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Abstract: Dead oil viscosity is a critical parameter to solve numerous reservoir engineering problems
and one of the most unreliable properties to predict with classical black oil correlations. Determination
of dead oil viscosity by experiments is expensive and time-consuming, which means developing
an accurate and quick prediction model is required. This paper implements six machine learning
models: random forest (RF), lightgbm, XGBoost, multilayer perceptron (MLP) neural network,
stochastic real-valued (SRV) and SuperLearner to predict dead oil viscosity. More than 2000 pressure–
volume–temperature (PVT) data were used for developing and testing these models. A huge range
of viscosity data were used, from light intermediate to heavy oil. In this study, we give insight into
the performance of different functional forms that have been used in the literature to formulate dead
oil viscosity. The results show that the functional form f (γAPI , T), has the best performance, and
additional correlating parameters might be unnecessary. Furthermore, SuperLearner outperformed
other machine learning (ML) algorithms as well as common correlations that are based on the
metric analysis. The SuperLearner model can potentially replace the empirical models for viscosity
predictions on a wide range of viscosities (any oil type). Ultimately, the proposed model is capable
of simulating the true physical trend of the dead oil viscosity with variations of oil API gravity,
temperature and shear rate.

Keywords: viscosity; PVT properties; dead oil viscosity; machine learning; SuperLearner

1. Introduction

Reservoir pressure–volume–temperature (PVT) properties are some of the most impor-
tant ones for petroleum engineers and essential for different aspects of reservoir calculations.
The precision of other measurements in reservoir engineering also relies primarily on the
correctness of PVT data (e.g., calculations for material balance, reserve estimation, well
test analyses, advanced data analysis, nodal analysis for a surface network, surface sep-
aration and numerical reservoir simulations) [1]. PVT data are obtained in an optimum
situation from representative fluid samples collected from wellhead, surface or wellbore [2].
PVT reports the results of PVT tests usually at reservoir pressure (P) and temperature
(T), whereas daily assessments are typically conducted as part of the oil and gas field
monitoring programs at other P and Ts. These include standard tank oil gravity calculation
of API, dead oil viscosity at ambient or different temperatures, gas gravity and composition
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among others. Due to the necessity of having PVT properties at reservoir P and T, the
bubble point and the dew point pressure can be determined from the production data.
Therefore, pressure vs. depth measurements (repeat formation tester, RFT) will provide
an average downhole density for reservoir fluids [2]. For other production engineering
measurements, general hydrocarbon PVT properties include saturation pressure (oil and
dew point pressure bubble); gas–oil solution ratio; vaporized oil–gas ratio; oil and gas
formation volumes; oil and gas density; oil and gas viscosity, one- or two-phase Z factor for
gases; and oil and gas isothermal compressibility and dew point pressure [3–6]. Incorrect
measurement of PVT properties can lead to serious errors in the results of the calculations.

In the literature [7], the effect of uncertainty in PVT data on test results has been
addressed, for example, in material balance equations [8] and reserves and output estimates
for more volatile fluids [9]. Hence, in the past decades, different models were developed
for the estimation of the fluid reservoir properties. These previously published models
are empirical [10–25], compositional [26–29] and neural-network-based [30,31]. Among all
PVT properties for the regulation of fluid movement through the porous media, viscosity
plays an important role that should be quantified precisely [32,33]. Therefore the viscosity
of the crude oil must be accurately estimated at different stages of oil exploration and
production. This parameter is crucial for the assessment of porous fluid flow, well efficiency,
well simulation, well testing and flow in pipes for the production and design of pipeline,
transport equipment and the design of operations and developments of field [34]. The
viscosity of crude oil is dependent on the specific physical and thermodynamic properties of
the form and the characteristics of its chemical composition, density, bubble point pressure,
temperature, oil gravity, gas and gas solubility [35,36] as well as the fluid molecules form
and thickness [37]. In addition to the fluid density and fluid type (Newtonian or non-
Newtonian) [2], fluid viscosity is a function of pressure (P) and temperature (T). A rise
in temperature often induces a decrease in viscosity and a decrease in saturated pressure
due to the release of dissolved gas below the bubble point to raise the viscosity [37].
Hence, the crude oil viscosity can be divided into three categories, namely saturated oil
viscosity, undersaturated oil viscosity, and dead oil viscosity, depending on the reservoir
pressure [38,39].

