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Abstract: An integrated energy system (IES) shows great potential in reducing the terminal energy
supply cost and improving energy efficiency, but the operation scheduling of an IES, especially
integrated with inter-connected multiple energy stations, is rather complex since it is affected by
various factors. Toward a comprehensive operation scheduling of multiple energy stations, in this
paper, a day-ahead and intra-day collaborative operation model is proposed. The targeted IES
consists of electricity, gas, and thermal systems. First, the energy flow and equipment composition
of the IES are analyzed, and a detailed operation model of combined equipment and networks
is established. Then, with the objective of minimizing the total expected operation cost, a robust
optimization of day-ahead and intra-day scheduling for energy stations is constructed subject
to equipment operation constraints, network constraints, and so on. The day-ahead operation
provides start-up and shut-down scheduling of units, and in the operating day, the intra-day rolling
operation optimizes the power output of equipment and demand response with newly evolved
forecasting information. The photovoltaic (PV) uncertainty and electric load demand response are
also incorporated into the optimization model. Eventually, with the piecewise linearization method,
the formulated optimization model is converted to a mixed-integer linear programming model, which
can be solved using off-the-shelf solvers. A case study on an IES with five energy stations verifies the
effectiveness of the proposed day-ahead and intra-day collaborative robust operation strategy.

Keywords: integrated energy system; day-ahead and intra-day collaborative scheduling; PV power
generation; multi-energy network; demand response

1. Introduction

At present, the global energy market is extremely unstable, and energy has become
an important factor affecting the economic development of many countries. As a new
generation of energy supply systems, the integrated energy system (IES) can make full use
of the complementary characteristics of gas, cold, heat, and electric energy, while reducing
the cost of regional energy supply and improving the stability of terminal energy supply.
However, as an IES integrates the production, conversion, and use of gas, cold, heat, and
electric energy, many uncontrollable and uncertain factors are involved. This also makes
the scheduling operation of an IES greatly challenging [1].

In [2–4], considering the economic and environmental factors of an IES, the multi-
objective optimization operation model was established to dispatch the multi-energy
equipment in the system. Ju et al. [5] proposed a micro-grid energy management method
including energy storage equipment, which can reduce system operation cost and enhance
system reliability. Pan et al. [6] studied the optimal operation method of electricity–heat
supply of building an IES considering heat storage. For an IES including wind power,
photovoltaic (PV) power, and other renewable energy generation devices, there are studies
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on improving the new energy consumption through cold and thermal energy storage so
as to solve the uncertainty problem of renewable energy output. Tan et al. [7] studied the
method of improving the operation efficiency of a micro-grid based on advanced energy
storage technology. In [8], a multi-source coordinated energy storage system consisting
of electricity, heat, and hydrogen was established, and coordinated optimization was
carried out through a multi-energy storage and conversion model so as to improve the
regulation flexibility and economy of power grids. Zeng et al. [9] proposed a stability
evaluation method including electro-pneumatic transformation and a nature gas storage
system. Chen et al. and Fan et al. [10,11] established a hybrid energy storage system model
and proposed a coordinated operation strategy of electric and thermal energy storage.
With important coupling of the power grid and heat supply network, Chen et al. [12]
established a model of combined heat and power (CHP) units and analyzed the influence
of a heat storage tank on the economic operation of an IES. On the basis of the operation
characteristics of the heat supply network, Li et al. [13] considered the thermoelectric
hybrid scheduling model of various types of equipment, such as heat storage and wind
power heating equipment. The wind power consumption ratio was effectively increased
through the coordinated spatial and temporal scheduling of multiple energy sources.

The integrated energy system faces uncertainties on the energy supply and demand
sides [14–17]. For the supply side, the most common uncertainty comes from the output
uncertainty of renewable energy [18,19]. To reduce the impact of renewable energy out-
put uncertainty on system operation scheduling, uncertainty optimization methods or
prediction time shortening can be used to improve the prediction accuracy. Uncertainty
optimization methods are divided into stochastic programming and robust optimization.
Wang et al. [20] simulated the randomness of wind power output and power load demand
and established an optimization model with the objective of minimizing the system op-
eration cost, maximizing the power supply reliability and comprehensive benefits, while
optimizing the output of each unit by using a genetic algorithm. Pazouki et al. [21] used the
scenario analysis method to describe the uncertainty of renewable energy output and load
and generated a large number of wind power and load forecast scenarios. The deterministic
optimization for multiple scenarios was also carried out. Moreira et al. and Baringo and
Baringo [22,23] studied the robust optimal operation method of an IES. Wu et al. [24] pro-
posed a control strategy to improve the security and economy of an IES through multi-time
scale scheduling. Rong et al. [25] proposed a coordinated control strategy of adding heat
storage and electric boiler in the electricity–heat system, and through the two-stage rolling
scheduling mode, the additional heat sources and unit output are reasonably arranged to ef-
fectively alleviate the serious phenomenon of wind abandonment under a high penetration
rate of wind power.

