.18 mph (5 m/s).
Changing trends of both CM and CP are approximately harmonic when loss of wind energy
(au = 0) is neglected, which are consistent with results in [3,8,13,15–17,20,26,32]. When
induced flow (au 6= 0) is considered, Figure 12 shows that both the torque and power of the
turbine are reduced. The maximum values of CM and CP occur in the upstream direction
Ψ = 0◦ (CM (0◦) = 0.1799, CP (0◦) = 0.5785) and downstream direction Ψ = 180◦ (CM (180◦)
= 0.1556, CP (180◦) = 0.5388), respectively. Negative values of the torque and power appear
near the positions Ψ = 90◦ (CM (90◦) = −0.002632, CP (90◦) = −0.007896) and Ψ = 270◦

(CM (270◦) = −0.01053, CP (270◦) = −0.03158). The minimum values of CM and CP occur at
Ψ = 90◦ and Ψ = 270◦, which are much smaller than the maximum values. Two regions
of negative torques are small in this case. These analytical results agree with CFD results
in [15,16,18,20,23,31].
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Figure 11. Performance of the Sandia turbine: (a) the influence of the pitch setting at Ω = 42 rpm; (b) the influence of the pitch
setting at Ω = 52.5 rpm; (c) the influence of the rotational speed at θp = 0◦; and (d) the influence of the rotational speed at θp = 8◦.
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Figure 12. Variations of (a) the instantaneous torque coefficient and (b) instantaneous power coefficient with the azimuth at
R = 3.79 m, Ω = 37.84 rpm, θp = 0◦, and vin = 11.18 mph.
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The power output of the blade depends on the pitch setting and rotational speed
when the turbine rotates with a uniform wind velocity. Figure 13a shows variation of the
power coefficient CPav (Z-coordinate) with the rotational speed Ω (X-coordinate) and pitch
angle θp (Y-coordinate) at the wind speed vin = 11.18 mph. For a given pitch setting, the
largest power output, i.e., the optimal coefficient CPmax, appears at a specific rotational
speed Ω0. The three-dimensional optimal-power curve (Ω0, θp, CPmax) is also given in
Figure 13a, and its projection on the Ω–θp plane is presented in Figure 13b. One can observe
that the optimal pitch setting of this blade is θp0 = −4◦; the optimal rotational speed of
this pitch setting is Ω0 = 66 rpm. Both the optimal power coefficient CPmax and optimal
rotational speed Ω0 decrease when the pitch setting is far away from θp0 = −4◦; this is
the case because a pitch setting deviating from the optimal pitch could make stalled flow
appear at a low rotational speed and reduce the power. The highest optimal rotational
speed Ω0 = 67 rpm appears at θp = −2.8◦, but the power of this setting is not the largest
optimal power. There are two optimal pitch angles distributed on both sides of θp = −2.8◦

(θp0 >−2.8◦ and θp0 <−2.8◦) for a fixed rotational speed. Moreover, the pitch setting on the
side of θp0 < −2.8◦ can generate more power (see Figure 13b, θp = 2.2◦ versus θp = −10◦);
this is the case because turning the trailing edge toward the tower can reduce the influence
of stalled flow for this blade at a fixed wind speed. However, use of a larger negative pitch
angle can also increase the stall effect and decrease the power.
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Figure 14 illustrates the optimal power coefficient curve (Ω0, θp, CPmax) at four wind
speeds vin = 10 mph, 20 mph, 30 mph, and 40 mph, where P1 = (58.6 rpm, −4◦, 0.175),
P2 = (117.2 rpm, −4◦, 0.175), P3 = (175.8 rpm, −4◦, 0.175), and P4 = (234.4 rpm, −4◦, 0.175)
are the optimal points corresponding to four wind speeds, respectively. The optimal power
coefficient CPmax is a constant 0.175 for each fixed wind speed. The optimal rotational
speed increases with the wind speed for each fixed pitch setting; this is the case because
increasing the rotational speed can reduce the angle of attack and avoid stalled flow in a
high wind speed. This implies that increasing the rotational speed can extract more power
at a high wind speed. Variation of the wind speed does not influence the optimal pitch
setting (θp0 = −4◦) because this pitch angle corresponds to the largest power coefficient
CPmax = 0.175.
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A fixed-pitch blade with a constant rotational speed cannot always reach the largest
power output with change of the wind speed. Changing trends of the power Pav and power
coefficient CPav with the incoming wind speed vin at different pitch angles and rotational
speeds are illustrated in Figures 15 and 16, respectively. Figure 15 presents the average
power Pav (see Figure 15a) and power coefficient CPav (see Figure 15b) with the wind speed
vin at five different pitch settings θp = 0◦, ±4◦, and ±8◦ for a constant rotational speed
Ω = 40 rpm. It shows that, for each fixed pitch setting and a constant rotational speed,
the power Pav increases first, reaches the maximum value, and then decreases with the
increase in vin; this changing trend agrees with the experimental and numerical results
in [2,6,33]. A larger power output and coefficient appear at θp = −4◦ at a low wind speed.
However, the power decreases at a high wind speed because stalled flow is reached with a
further increase in the wind speed. Turning the leading edge toward the tower can reduce
the influence of stall; hence, the power output at a positive pitch setting (θp = 0◦, 4◦, and
8◦) becomes larger than that of θp = −4◦, and the maximum power for the pitch setting
θp = −8◦ becomes smaller. Figure 16 shows the power Pav (see Figure 16a) and power
coefficient CPav (see Figure 16b) at six different rotational speeds Ω = 20 rpm, 25 rpm,
30 rpm, 35 rpm, 40 rpm, and 45 rpm for the fixed pitch setting θp = −4◦. One can see that
using a higher rotational speed at a high wind speed can extract more power. The optimal
rotational speed corresponding to the maximum power coefficient increases with the wind
speed, which agrees with the results in Figure 14.