(1) Dead oil viscosity, µod, which is the crude oil that at atmospheric pressure is free of gas.
(2) Saturated, µob, which is the oil viscosity at reservoir temperature and pressure (saturation).
(3) Undersaturated, µoa, is the viscosity of oil when its pressure and temperature is above

the reservoir conditions (saturation).

Traditionally, crude oil viscosity is determined experimentally at the reservoir tem-
perature and pressure on the subsurface or surface samples, but this is often costly and
time-consuming and requires a strong technical specialty [40–45]. In this regard, a large
number of empirical and semi-empirical relationships have been developed in the past
decades, mainly from the corresponding equation of state to predict the crude oil viscosity.
Most of the correlations presented have been established for a given region, so if used for
other areas, erroneous results will be produced [34]. Empirical correlations are used to
estimate dead oil, and saturated and undersaturated viscosities based on field data, but
the output of these empirical correlations is typically unsatisfactory, and improvement
is still sought [46]. The best-known ones are those developed by Beal 1946 [47], Beggs
and Robinson (1975) [48], Glaso (1980) [13], Kaye (1985) [49], Al-Khafaji et al. (1987) [50],
Petrosky (1990) [24], Egbogah and Ng (1990) [51], Labedi (1992) [52], Kartoatmodjo and
Schmidt (1994) [53], De Ghetto (1994) [54], Bennison (1998) [55], Elsharkawy and Alikhan
(1999) [56], Hossain et al. (2005) [57], Naseri et al. (2005) [58] and Alomair et al. (2011) [59],
Hemmati et al. (2013) [38]. Correlations summarized in Table 1 relate dead oil viscosity.
Some authors correlate crude oil viscosity to typically difficult-to-measure properties such
as molar mass, critical temperature and acentric factor [60–62]. Furthermore, lack of avail-
ability of reservoir fluid samples may add another obstacle to reliable measurements; thus,
reservoir engineers are encouraged to use established correlations to estimate crude oil
viscosity. Most of the published correlations have been developed based on limited data
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points and ranges [39]. The evaluation of most developed correlations in the literature have
shown that high errors are generated when applied on other data sets rather than the one
the correlation is generated for [63–65].

Table 1. The summary of the ranges and origins data used in some famous dead oil viscosity correlations.

Authors Region of Data Source Input Data Points T, ◦C API µod, cp

Beals 1946 [47] US γAPI , T 98 36.6–121.1 10–52 0.86–1550

Beggs and Robinson (1975) [48] - γAPI , T 460 21.1–146.1 16–58 -

Glaso (1980) [13] North Sea γAPI , T 38 10–148.8 20–48 0.60–39

Kaye (1985) [49] Ofshore California γAPI , T - 61.6–138.8 7–41 -

Al-Khafaji et al. (1987) [50] - γAPI , T - 15.5–148.8 15–51 -

Petrosky (1990) [24] Gulf of Mexico γAPI , T 118 45.5–142.2 25–46 0.72–10.25

Egbogah and Ng (1990) [51] - γAPI , T 394 15–80 5–58 -

Labedi (1992) [52] Libiya γAPI , T 91 37.7–152.2 32–48 0.66–4.79

Kartoamtmodjo and Schmidt (1994) [53] Worldwide γAPI , T 661 26.6–160 14–59 0.50–586

Bennison (1998) [54] North sea γAPI , T 16 3.8–148.8 11–20 6.40–8396

Elsharkawy and Alikhan (1999) [55] Middle East γAPI , T 254 37.7–148.8 20–48 0.60–33.7

Dindoruk and Christman (2004) [66] Gulf of Mexico γAPI , T, Pb , Rs 95 17.4–40 17.4–40