During the operation of an IES, it is necessary to consider the constraints of gas, elec-
tric, cold, and heat transfer networks [26]. The power networks in an IES are generally
low-voltage or medium-voltage distribution networks. At present, the research on distribu-
tion network modeling and solutions is relatively mature. Forward-backward generation,
genetic algorithms, and many other solving algorithms can be used as solutions. In the
aspect of modeling and solving the heat supply network, Li et al. and Shao et al. [27,28]
considered the heat storage capacity of a hot-water pipeline in unit commitment and
economic dispatch and adopted the temperature regulation range of a heat supply network
node as the heat storage constraint. Wu et al. [29] linearized the nonlinear model in an IES
and studied the optimal power flow algorithm of the IES based on mixed integer linear
programming (MILP). In [30], the nighttime heat load was translated based on analyses
of the thermal dynamic characteristics of the heat supply network and heating region.
These studies showed that considering the thermodynamic characteristics of a heat supply
network and buildings in the model is helpful to smooth the fluctuation of wind power
and effectively reduce the proportion of wind power curtailment at night. Lu et al. [31]
studied the modeling and optimal operation method of an IES considering thermal inertia.
Different from the transfer of electric energy, the transfer of heat energy in the heat supply
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network can be realized through quality and quantity control. Quality control refers to
adjusting the temperature of the supply and return of medium water to regulate the heat
transfer power, and quantity control refers to adjusting the flow of medium water. This
paper adopts the method of quality control [26].

An IES contains various types of energy load and has great potential of load demand
response. The demand response potential can be released through the multi-energy com-
plementarity of load, and thus the operation cost can be reduced. In [32], to improve the
utilization rate of wind power, considering the demand side response of a micro-grid,
an optimal scheduling model of a micro-grid with multi-source energy storage based on
the price incentive demand response was established. Considering the uncertainty of the
micro-grid, Geramifar et al. [33] coordinated multi-energy storage and load side demand
response resources and proposed a joint optimization method. Nguyen and Le [34] set the
indoor temperature change in buildings with comprehensive energy within a certain range
and took electric vehicles as adjustable loads to participate in dispatching. Tabar et al. [35]
studied the renewable energy in an IES as a demand response participant to promote the
complementary consumption of renewable energy and improve the operation economy of
the system.

To sum up, an IES has great potential in improving the regional energy supply econ-
omy and energy supply stability, and several optimization methods have been developed
to deal with uncertainty factors in the IES. However, at present, the research on IESs mostly
focuses on a certain factor for in-depth analysis. For example, some research ignores the
energy network among multiple energy stations, where only equipment constraints are
incorporated. Some others focus on the bi-direct conversion only between electrical power
and another energy form, such as heat, cold, or gas. There is no overall consideration of an
IES with full coupling among all types of energy forms.

Focusing on multiple energy stations belonging to one operator, this paper proposes a
day-ahead and intra-day collaborative robust optimization operation method, considering
the load demand response of electrical power and multi-energy storage. Full coupling
among electricity, heat, cold, and gas with each energy station is captured. A case study
demonstrates that the proposed method can reduce the operation cost of an IES by opti-
mizing the equipment operation state.

The main contributions of the work are as follows:

• Combined with typical IES equipment models, the energy constraints of the pipe
network, including electric, gas, heating, and cooling networks, are integrated toward
a more detailed and comprehensive model for IES operation.

• Considering the uncertainty of the PV output, a day-ahead and intra-day collaborative
robust optimization model of multiple energy stations is constructed, where the
influence of electrical load participating in the demand response is also incorporated.

• The piecewise linearization method is used since the equipment and network model
of an IES contains a large number of nonlinear terms. The whole optimization model
is then converted to a mixed-integer linear programming model. Compared to other
existing methods, a unified solution method for the optimal operation of equipment
and the network in an IES is proposed.

The rest of this paper is structured as follows. In Section 2, modeling of the equipment
and network of an IES is presented. In Section 3, the day-ahead and intra-day collaborative
robust optimal operation model is formulated. In Section 4, a case study on an IES with
multiple energy stations is presented, and Section 5 draws conclusions.