The solidity σ (or Nc/(2R) for straight uniform blades without curvatures) is an
important design parameter of a VAWT. One can change σ by changing the number of
blades N, chord length c, or rotor radius R. Influences of R and c on the power Pav (see
Figures 17a and 18a) and power coefficient CPav (see Figures 17b and 18b) of the blade
with the pitch setting θp = 4◦ and rotational speed Ω = 40 rpm are revealed. Figure 17
shows Pav and CPav at three rotor radius settings R = 3.79 m, 3.99 m, and 4.19 m, where
the chord length c = 0.53 m. Figure 18 presents variations of Pav and CPav with vin at three
different chord lengths c = 0.23 m, 0.53 m, and 0.83 m, where the rotor radius is fixed as
R = 3.79 m. It can be found that increasing both the rotor radius and chord length can
enhance the power of a fixed-pitch blade with a constant rotational speed; this is the case
because extending both the rotor radius and chord length can enhance the torque of the
blade (see Equations (4) and (5)), and the power is increased when the rotational speed is
constant. However, increasing the rotor radius R decreases the optimal power coefficient
CPmax, which contradicts the effect of the chord length c on CPmax.
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Figure 16. Variations of (a) the power and (b) power coefficient with the incoming wind speed for the fixed θp = −4◦.
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Figure 17. Effect of the rotor radius on (a) the power and (b) power coefficient, where θp = 4◦ and Ω = 40 rpm.
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3.2.3. Performance of a Variable-Speed Blade

A variable rotational speed method is usually used to improve the power efficiency
of a VAWT. Variation of the rotational speed that depends on the pitch setting and wind
speed should keep the largest power coefficient. A variation rule of the rotational speed Ω
with the pitch angle θp and wind speed vin can be obtained by considering the maximum
value problem of the power coefficient function CPav = CPav (θp, Ω, vin) = CPav (θp, λ); the
two variables Ω and vin are usually merged into one variable λ = RΩ/vin, which stands
for the proportional relationship between the blade speed RΩ and wind speed vin. For
a specific pitch setting θp, one can get the optimal tip-speed ratio λ (denoted as λ0 = λ0
(θp)) that corresponds to the maximum power coefficient CPav (called the optimal power
coefficient and denoted as CPmax) at this pitch setting. Finally, the optimal rotational speed
Ω0 at each fixed pitch and wind speed can be derived as Ω0 = λ0(θp)vin/R; the rotational
speed follows this rule with change of the wind speed to track the largest power output.