Hossain et al. (2005) [56] World wide γAPI , T 184 0–101.6 7–22 12–451

Naseri et al. (2005) [57] Iran γAPI , T 472 40.5–147.7 17–44 0.75–54

Bergman and Sutton (2009) [67] Worldwide γAPI , T 9837 1.78–11360

Alomair et al. (2011) [58] Kuwait γAPI , T 374/118 20–160 10–20 0.39–70

Hemmati et al. (2013) [38] Iran γAPI , T 1000 10–143.3 17–44 -

El- hoshoudy et al. (2013) [34] Egypt γAPI , T 1000 - - -

As a result, there is a need to propose methods that can estimate dead oil viscosity
at wider ranges of temperature intervals when a physical sample to perform laboratory
measurements is missing or there are time constraints and rapid results are needed even
though fluid samples are available. Ultimately, we need to develop a method that would be
cheaper compared to laboratory studies when both situations are not an issue. Regarding
what was said, this has graveled the way for modification and adoption of already existing
empirical correlations over a period of time. Furthermore, to overcome these challenges,
some machine learning (ML) and artificial intelligence techniques (AI) have also been used
to improve the prediction of oil viscosity, including radial basis function neural network
(RBFNN) [30], artificial neural network (ANN) [68–73], functional networks (FN) [46,71],
genetic algorithm (GA) [74], support vector machine (SVM) [75], and group method of data
handling (GMDH) [76] and Ensemble models [77]. The literature argues that the lowest
average absolute relative error can be achieved when viscosity is predicted by AI models
and the highest correlation coefficient as compared to existing empirical correlations [70].

Based on what was said above, the industry has an interest to develop models that
can predict viscosity versus shear rate and temperature of a wide range of oils for both
Newtonian and non-Newtonian ones. Considering these points, the main goal of this
study is to develop a model to predict dead oil viscosity vs. temperature through recently
established ML methods that make us independent of creating new correlations and can be
applicable to all type of oils and regions.

2. Materials and Methods
2.1. Experiments

Measurements of viscosity of the samples were carried out on the Anton Paar Rheome-
ter MCR 302, located at the Skolkovo Institute of Science and Technology at the Center for
Hydrocarbon Recovery. Based on the manufacturer’s recommendations and the nature of
the substance, viscosity was measured in various systems: coaxial cylinders, cone-plate
according to ASTM D 4402-06 (ASTM D4402-06, Standard Test Method for Viscosity De-
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termination of Asphalt at Elevated Temperatures Using a Rotational Viscometer, ASTM
International, West Conshohocken, PA, U.S., 2006). A large number of oil samples were
tested in the C-ETD 300 system equipped with CC-17 coaxial cylinders for measurements
of low viscous specimens. For high viscous samples, viscosity values were obtained in the
P-ETD 400 system with cone-plate CP50-2 measuring system.

The elemental composition of oil samples was determined using a LECO Corporation
CHN628 with an attachment for determination of the sulfur. The optional sulfur module
for the 628 Series analyzers is designed to determine the sulfur content in a wide range of
organic matrices. It allows expansion of the analytical capabilities of the devices CHN628,
CN628 and FP628. The module can be used to work with samples of coal, coke, various
types of fuels and some inorganic materials, for example, samples of soil, cement and
limestone. A pre-weighed sample is placed in a ceramic boat and then in a horizontal
furnace, the sample is burned in an oxygen stream, and the sulfur contained in it is
converted to SO2. After that, due to the concentric design of the furnace tubes, the gases
pass through the hot zone twice, which allows them to stay as long as possible in the
high temperature zone for their complete oxidation. In the next stage, out of the furnace,
gases pass through the anhydrone to remove moisture and the flow controller, where it
is stabilized. The sulfur content is determined in the measuring infrared cell SO2 of the
analyzer of the 628 series, where the sulfur module is connected. Figure 1A displays dead
oil viscosity from 10 representative samples as a function of temperature. As seen from the
image, as the temperature increases, the viscosity of all samples decreases exponentially. A
typical behavior of one oil sample in various temperatures vs. shear rate is also shown in
Figure 1B, where y-axis is logarithmic for better data presentation. Density measurements
were performed on an Anton Paar DMA TM 4200M density meter in the temperature ranges
10–90 and atmospheric pressure. Measurements were performed in accordance with ASTM
D4052 (ASTM D4052-09, Standard Test Method for Density, Relative Density, and API
Gravity of Liquids by Digital Density Meter, ASTM International, West Conshohocken,
PA, U.S., 2009). A typical behavior of an oil sample from those 10 representative ones in
various temperatures is shown in Figure 1C below.
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Figure 1. (A) Experimental results of 10 representative samples’ viscosity vs. temperature, (B) experimental results of one
representative sample dead oil viscosity (µod), cp in logarithmic format vs. shear rate (γ), 1/c and (C) experimental results of
one sample dead oil density (ρod) vs. temperature ◦C.