2. Integrated Energy System Modeling
2.1. An Overview of Integrated Energy Systems

An integrated energy system is a terminal energy supply system, which is generally
used in areas with concentrated cold, heat, electric, and gas loads. According to the energy
supply scale, IESs can be divided into small, medium, and large IESs. For the medium-size
or larger regional IESs, there may be multiple energy centers (energy stations). Each energy
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station can be connected through the distribution network, hot-water pipeline network,
and urban gas pipeline, and multiple energy stations can work together to realize safe,
stable, and efficient energy supply within the region. The energy flow network of the
regional IES studied in this paper is shown in Figure 1. The topological structure of internal
equipment in energy station 1 is shown in Figure 2. The main equipment in the energy
station includes a combined cool heat and power (CCHP) unit, a waste heat boiler (WHB),
a lithium bromide refrigeration (LR) unit, a gas boiler (GB), a heat pump (HP), an electric
refrigerator (ER), electric energy storage (ES), heat energy storage (HS), cold energy storage
(CS), PV generation equipment, and so on.

Figure 1. Energy flow network of an integrated energy system (IES).

Figure 2. Topological structure diagram of internal equipment in energy station 1.

In the IES shown in Figure 1, each energy station is responsible for the energy supply
of multiple energy loads within the service scope of the station. The energy stations are also
connected through the power grid, the heat supply network, and gas pipelines. However,
due to the energy loss in the transfer process, each energy station will give priority to meet
the load within its supply scope to reduce the losses.
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2.2. Equipment Modeling of an Integrated Energy System
2.2.1. CCHP Unit of the Gas Turbine

As the most important multi-energy coupling equipment in a regional comprehensive
energy system, a gas turbine (GT) unit can efficiently convert natural gas into electric
energy, heat energy, and cold energy. A conversion model of different kinds of energy
in CCHP can be constructed. The energy conversion diagram of CCHP is as shown in
Figure 3.

FCCHP,g(t) = uCCHP(t)×
PCCHP,e(t)

ηCCHP,e(t)× LHV
(1)

ηCCHP,e(t) = aCCHP ×
(

PCCHP,e(t)

PN
CCHP,e

)3

+ bCCHP ×
(

PCCHP,e(t)

PN
CCHP,e

)2

+ cCCHP ×
(

PCCHP,e(t)

PN
CCHP,e

)
+ dCCHP (2)

PWHB,h(t) =
uCCHP(t)×

(
1− ηCCHP,e(t)− ηloss

CCHP

)
× PCCHP,e(t)

ηCCHP,e(t)
(3)

PCCHP,c(t) = uCCHP(t)× PLR,h(t)× COPLR (4)

PCCHP,h(t) = PWHB,h(t)− PLR,h(t) (5)

where FCCHP,g(t) is the natural gas consumption of the CCHP unit in time period t, m3/h;
uCCHP(t) refers to the on and off status of the CCHP unit in time period t; 1 indicates the
unit is on and 0 indicates off; PCCHP,e(t) is the electrical output power of the CCHP unit in
time period t, kW; PN

CCHP,e is the rated electric power of the CCHP unit; LHV is the low
calorific value of natural gas, taking 9.7 kWh/m3; aCCHP, bCCHP, cCCHP, and dCCHP are the
generation efficiency function coefficients of the CCHP unit; ηCCHP,e(t) is the generation
efficiency of the CCHP unit in time period t; ηloss

CCHP is the thermal energy self-dissipation
rate of the CCHP unit; PWHB,h(t) is the output thermal power of the waste heat recovery
boiler of the CCHP unit in time period t, kW; PCCHP,h(t) is the output heat power of the
CCHP unit in time period t, kW; PLR,h(t) is the thermal power absorbed by LR from the
GT, kW; COPLR refers to the hot and cold conversion efficiency of LR; and PCCHP,c(t) refers
to the output cooling power of the CCHP unit, kW.

Figure 3. Energy conversion diagram of combined cool heat and power (CCHP).

2.2.2. Gas Boiler

With a gas boiler, natural gas converts its chemical energy into thermal energy. Ther-
mal energy is transferred to users through water.

FGB,g(t) = uGB(t)× PGB,h(t)/(ηGB × LHV) (6)

where FGB,g(t) is the natural gas consumption of the GB in time period t, m3/h; uGB(t)
refers to the start-up and shut-down status of the GB in time period t; 1 indicates the unit is
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on and 0 indicates off; PGB,h(t) is the output thermal power of the GB in time period t, kW;
and ηGB is the heat production efficiency of the GB.

2.2.3. Electric Refrigeration

ER does not directly produce cold energy but releases the heat energy in the system to
the outside. Therefore, the refrigeration capacity of electric refrigeration is related to its
refrigeration coefficient.

PER,c(t) = PER,e(t)× COPER (7)

where PER,e(t) is the electric power consumed by the ER unit in time period t, kW; PER,c(t)
is the cooling energy power produced in time period t, kW; and COPER is the refrigera-
tion coefficient.

2.2.4. Heat Pump

The working principle of an HP is to collect the low-grade heating energy in the
environment by consuming a small amount of electricity for heating objects.

PHP,h(t) = PHP,e(t)× COPHP (8)

where PHP,e(t) is the electric power consumed by the HP in time period t, kW; PHP,h(t)
is the thermal power output by the HP in time period t, kW; and COPHP is the heating
coefficient of the HP.