Variation of the power coefficient CPav with the pitch angle θp, rotational speed Ω, and
wind speed vin are calculated and shown in Figure 19a. From the variation in CPav, one can
find the optimal proportional relationship λ0(θp) = RΩ0/vin between the blade speed RΩ0
and wind speed vin for each fixed pitch setting, as well as see variation of the optimal power
coefficient CPmax with the pitch setting; the optimal curve CPmax–λ0–θp is also presented
in Figure 19a, and its projection on the λ0–θp plane is given in Figure 19b. It shows that
CPav increases first, reaches the maximum value, and then decreases with the increase in λ
for each fixed pitch setting; similar results can be found in [1,2,6,7,10–19,22–27,29–35,37].
There is only one optimal proportional ratio λ0 = RΩ0/vin for each fixed pitch setting. The
largest CPmax appears at the pitch setting θp0 = −4◦, where the optimal tip-speed ratio
λ0 = 5.23. Therefore, the variation rule of the rotational speed with the wind speed should
be set as Ω0 = 5.23vin/R at this pitch setting, which can extract more power. Both the
optimal power coefficient CPmax and optimal tip-speed ratio λ0 decrease when the pitch
setting is far away from θp0 = −4◦; this is the case because a pitch setting deviating from
the optimal pitch could make stalled flow appear at a low rotational speed and decrease
the power coefficient for each fixed wind speed. The maximum value of the optimal tip
speed ratio is λ0 = 5.23, which exists in the region [−2◦, −4◦] of the pitch angle, but the
optimal power coefficient CPmax is not constant in this region. For a given proportional
relationship λ = RΩ/vin of two speeds in the region (1, 5.23), there are two optimal pitch
angles distributed on two sides of the region [−2◦, −4◦] (θp0 > −2◦ and θp0 < −4◦). The
pitch setting on the side of θp0 < −4◦ can extract more power (see Figure 19b, θp = 0◦ versus
θp = −6.4◦); this is the case because turning the trailing edge toward the tower can reduce
the influence of stalled flow for this blade. Figure 19c illustrates the variation rule of the
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rotational speed Ω0 = λ0(θp)vin/R with the wind speed at seven different pitch settings
θp = 0◦, ±4◦, ±8◦, and ±10◦. Even though the largest CPmax occurs at θp0 = −4◦, higher
optimal rotational speeds appear at the lower wind speed due to the high λ0 for this pitch
setting; hence, the optimal rotational speed may exceed the maximum allowable speed.
One can solve this problem by increasing the rotor radius R or changing the pitch setting.
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Influences of the rotor radius R and chord length c on the optimal power Pmax of a
variable-speed blade with the fixed pitch setting θp = 0◦ are revealed in Figure 20, where
the rotational speed has been set to satisfy the variation rule at the zero pitch. Figure 20a
shows variation of Pmax with vin for three rotor radius settings R = 8.33 m, 3.79 m, and
2.41 m at the fixed chord length c = 0.53 m. One can see that increasing the rotor radius
cannot change power extraction if induced flow is neglected (au = 0), which is the case
because increasing R can decrease the optimal rotational speed and increase the torque
at the same time. However, when induced flow is considered, the power output of the
blade can be improved by extending R because increasing the rotor radius can reduce the
influence of induced flow. Figure 20b presents variation of Pmax with vin at three different
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chord length selections c = 0.23 m, 0.53 m, and 0.83 m for a fixed rotor radius R = 3.79 m. It
can be found that increasing the chord length can enhance the power of the blade; this is
the case because extending the chord length can increase the torque of the blade without
changing the optimal rotational speed.
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Figure 20. Effect of the solidity on the power output of a variable-speed blade with the pitch setting θp = 0◦: (a) the influence
of the rotor radius; and (b) the influence of the chord length.

To show the efficiency of the variable-speed method, the power output of constant-
speed and variable-speed blades is compared by selecting four pitch settings θp = 0◦, ±4◦,
and −8◦ and four rotational speeds Ω = 60 rpm, 40 rpm, 66 rpm, and 55 rpm. Changing
trends of the power with the wind speed are presented in Figure 21. One can see that use of
a variable rotational speed can extract more power for each pitch setting. The power output
of constant-speed blades decreases at high wind speeds due to stalled flow. However, the
power of variable-speed blades always increases with the wind speed because the power
coefficient does not change with the wind speed.
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Figure 21. Comparison of the power output of constant- and variable-speed blades.
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4. Performance Optimization Based on a Dynamic-Pitch Method

The performance of a VAWT can be further improved by adopting a dynamic-pitch
method. In this section, the dynamic-pitch optimization is discussed using a theoretical
method. One can consider the instantaneous torque at each fixed azimuth as a function
of the pitch angle, i.e., Mi = Mi (θpi). The optimized pitch angle at each azimuth can be
obtained by solving the maximum value problem of the torque function. This means that

the conditions dMi
dθpi

= 0 and d2 Mi

d(θpi)
2 < 0 hold at the optimized pitch angle. One can first

consider the symmetric airfoil and approximate functions of Equation (9). By denoting
Γi = arctan cos Ψi

sin Ψi−λind
, the optimized pitch angle is analyzed for the following two cases:

(1) Upwind Area: 2kπ− π
2 ≤ Ψi ≤ 2kπ+π

2 (k = 0, 1, 2 . . . .)

dMi
dθpi

= 1
2 clρav2

riR
{[

c1 + 3c3
(
Γi − θpi

)2
]

sin ϑi +
[
2c2
(
Γi − θpi

)]
cos ϑi

}
= 0,

d2 Mi

d(θpi)
2 = − 1

2 clρav2
riR
[
6c3
(
Γi − θpi

)
sin ϑi + 2c2 cos ϑi

]
< 0.

(11)

(2) Downwind Area: 2kπ+ π
2 ≤ Ψi ≤ 2kπ+ 3π

2 (k = 0, 1, 2 . . . .)

dMi
dθpi

= − 1
2 clρav2

riR
{[

c1 + 3c3
(
Γi − θpi

)2
]

sin ϑi − 2c2
(
Γi − θpi

)
cos ϑi

}
= 0,

d2 Mi

d(θpi)
2 = 1

2 clρav2
riR
[
6c3
(
Γi − θpi

)
sin ϑi − 2c2 cos ϑi

]
< 0.

(12)

For these two cases, one can obtain the same changing rule of the optimized pitch angle

as θpi = Γi −
2c2−
√

4c2
2−12c1c3 tan2 Γi

6c3 tan Γi
, which reveals that the optimized pitch angle rule of

symmetric airfoils depends on the tip-speed ratio λ, azimuth Ψi, induced factor a, and
three coefficients c1, c2, and c3. Neglecting the subscript i, the dynamic-pitch rule of the
symmetric airfoils at a fixed Reynolds number is obtained as

θp = Γ−
2c2 −

√
4c2

2 − 12c1c3 tan2 Γ

6c3 tan Γ
, (13)

where Γ = arctan cos Ψ
sin Ψ−λind

.
If an airfoil is asymmetric, one can consider functions of Equation (10) and study the

following maximum problem of the torque:

(1) Upwind Area: 2kπ− π
2 ≤ Ψi ≤ 2kπ+π

2 (k = 0, 1, 2 . . . .)

dMi
dθpi

= 1
2 clρav2

riR
{[

c1 + 3c3
(
Γi − θpi + bL

)2
]

sin ϑi +
[
2c2
(
Γi − θpi + bD

)]
cos ϑi

}
= 0,

d2 Mi

d(θpi)
2 = − 1

2 clρav2
riR
[
6c3
(
Γi − θpi + bL

)
sin ϑi + 2c2 cos ϑi

]
< 0.

(14)

(2) Downwind Area: 2kπ+ π
2 ≤ Ψi ≤ 2kπ+ 3π

2 (k = 0, 1, 2 . . . .)

dMi
dθpi

= − 1
2 clρav2

riR
{[

c1 + 3c3
(
Γi − θpi + bL

)2
]

sin ϑi − 2c2
(
Γi − θpi + bD

)
cos ϑi

}
,

d2 Mi

d(θpi)
2 = 1

2 clρav2
riR
[
6c3
(
Γi − θpi + bL

)
sin ϑi − 2c2 cos ϑi

]
< 0.

(15)

The dynamic-pitch rule at a fixed Reynolds number can be obtained as

θp = Γ + bL −
2c2 −

√
4c2

2 − 24c2c3(bL − bD) tan Γ− 12c1c3 tan2 Γ

6c3 tan Γ
, (16)
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where Γi and Γ are the same as those for symmetric airfoils. This reveals that the dynamic-
pitch rule of an asymmetric airfoil depends on the tip-speed ratio λ, azimuth Ψ, induced
factor a, and five aerodynamic coefficients c1, c2, c3, bL, and bD.