2.2. Input Features and Data

A total of 2247 data points were collected from the literature [27,28,39,52,66,67,71,77–81]
and added to the authors dataset for the viscosity simulations. A statistical summary of the
data is presented in Table 2.
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Table 2. Dataset statistical summary.

API Tr (F) Rs (scf/STB) Pb µod cp

min 6.0 25.6 8.6 107.3 0.5
max 56.8 341.6 3298.7 6613.8 15,836.9

Average 29.73 201.08 605.16 2324.99 1066.28

In this study, in addition to the common correlating properties, γAPI , T, other impor-
tant variables have been incorporated as well in the formulations. It is important to note
that not all of these approaches use hydrocarbon components; detailed information as
seen below:

µod = f (γAPI , T, Pb, Rs) (1)

µod = f (γAPI , T, Pb) (2)

µod = f (γAPI , T, Rs) (3)

µod = f (γAPI , T) (4)

In the above equations, µod is the dead oil viscosity in cp, API is oil API gravity, T
is temperature in F, Rs is gas oil ratio in scf/STB and Pb is bubble point pressure in psia.
Based on the mentioned functional forms (Equations (1)–(4)), six different ML models
are developed through Python programming that include: random forest (RF), lightgbm,
XGBoost, MLP neural network, SRV and SuperLearner. The code programs that are written
rely on the python package library described in Table 3 and can become available to readers
upon request. For developing dead oil viscosity model estimation approximately 60% of
the data was used for training model while the remaining was used for blind tests.

Table 3. Machine learning methods and their packages.

Algorithms Python Package Package Version Website of Package Date Accessed

XGBoost xgboost 0.9.0 https:
//xgboost.readthedocs.io/en/latest/index.html Janurary 2020

Lightgbm lightgbm 2.3.2 https://lightgbm.readthedocs.io/en/ February 2020
SVR scikit-learn scikit-learn 0.23.1 https://scikit-learn.org/dev/index.html February 2020

MLP neural network pytorch 9.2 https://pytorch.org March 2020
Random Forest scikit-learn 0.22.2 https://scikit-learn.org/dev/index.html March 2020
SuperLearner SuperLearner 0.9.0 http://ml-ensemble.com April 2020

2.3. ML Model Development

In recent decades, different machine learning models have been used for PVT proper-
ties’ estimation.

Among these, the artificial neural network has caught significant attention since the
late 1990s. When we employ ML algorithms, one should keep in mind that theoretically,
since dead oil viscosity of each type of oils will differ, various ML models should be tested,
and a single algorithm will not suffice [77]. This means that one ML model might work
properly and perform well on one dataset while others fail, and it becomes erroneous to
exhibit their inferiority. For example, Van der Laan [78] developed SuperLearner where
ensembles are utilized to stack base learners to reduce errors in forecasts. In this aspect,
SuperLearner is superior compared to the base learner since systematic errors of base
learners are found and delineated on the final prediction [79] to make it applicable in a
variant of fields: biology domain including medicine, healthcare [79], biostatistics and
genetics [80–84], and epidemiology [85]. It is important to note that this does not mean that
each base learner and meta learner in a SuperLearner algorithm is independent of training
for a precise prediction. In this study, the following five machine learning algorithms are
implemented for dead oil viscosity prediction and results are compared across the board:
XGBoost [86], LightGBM [87], random forest [88], an artificial neural network algorithm [89]
and SVR [90]. Likewise, due to the superiority and robustness of SuperLearner that is