2.2.5. Multi-Energy Storage

The configuration of cooling, thermal, and electric energy storage equipment in an IES
can make full use of the physical complementary characteristics of cooling, thermal, and
electric energy. Especially with CCHP units, efficient energy utilization can be achieved.

EES(t) = EES(t− 1)× (1− δES × ∆t) +
(

Pcha
ES (t)× ηcha

ES −
Pdis

ES (t)
ηdis

ES

)
× ∆t

EHS(t) = EHS(t− 1)× (1− δHS × ∆t) +
(

Pcha
HS (t)× ηcha

HS −
Pdis

HS (t)
ηdis

HS

)
× ∆t

ECS(t) = ECS(t− 1)× (1− δCS × ∆t) +
(

Pcha
CS (t)× ηcha

CS −
Pdis

CS (t)
ηdis

CS

)
× ∆t

(9)

where EES(t), EHS(t), and ECS(t) are the electric, heating, and cooling energy storage in
time period t, respectively, kWh; EES(t− 1), EHS(t− 1), and ECS(t− 1) are the electrical,
heating, and cooling energy storage in time period t – 1, respectively, kWh; δES, δHS, and
δCS are the self-energy consumption rates of electric, heating, and cooling energy storage,
respectively, h−1; ∆t is the unit-optimized operation interval, h; Pcha

ES (t) and Pdis
ES (t) are the

charging and discharging power of electric energy storage, respectively, in time period t,
kW; Pcha

HS (t) and Pdis
HS (t) are the charging and discharging power of heat energy storage,

respectively, in time period t, kW; Pcha
CS (t) and Pdis

CS (t) are the charging and discharging
power of cold energy storage, respectively, in time period t, kW; ηcha

ES and ηdis
ES are the

charging and discharging efficiency of electric energy storage, respectively; ηcha
HS and ηdis

HS
are the charging and discharging efficiency of heat energy storage, respectively, in time
period t; and ηcha

CS and ηdis
CS are the charging and discharging efficiency, respectively, of the

ice storage tank.

2.3. Modeling of the Multi-Energy Network

An integrated energy system consists of several energy stations. Different energy
stations are responsible for meeting the multi-energy load demand of the region. The
energy stations are connected through natural gas pipelines, power networks, and hot-
water pipelines to complete the transfer of natural gas, electric energy, and heat energy
between stations in the IES. For the rest of this paper, we assume that the inner network
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constraints within each energy station can be ignored, and we only focus on networks
connecting energy stations.

2.3.1. Electrical Power Network

The electrical distribution network with energy stations is constructed, which is in
radial topology, as shown in Figure 4; each node represents one energy station. The electrical
losses on network sections are ignored, since energy stations are closely located.

Figure 4. Electrical power network topology with energy stations.

The active power balance equation among the energy stations is as follows:

P1,e = −P12,e − P13,e + PE,e
P2,e = P12,e − P24,e
P3,e = P13,e − P35,e
P4,e = P24,e
P5,e = P35,e

(10)

The reactive power balance equation is similar to Equation (10). They can be summa-
rized as

Pi,e(t) = − ∑
j∈Ω(i)

Pij,e(t) + PE,e(t) (11)

where Ω(i) represents the energy stations that have connection to energy station i, Pij,e(t)
is the active power transmitted by the power network from energy station i to j, Pi,e(t) is
the active power output of energy station i, Qij,e(t) is the reactive power transmitted by
the power network from energy station i to j, Qi,e(t) is the reactive power output of energy
station i, and PE,e(t) is the electric power transmitted from the power network to the IES.
The actual flow direction of active and reactive power is distinguished with positive and
negative values of Pij,e(t) and Qij,e(t).

The relationship between the node voltage of energy stations i and j and the power
transferred between them is [36]:

U2
i (t)−U2

j (t) = 2
(

rijPij,e(t) + xijQij,e(t)
)

(12)

where U2
i (t) and U2

j (t) represent the square of voltage value of energy stations i and j at
time period t, respectively, and rij and xij represent the resistance and reactance values of
power lines between energy stations i and j, respectively.

Except for the above lossless power flow equations, other operational constraints of
an electrical distribution network are presented in Sections 3.2.2 and 3.2.3, including node
power injection in Equation (46), node voltage limits in Equation (49), and network line
capacity constraints in Equation (50).

2.3.2. Natural Gas Network

The natural gas network topology of energy stations is shown in Figure 5. In Figure 5,
the actual direction of gas flow, Fij,g, is distinguished with its positive and negative values.



Energies 2021, 14, 936 8 of 30

Figure 5. Natural gas network topology with energy stations.