In the remainder of this section, the performance of the optimized VAWT is discussed
by using the blade model in Section 3 and the optimization rule in Equation (13). In order
to obtain the optimal proportional ratio λ0 = RΩ0/vin between the blade speed and wind
speed, the CPav–λ curve of the dynamic-pitch blade is calculated and compared with that of
the fixed-pitch blade by selecting four pitch settings θp = 0◦, ±4◦, and −8◦ (see Figure 22a).
The changing trend of the CPav–λ curve of the dynamic-pitch blade is the same as that of the
fixed-pitch blade. The power coefficient CPav of the dynamic-pitch blade is larger than that
of the fixed-pitch blade for each pitch setting θp and tip speed ratio λ. The optimal power
coefficient CPmax appears at the proportional ratio λ0 = 5.32 for the dynamic-pitch blade.
Both CPmax and λ0 of the dynamic-pitch blade are larger than those of the fixed-pitch blade.
As a function of the optimal tip-speed ratio λ0 = 5.32, one can obtain the variation rule of
the rotational speed with the wind speed as Ω0 = 5.32vin/R for the dynamic-pitch blade.
The Ω0–vin curves are presented in Figure 22b. The Ω0–vin curve of the dynamic-pitch
blade almost coincides with that of the fixed-pitch blade at the pitch setting θp = −4◦,
which is the case because values of λ0 of two cases are close. Variation of the optimized
pitch angle with the azimuth at λ = 5.32 is illustrated in Figure 23. One can find that the
θp–Ψ curve looks approximately like a cosine function, which supports the dynamic-pitch
optimization by using a sinusoidal pitch [31,37].
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To verify the efficiency of the dynamic pitch optimization, the power output of the
dynamic-pitch and fixed-pitch blades is compared. Figure 24a presents variation of the
power Pav with the wind speed for the dynamic-pitch and fixed-pitch blades at a constant
rotational speed Ω = 40 rpm and five pitch settings θp = 0◦, ±4◦, and ±8◦. One can see that
the use of the dynamic-pitch method improves the power output of constant-speed blades
at each pitch setting, especially for a higher wind speed. This is contrary to constant-speed
blades, where the power of the dynamic-pitch blade always increases with the wind speed,
which is the case because the dynamic-pitch setting reduces the influence of stalled flow by
improving the effective angle of attack at each azimuth. Figure 24b shows comparison of
results of the dynamic-pitch and fixed-pitch variable-speed blades at four pitch settings
θp = 0◦, ±4◦, and −8◦. One can observe that the power output of variable-speed blades
can be further improved by adopting the dynamic-pitch setting. The optimal power Pmax
of the dynamic-pitch blade is larger than that of fixed-pitch blades at each pitch setting
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and wind speed; this is the case because the effective angle of attack at each azimuth is
optimized by using the dynamic-pitch setting.
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Although an egg-beater-style Darrieus VAWT cannot be entirely optimized using the
dynamic-pitch method, it can be partly optimized by dividing each blade into many linear
segments. An idealized optimization is given in this work by employing the Sandia 17 m
diameter VAWT [2], which is an egg-beater-style turbine. The power of this turbine before
and after optimization was calculated by selecting two experimental rotational speeds
Ω = 42 rpm (see Figure 25a) and Ω = 52.5 rpm (see Figure 25b). One can find that power
proficiency of the turbine is improved well for each incoming wind speed for the two cases,
especially at a higher wind speed.
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Figure 25. Idealized optimization for the Sandia VAWT [2]: (a) Ω = 42 rpm and (b) Ω = 52.5 rpm.

In order to validate the efficiency of the current dynamic-pitch optimization method,
a three-bladed VAWT with the NACA0018 profile in [37] is taken as a computational
model. The aerodynamic experimental result for the NACA0018 in [39] is adopted, where
c0 = 0.013, c1 = 3.995, c2 = 1.041, and c3 = −9.499. Changing trends of the torque coefficient
CMav with the tip-speed ratio λ before (denoted as “fixed pitch”) and after optimization
are shown in Figure 26. It reveals that the current analytical results of the fixed-pitch
turbine agree quite well with CFD results in [37]; some differences occur at small tip-speed
ratios may be due to stalled flow. A good optimization is achieved in [37] by using the
sinusoidal-pitch method, which improves CMav when λ is less than 3.7 and improves the
maximum value of CMav; however, optimization is not achieved when λ exceeds 3.7. When
the dynamic-pitch method based on Equation (13) in this work is adopted, CMav and its
maximum value are improved well.
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5. Conclusions

This work presents a theoretical study of the performance and dynamic-pitch opti-
mization of a VAWT with a high tip-speed ratio according to the two-dimensional airfoil
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theory. By considering the quasi-steady aerodynamic model and dividing the rotating
plane of the airfoil into the upwind and downwind areas, the relationship among the angle
of attack, azimuth, pitch angle, and tip-speed ratio is derived, and then expressions of the
torque, torque coefficient, power, and power coefficient are obtained.