https://xgboost.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/
https://scikit-learn.org/dev/index.html
https://pytorch.org
https://scikit-learn.org/dev/index.html
http://ml-ensemble.com
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proven in other fields [78,80,91–93], for the first time, this method is also applied, and the
output is compared to five other algorithms.

In order to estimate and accurately model, 6-fold cross-validation on all two sets of
input was performed. For evaluation of the advanced machine learning algorithms for
each data set we used cross-plots in order to evaluate measured and predicted values of
µod. The robustness and accuracy of the models in this study have been evaluated using dif-
ferent statistical quality measures [94,95], including the coefficient of determination, mean
squared error (MSE), mean absolute error (MAE), the percentage of accuracy–precision
(PAP) [96] and root mean squared error (RMSE) through the following equations:

Root mean squared error (RMSE) metric is given by Equation (5):

RMSE =

√
∑N

i=1(Actuali − Predictedi)
2

N
(5)

where, N is total number of observation
Mean squared error (MSE) metric is given by Equation (6):

MSE =
∑N

i=1(Actuali − Predictedi)
2

N
(6)

Mean absolute error (MAE) metric is given by Equation (7):

MAE =
∑N

i=1|Actuali − Predictedi|
N

(7)

Coefficient of determination (R2) metric is given by Equation (8):

R2 = 1− (Actuali − Predictedi)
2

(Actuali −mean of the observed data)2 (8)

And finally, the percentage of accuracy–precision (PAP) is given by Equation (9):

PAP = 100

1−
√

2
2

√√√√( 1
n

n
∑
i=1

∣∣∣∣Actuali − Predictedi
Actuali

∣∣∣∣
)2

+

(
n
∑
i=1

(Actuali − Predictedi)
2/

n
∑
i=1

(Actuali − Predictedi)
2

)2
 (9)

3. Results and Discussion

We should recall that most of the correlation methods (Table 4) are based on data
from different origins, and this is why some correlations cannot give good accuracy. The
main aim of this study was to develop advanced ML methods to predict dead oil viscosity
in interested temperature interval T = [40 ◦F–233.6 ◦F] for any oil type. We developed
correlations that can predict the viscosity of any type of heavy as well as lighter oils at any
temperature in the mentioned interval using the various functional forms. Comparing the
performance of advanced ML algorithms with common empirical correlations from the
literature, the results of all simulated by the advanced machine learning algorithms were
better than the results of all the experiential relationships in Table 4. Figures 2 and 3 give
a graphical comparison of the machine learning algorithms for µod prediction. Figure 2
shows the cross-validation results based on the testing dataset respectively. Based on the
mentioned functional forms of µod (Equations (1)–(4)), different models for these considered
machine learning algorithms were developed. Figures 2 and 3 exhibit the results of these
approaches where experimental data on about 200 samples is plotted vs. predictions.
It is important to note that the accuracy of our methods is determined based on the
metrics (Equations (5)–(8)) by plotting experimental data vs. prediction results. Here, it is
assumed that experimental data is the most reliable one and closeness of predicted values
to that outcome can be the measure of algorithm/correlation performance. Comparing
the metric and statistical error analysis results, it can be seen that SuperLearner might be
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a promising tool in viscosity prediction. Table 4, below, shows the performance of some
common empirical correlations that are applied to our dataset. Here, it is seen that the
best results among these empirical correlations are given by Naseri [57] and the next one
is the correlation by Beal [47]. In the correlation developed by Dindoruk [66] as it was
mentioned in Table 4, although there are other additional parameters in the function such
as bubble point pressure (Pb) and solution gas oil ratio (Rso), it has not improved the results
compared to other methods. In the correlation by Dindoruk [66], the functional form for
estimation of dead oil viscosity is f (µod) = γAPI, T, Rsb, Pb and we see that having additional
parameters has not improved the results of the prediction. All other correlations have the
same functional form f (µod) = γAPI, T.