Ignoring the change in pipeline height and the change in temperature at different
positions of the pipeline, and ignoring the time dynamic process, the natural gas pipeline
transfer model can be expressed as follows [37]:

Fij(t) ·
∣∣Fij(t)

∣∣ = C2
ij

(
τ2

i (t)− τ2
j (t)

)
∀i, j, t (13)

where Fij(t) is the natural gas flow from energy station i to j, Cij is the friction coefficient
of natural gas pipeline ij, and τi(t) is the natural gas pressure at energy station i. The
allowable upper and lower limits for node gas pressure and the line capacity limit are
presented in Equations (51) and (52) in Section 3.2.3.

During the operation process, natural gas pipelines between multi-energy stations
need to satisfy not only pipeline pressure constraints but also node flow balance constraints,
as shown in Equation (14).

Fi,g(t) = − ∑
j∈Ω(i)

Fij,g(t) + F0,g(t) (14)

where Fi,g is the gas consumption of node i, Fij,g is the natural gas flow of pipeline ij from i
to j, and F0,g is the gas provided by the city’s natural gas pipeline to a certain energy station.
Since only energy station 1 is directly connected to the city’s natural gas pipeline, except
for energy station 1, F0,g of other energy stations should be 0. The expression of node gas
consumption is presented in Equation (48) in Section 3.2.2.

2.3.3. Thermal Network

Heat energy needs to be transmitted by a transfer medium, generally water. Only the
primary heat supply network through which the heat transfers between energy stations
is considered, while the secondary pipe network through which energy stations transfer
heat energy to users is omitted. The heat transfer model is divided into a thermodynamic
model and a hydraulic model. The pipe network diagram of a heating supply system is
shown in Figure 6.

Thermodynamic Equations

The thermodynamic equations of hot-water pipelines are as follows:

Ph
k (t) = Cw ·Mk(t) ·

(
Tk(t)− T′k(t)

)
(15)

Tj(t) = Ti(t)φij(t) (16) ∑
j∈Ω+(i)

Mij(t)

Tij(t) = ∑
j∈Ω−(i)

(
Mji(t)Tji(t)

)
, ∀i (17)

where Ph
k (t) is the output heat power of energy station k; Cw is the specific heat capacity of

medium water; Mk is the hot-water flow of the heat exchanger at energy station k; Tk(t)
and Tk′(t) are the supply and return water temperatures at energy station k, respectively,;
φij(t) is the temperature drop coefficient of pipeline ij; the environment temperature Ta
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is 35 ◦C in summer, 20 ◦C in spring and autumn, and 0 ◦C in winter; Lij is the length of
pipeline ij; and λ is the heat conduction coefficient.

Ti(t) = T′i (t)− Ta
Tj(t) = T′j (t)− Ta

φ(t) = e−λLij/Cw Mij(t)
(18)

The temperature constraint of the supply and return water of nodes is given in
Equation (53) in Section 3.2.3.

Figure 6. Pipe network diagram of a heating supply system.

Hydraulic Equations

The flow balance equation of the hydraulic network for node j is as follows:{
Ah(t) ·Mij(t) = Mj(t)
Bh(t) ·MT

ij(t)diag(Kij)
∣∣Mij(t)

∣∣ = 0 , i ∈ Ω(j), ∀j (19)

where Ah(t) is the heat supply network correlation matrix, Bh(t) is the basic loop matrix;
Mij(t) is the pipeline flow vector, Mj(t) is the inflow flow vector of each node, Kij is the
pipeline impedance coefficient, i ∈ Ω(j) means that node i is directly connected to node
j, and T is the total number of optimized time intervals in one day. The constraint of
hot-water flow in pipelines is given in Equation (54) in Section 3.2.3.

With constant flow in hot-water pipelines and variable temperatures in the heat
transfer mode, the thermal equations of hot-water pipelines are linear equations, and the
heat transfer capacity of a hot-water pipe network is related to the hot-water flow.

3. Day-Ahead and Intra-Day Collaborative Robust Optimization Model for an IES

Based on the equipment and network model of an IES and considering the constraints
of the equipment and network operation, a day-ahead and intra-day collaborative robust
optimization model is constructed in this section. According to the prediction data, the
day-ahead optimal operation scheme of the IES is obtained. On the basis of day-ahead
optimal operation scheduling, considering the constraints of the units’ on/off status and
equipment output adjustment, the intra-day rolling optimal operation strategy of the IES is
constructed. The optimal scheduling scheme of the IES is obtained according to the rolling
forecast data.
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The optimization objective is to minimize the total operation cost of multi-energy
stations based on the ultra-short-term forecasting data of cold, heat, and electricity loads
and PV generation output, satisfying the operation constraints of the system and equipment.
The optimized variables include the equipment output of the CCHP unit, the HP, the ER,
and the GB and the electricity purchased from the grid. Through the day-head pre-dispatch
and rolling intra-day operation, the most economical coordinated operation scheduling
results of multiple energy stations in the IES can be obtained.