By applying the polynomial approximation to functions of the lift and drag coeffi-
cients for symmetric and asymmetric airfoils, explicit expressions of aerodynamic loads
are obtained, and the performance of a fixed-pitch VAWT is then analyzed theoretically.
Effects of some important key factors on the turbine performance are discussed by using a
NACA0012 blade model, and the following conclusions are obtained:

(1) Changing trends of the instantaneous torque and instantaneous power with the
azimuth are cyclic. Maximum values of the instantaneous torque and instantaneous
power appear at the upstream and downstream directions, while minimum (negative)
values occur at two lateral directions of the wind field. This means that one can improve
the performance of a VAWT by changing aerodynamic characteristics of blades at two
perpendicular directions of wind flow.

(2) The power output of a constant-speed blade can be reduced at a higher wind speed
due to stalled flow.

(3) Increasing the rotor radius and chord length can improve the power output of a
constant-speed blade.

(4) Variation rule Ω = λ0vin/R can be used to design the variable rotational speed
for a fixed-pitch blade to track the maximum power coefficient, where λ0 is the optimal
tip-speed ratio that depends on the pitch setting.

(5) Increasing the rotor radius and chord length can also improve the power output of
a variable-speed blade; the influence of the rotor radius mainly depends on induced flow.

(6) Variable-speed design can improve the power output of a constant-speed blade,
especially at high wind speeds; it can reduce the influence of stalled flow.

(7) By dealing with the maximum value problem of the aerodynamic torque function
with respect to the pitch angle at each fixed azimuth, dynamic-pitch rules for symmetric
and asymmetric airfoils are obtained, showing that the optimal pitch angle depends on the
azimuth, tip-speed ratio, and aerodynamic coefficients. Variable-pitch rules can be used to
design the controlling technology of a VAWT.

(8) The efficiency of the optimization method is validated by using some blade models
and CFD results. The performance of blades before and after optimization is compared
and a good qualitative agreement was seen overall.

This work focused on the performance of a wind turbine with a high tip-speed ratio.
When a turbine with a low tip-speed ratio is taken into consideration, a stall correction
should be added in the current model. The aeroelastic stability, linear vibration, and non-
linear vibration problems of a wind turbine with a high tip-speed ratio can be considered
by using the current model.
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Nomenclature

The subscript i denotes characteristics of the i-th airfoil or blade; the subscript ind
denotes characteristics of an airfoil or blade associated with induced flow.

ad Induction factor in the downwind area
au Induction factor in the upwind area
A Swept area, m2

c Chord length, m
c0L, c1, c3, bL Coefficients of CL as a function of α
c0, c0D, c2, bD Coefficients of CD as a function of α
CL Lift coefficient
CD Drag coefficient
CM Instantaneous torque coefficient
CMav Average torque coefficient in one revolution
Cp Instantaneous power coefficient
CPav Average power coefficient in one revolution
CPmax Optimal power coefficient
D Rotor diameter, m
Di Drag force of the i-th airfoil, N
l Length of the airfoil element, m
Li Lift force of the i-th airfoil, N
M Instantaneous torque, N·m
Mav Average torque in one revolution, N·m
Mr Residual aerodynamic moment, N·m
N Number of blades
o-yz Inertial coordinate system with unit vectors (j, k)
oi-sini Body coordinate system of the i-th airfoil with unit vectors (jsi, kni)
oi-ηiζi Section coordinate system of the i-th airfoil with unit vectors (jηi, kζi)
P Instantaneous power, W
Pav Average power in one revolution, W
Pmax Optimal power, W
R Rotor radius, m
Re Reynolds number
t Time, s
vb Blade velocity, vb = RΩ, mph = 0.447 m/s
ve Equilibrium incoming wind velocity in the downwind area, mph
vin Incoming wind velocity, mph
vr Resultant wind velocity, mph
vd Downstream velocity in the downwind area, mph
vu Upstream velocity in the upwind area, mph
α Angle of attack, ◦ or rad
λ = vb/vin Tip-speed ratio
λ0 Optimal tip-speed ratio
λd Tip-speed ratio in the downwind area
λu Tip-speed ratio in the upwind area
ρa Air density, kg/m3

σ = Ncl/A=Nc/D Solidity for a straight uniform blade with zero tilt angle
ϑ Acute angle between vr and vb, ◦or rad
Ω Rotational speed, rpm
Ω0 Optimal rotational speed, rpm
Ψ, Ψ0 Azimuth and the initial azimuth of the airfoil, ◦or rad
θp Pitch angle, ◦or rad
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