Table 4. Performance of µod prediction.

Methods RMSE MAE R2 MSE PAP

SuperLearner 0.3387 0.1154 0.9568 0.1147 87.3139

Lightgbm 0.3384 0.1147 0.9541 0.1145 85.7713

Random forest 0.3387 0.1158 0.9476 0.1147 82.6887

XGBoost 0.3372 0.1142 0.9465 0.1137 87.8166

MLP ANN 0.4794 0.1151 0.9329 0.2298 84.7704

SVR 0.4998 0.1068 0.9217 0.2498 86.3304

Sattarian [36] 0.3380 11.5140 0.9012 0.1142 83.6400

Naseri [57] 0.8864 57.3010 0.8940 0.7857 80.7704

Dindrouk [66] 0.4533 21.4530 0.8911 0.2055 77.7661

Hemmati [39] 0.4477 26.5440 0.8871 0.2004 77.8325

Ghorbani [44] 0.2480 10.8330 0.8435 0.0615 75.2955

Hossain [56] 0.4354 15.4320 0.8071 0.1896 76.5429

Lashkerani [43] 0.2760 13.6450 0.8057 0.0762 75.8557

Beal [47] 0.6609 15.6740 0.7600 0.4368 70.4494

Elsharkway [55] 0.7928 20.7810 0.7198 0.6285 70.3990

Ubong and Oyedeko [97] 0.6910 15.9180 0.7198 0.4775 71.3572

Glaso [13] 0.8756 27.1860 0.6630 0.7667 65.1807

Chew and Connally [98] 0.7829 28.5010 0.6340 0.6129 65.6894

Al Khafaiji [50] 0.8740 30.0140 0.6334 0.7639 65.2024

Petrosky [24] 0.8973 19.7160 0.6315 0.8051 67.8336

Khan [99] 1.1024 33.0050 0.6120 1.2153 69.2030

Beggs [48] 1.7703 55.6430 0.5543 3.1340 65.1991

Labedi [52] 1.8803 19.5610 0.5458 3.5355 65.3186
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prediction for the testing dataset.

In order to validate the objective of this study and evaluate the performance of
developed models, ML results were compared based on various metrics parameters to
the results obtained from the existing classical correlations. The results of Table 4 show
that the developed SuperLearner outperforms all pre-existing models. It is evident that
the proposed models in this study are more robust and reliable and accurate than other
published correlations in terms of statistical parameters.

Considering the results from all functional forms of the viscosity (f (µod) = γAPI, T), the
SuperLearner and random forest (RF), lightgbm, XGBoost, MLP neural network, SRV and
SuperLearner exhibited very satisfactory patterns and behavior, which provided precise
results and match with experimental data. This becomes more important when we consider
that the majority of the empirical associations were formed based on these two variables
only as the following functional form f (µod) = γAPI, T. In this regard, the SuperLearner
has the least root mean square errors (RMSE) for all methods according to Figure 3. The
best overall strategy lies among the determination coefficient’s (R2) SuperLearner. With
the aid of this model, accurate dead oil viscosity can be calculated as one of the critical
inputs for calculations and for the generation of live oil viscosity for fluids under different
wellbore conditions.

In order to check the feasibility of the proposed SuperLearner model to see whether,
with variance of input parameters, the model will catch the physically predicted patterns,
we plotted the results of predicted value with classical correlations and SuperLearner, and
compared them with experimental values.