3.1. Objective Functions
3.1.1. Objective Function of Day-Ahead Optimized Operation of the IES

Considering the uncertainty of the PV output, the objective function of the day-ahead
economic robust optimization of the IES is constructed. The objective is to minimize the
total operation cost, including the fuel cost, electricity cost, start-up and shutdown cost,
maintenance cost, and demand response income.

min
x∈X

max
w∈W

(CF + CE + CS + CM − CR) (20)

CF =
T

∑
t=1

NS

∑
k=1

(
c f · FCCHP,g,k(t) · ∆t

)
+

T

∑
t=1

NS

∑
k=1

(
c f · FGB,g,k(t) · ∆t

)
(21)

CE =
T

∑
t=1

(
cb,e(t) · Pb,E,e(t)− cs,e(t) · Ps,E,e(t)

)
· ∆t (22)

CS =
T

∑
t=1

NS

∑
k=1

cCCHP,k ·
∣∣uCCHP,k(t)− uCCHP,k(t− 1)

∣∣+ T

∑
t=1

NS

∑
k=1

cGB,k ·
∣∣uGB,k(t)− uGB,k(t− 1)

∣∣ (23)

CM =
T

∑
t=1

NS

∑
k=1


cm

CCHP,k · P
DA
CCHP,e,k(t) + cm

GB,k · P
DA
GB,h,k(t)+

cm
PV,k · P

DA
PV,e,k(t) + cm

HP,k · P
DA
GB,h,k(t)+

cm
ER,k · P

DA
GB,h,k(t) + cm

ES,k · (Pcha
ES,k(t) + Pdis

ES,k(t))+
cm

HS,k · (Pcha
HS,k(t) + Pdis

HS,k(t)) + cm
CS,k · (Pcha

CS,k(t) + Pdis
CS,k(t))

 · ∆t (24)

CR =
T

∑
t=1

NS

∑
k=1

cR ·
(

PR,e,k(t)− PL,e,k(t)
)

(25)

where x is the control variable, representing the output of the CCHP unit, the GB, the HP,
the ER, and energy storage equipment; X is the control variable set, representing the output
range of each equipment; w is the uncertainty variable, representing the PV output, kW;
W is the uncertainty variable set, representing the error range of the PV output; CF, CE,
CS, CM, and CR are the fuel cost, electricity cost, start-up and shutdown cost, maintenance
cost, and demand response income, respectively; k represents the k-th energy station; NS
is the number of energy stations; FCCHP,g,k(t) is the gas consumption of the CCHP unit
in energy station s in time period t; T is the total number of time periods in a single day;
c f is the unit price of natural gas; cb,e(t) and cs,e(t) represent the purchase and sale price
of electricity per kilowatt hour, respectively; Pb,E,e(t) and Ps,E,e(t) represent the purchase
and sale electrical power, respectively; cCCHP,k and cGB,k represent for the start-up and
shut-down cost of the CCHP unit and gas-fired boiler, respectively; cm

CCHP,k, cm
GB,k, cm

PV,k,
cm

HP,k, cm
ER,k, cm

ES,k, cm
HS,k, and cm

CS,k are the maintenance cost of the CCHP, GB, PV, HP, ER, ES,
HS, and CS equipment of energy station k, respectively; PCCHP,e,k(t) is the electricity output
of the CCHP unit of energy station k; PGB,e,k(t), PPV,e,k(t), and PER,e,k(t) are the electricity
consumption of the GB, PV, HP, and ER equipment of energy station k, respectively, in
time period t; Pcha

ES,k(t), Pcha
HS,k(t) and Pcha

CS,k(t) are the charging power of electricity, heat, and
cold energy storage of energy station k, respectively, in time period t; Pdis

ES,k(t), Pdis
HS,k(t), and

Pdis
CS,k(t) are the discharging power of electricity, heat, and cold energy storage of energy
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station k, respectively, in t; cR is the profit of electric load participating in demand response
per kilowatt hour; PL,e,k(t) is the forecasting electric load for time period t; and PR,e,k(t) is
the actual electric load after demand response in time period t.

3.1.2. Objective Function of Intra-Day Optimized Operation of an IES

Due to the errors in day-ahead forecast, there exist differences between the forecasted
and the actually resolved PV power output and load values. The day-ahead pre-determined
operation scheduling might not be feasible, and adjustment of unit power output might
be needed. Therefore, during the operating day, rolling optimization is carried out on the
basis of day-ahead scheduled equipment output and newly obtained forecast information.
Compared with day-ahead optimization, rolling optimization does not consider adjustment
of the equipment start-up and shut-down status. Therefore, the objective function does not
consider the start-up and shut-down cost but includes the adjustment cost of equipment
output. The correction amount constraints of day-ahead plan for each equipment and
the state of charge constraints of energy storage are added. The optimization objective of
the rolling operation is to minimize the operation cost in the periods from the decision-
making point t0 to the end of the operating day. The total number of operation time
periods is T. The operation cost includes the natural gas purchase cost, electricity purchase
cost, equipment maintenance cost, and equipment output adjustment cost. The objective
function of day-ahead and intra-day collaborative optimization of an IES is as follows.

min
x∈X

max
w∈W

T

∑
t=t0

(CF(t) + CE(t) + CM(t) + CA(t)) (25) (26)

CF =
NS

∑
k=1

(
c f · FCCHP,g,k(t) · ∆t

)
+

NS

∑
k=1

(
c f · FGB,g,k(t) · ∆t

)
(26) (27)

CE =
(
cb,e(t) · Pb,E,e(t)− cs,e(t) · Ps,E,e(t)

)
· ∆t (27) (28)

CM =
NS

∑
k=1


cm

CCHP,k · PCCHP,e,k(t) + cm
GB,k · PGB,e,k(t)+

cm
PV,k · PPV,e,k(t) + cm

HP,k · PHP,e,k(t)+
cm

ER,k · PER,e,k(t) + cm
ES,k · (Pcha

ES,k(t) + Pdis
ES,k(t))+

cm
HS,k · (Pcha

HS,k(t) + Pdis
HS,k(t)) + cm

CS,k · (Pcha
CS,k(t) + Pdis

CS,k(t))

 · ∆t (29)

CA =
NS

∑
k=1


ca

CCHP,k ·
∣∣∣PCCHP,e,k(t)− PDA

CCHP,e,k
∗(t)

∣∣∣+
ca

GB,k ·
∣∣∣PGB,h,k(t)− PDA

GB,h,k
∗(t)

∣∣∣+
ca

HP,k ·
∣∣∣PHP,e,k(t)− PDA

HP,e,k
∗(t)

∣∣∣+
ca

ER,k ·
∣∣∣PER,e,k(t)− PDA

ER,e,k
∗(t)

∣∣∣

 · ∆t (30)

where t0 is the time when optimization starts; CF(t), CE(t), CM(t), and CA(t) are the
fuel, electricity, maintenance, and equipment output adjustment costs in time period t,
respectively; ca

CCHP,k, ca
GB,k, ca

HP,k, and ca
ER,k are the output adjustment cost of the CCHP,

GB, HP, and ER equipment of energy station k, respectively; and PDA
CCHP,e,k

∗(t), PDA
GB,h,k

∗(t),
PDA

HP,e,k
∗(t), and PDA

ER,e,k
∗(t) are the CCHP unit electricity output, the GB thermal output, the

HP electrical power, and the ER electrical power, respectively, of each energy station gotten
by the day-ahead dispatching plan. The rest of the symbols in Equations (26)–(30) have
been explained in Section 3.1.1.

3.2. Constraints

The constraints of the optimization model for an IES include the equipment operation
constraints of energy stations; the energy balance constraints of each station; the operation
constraints of the electricity, heat, and gas energy network; the constraints of the electrical
load demand response of each station; and the constraints of the day-ahead scheduling
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plan. To be specific, constraints are as follows: the constraints that should be satisfied in
the day-ahead dispatching process are equipment operation constraints; energy balance
constraints of an energy station; operation constraints of electricity, heat, and gas energy
networks; demand response constraints. For the intra-day robust rolling optimization,
energy storage output limits, start-up and shut-down state limits, and electricity, heating,
and cooling spinning reserve constraints are also taken into consideration. The specific
content will be introduced in the following sections.

3.2.1. Equipment Operation Constraints

The equipment constraints of an energy station include the upper and lower limits
of output, minimum start-up and shut-down times, maximum up and down ramp rates
of the CCHP unit and the GB, rated output constraints of the HP and the ER, maximum
charging and discharging power constraints of energy storage devices, the start of charge
(SOC) constraints of various energy storage devices, and the stored energy in each energy
storage device, which should be the same at the beginning and the end of one day.

CCHP unit operation constraints include the upper and lower limits of output, the
minimum time to be on or off, the maximum up and down ramp rates, and the LR and
waste heat recovery of waste heat boiler constraints. In the CCHP unit, the input heat of
the LR is produced by the waste heat boiler of the GT, so the input heat of the LR must be
less than the heat produced by the GT at the same time.

Pmin
CCHP,e · uCCHP(t) ≤ PCCHP,e(t) ≤ Pmax

CCHP,e · uCCHP(t) (31)

When the on and off operation status of CCHP units changes, the constraints of the
up and down ramp rates should be satisfied.