Figure 4 demonstrated the general effect of temperature on dead oil viscosity and it can
be seen that these effects are correctly predicted by the SuperLearner. As we see in Figure 4,
dead oil viscosity decreases when temperature is increased. At lower temperatures the
effect is more noticeable. The results provided in Figure 4 provided annotated lists of the
most common dead oil viscosity correlations. The results show that the Bennison method
overpredicted the value of dead oil viscosity in temperatures lower than 120 ◦F, while the
Petrosky method underpredicted the value of dead oil viscosity in all temperature ranges.
The developed SuperLearner method could predict dead oil viscosity variance between
predicted value and experimental value.
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Figure 5 displays the proposed SuperLearner model in this work that has the same
trend as other famous correlations to predict the API vs. viscosity. Figure 5 shows that
dead oil viscosity decreases when oil API gravity increases and shows the trend of the
developed model and some other correlation at 120 ◦F.
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From this figure, it is seen that results predicted by the SuperLearner are matching
perfectly with the experimental data.

The results provided at Figure 5 show that the method proposed by the authors of
this study are suited for all API ranges and the developed SuperLearner model can predict
dead oil viscosity with the highest accuracy (R2 = 0.96). The Al-Kafaji method is unfit for
crude oil gravities below 15◦ API, while the method developed by Bennison, which was
based on North Sea crude oil’s low API gravity, is not appropriate for gravities greater than
30◦ API.

The most common method for getting dead oil viscosity data is viscosity correlation,
which is very useful and effective in estimation of dead oil viscosity at different tempera-
tures for different oil types. The critical point in the application of common correlations is
their limitation on the parameters from which these correlations have derived. This means
these correlations are regionally-dependent and cannot be applied universally. Ultimately,
in this study we developed a model based on the newly introduced ML SuperLearner algo-
rithm to estimate viscosity regardless of temperature, oil type and other critical parameters
that are hard to obtain experimentally. As it was said in the literature, measuring heavy oil
viscosity can be challenging at low temperatures because many times the expected values
of the viscosity can exceed the upper limit of the device.

The developed model is applicable for a wide range of dead oil viscosity and variety
of oils and temperatures. One main advantage of the proposed model is that there is no
need for compositional analysis of the oil or asphalt content for the proposed dead oil
viscosity correlation. The developed model has better predictive potential than the leading
correlation in the whole considered range of viscosity. The proposed SuperLearner model
can be used as a fast tool to verify the quality of the experimental data and/or the validity
and accuracy of different viscosity models, especially where there are discrepancies and
uncertainties in the datasets. The proposed SuperLearner model, which has improved
crude oil viscosity accuracy and efficiency compared to previously published ones, can be
applied in any reservoir simulator program.

4. Summary and Conclusions

This article demonstrates the idea of application of several machine learning algo-
rithms, such as random forest (RF), lightgbm, XGBoost, MLP neural network, SRV and
SuperLearner to predict dead oil viscosity based on different functional forms. The study
revealed that XGBoost and SuperLearner might be promising tools in dead oil viscosity
prediction from these methods and can be applied to reduce the cost of laboratory measure-
ments. It was found that since SuperLearner integrates the merits of base machine learning
algorithms, its capability in forecasting a more accurate dead oil viscosity is improved
significantly. In addition, it has a potential to increase the accuracy of viscosity modeling
of crude oil where some data are not available.

The main advantage of using machine learning and intelligence methods in the
estimation of dead oil viscosity is that with knowing examples of previous patterns they
can be easily trained and put to effective solving of unknown or untrained instances of
the problem as was the case here. The results confirm the performance of the proposed
SuperLearner model in estimation of dead oil viscosity. The results show that the simplest
functional form to obtain viscosity would be adequate to provide statistically valid and
acceptable results. This denotes that additional correlation variables might not be necessary
to improve the performance of a model. From the empirical correlations, it can be noticed
that the errors are higher than the ensemble models compared to the ML techniques, which
are XGBoost, lightgbm, MLP ANN and SVR. The developed SuperLearner model in this
study can be used when the dead oil viscosity should be predicted with limited input
data when it is hard to perform an experiment with high accuracy, or when there is no
physical sample to do additional experiments, especially for enhanced oil recovery (EOR)
processes in the industry where they need viscosity at elevated temperatures. Ultimately,
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the proposed SuperLearner model can be employed in other static and dynamic reservoir
modeling tasks.
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