PCCHP,e(t)− PCCHP,e(t− 1) ≤(
2− uCCHP(t− 1)− uCCHP(t)

)
Pmin

CCHP,e +
(
1 + uCCHP(t− 1)− uCCHP(t)

)
Pmax,u

CCHP,e
(32)

PCCHP,e(t− 1)− PCCHP,e(t) ≤(
2− uCCHP(t− 1)− uCCHP(t)

)
Pmin

CCHP,e +
(
1− uCCHP(t− 1) + uCCHP(t)

)
Pmin,u

CCHP,e
(33)

The minimum time constraints of CCHP units to be on or off are as follows:{ (
Ton

CCHP(t)− Tmax
CCHP

)(
uCCHP(t− 1)− uCCHP(t)

)
≥ 0(

Toff
CCHP(t)− Tmin

CCHP
)(

uCCHP(t)− uCCHP(t− 1)
)
≥ 0

(34)

PWHB,h(t)− PLR,h(t) ≥ 0 (35)

where Pmin
CCHP,e and Pmax

CCHP,e are the minimum and maximum limited electric output power
of the CCHP unit, respectively; Ton

CCHP(t) is the time duration since the CCHP unit has
been started up until time period t; Toff

CCHP(t) is the time duration since the CCHP unit has
been shut down until time period t; TmaxCCHP and T

CCHP
represent the minimum start-up

and shut-down times of the CCHP unit, respectively; and Pup
CCHP,e and Pdown

CCHP,e are the
maximum up and down ramp rates of the CCHP unit, respectively.

The constraints of the upper and lower limits of output, the maximum up and down
ramp rates, and the constraints of the minimum time to be on or off for the GB are as follows:

Pmin
GB,h · uGB(t) ≤ PGB,h(t) ≤ Pmax

GB,h · uGB(t) (36)

PGB,h(t)− PGB,h(t− 1) ≤(
2− uGB(t− 1)− uGB(t)

)
Pmin

GB,h +
(
1 + uGB(t− 1)− uGB(t)

)
Pmax,u

GB,h
(37)

PGB,h(t− 1)− PGB,h(t) ≤(
2− uGB(t− 1)− uGB(t)

)
Pmin

GB,h +
(
1− uGB(t− 1) + uGB(t)

)
Pmin,u

GB,h
(38)
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(

Ton
GB(t)− Tmin_on

GB

)(
uGB(t− 1)− uGB(t)

)
≥ 0(

Toff
GB(t)− Tmin_off

GB

)(
uGB(t)− uGB(t− 1)

)
≥ 0

(39)

where Pmin
GB,h is the minimum thermal output power of the GB; Pmax

GB,e is the maximum
thermal output power of the gas-fired boiler; Ton

GB(t) is the time duration since the GB
has been started up until time period t; Toff

GB(t) is the time duration since the GB has been
shut-down until time period t; Tmin_on

GB is the minimum time during which the GB remains
starting state; Tmin_off

GB is the minimum time during which the GB remains stopped state;
Pup

GB,h and Pdown
GB,h are the maximum up and down ramp rates of the GB, respectively.

The output of the HP and ER should be less than the rated output.

PHP(t) ≤ Pmax
HP,e (40)

PER(t) ≤ Pmax
ER,e (41)

where Pmax
HP,e is the rated power of the heat pump, kW, abd Pmax

ER,e is the rated power of
electric refrigeration, kW.

In the operation of an IES, the electric, thermal, and cold energy storage equipment
should meet the SOC constraints, maximum charging and discharge power constraints,
and energy conservation constraints.

The SOC of all types of energy storage is constrained respectively as follows:

SOCmin
(·) ≤

E(·)(t)

EN
(·)
≤ SOCmax

(·) (42)

The maximum charging or discharging power constraints of electrical, heating, and
cooling energy storage are as follows:

0 ≤ Pcha
(·) (t) ≤ Pmax, cha

(·) (43)

0 ≤ Pdis
(·) (t) ≤ Pmax, dis

(·) (44)

The energy in storage should be the same at the beginning and the end of one day.

E(·)(0) = E(·)(T) (45)

where (·) represents different energy types, such as ES, HS, and CS; SOCmax
(·) represents the

maximum SOC of electrical, heating, and cooling energy storage, respectively; SOCmin
(·) rep-

resents the minimum SOC of electrical, heating, and cooling energy storage, respectively;
Pmax, cha
(·) and Pmax, dis

(·) represents the maximum charging and discharging power, respec-
tively, of electrical, heating, and cooling energy storage; E(·)(t) represents the capacity of
electrical, heating, and cooling energy storage in time period t; E(·)(0) represents the initial
capacity of electrical, heating, and cooling energy storage at the beginning of the day; and
E(·)(T) represents the terminal capacity of electrical, heating, and cooling energy storage at
the end of the day.

3.2.2. Energy Balance Constraints of an Energy Station

The operation of an IES needs to meet the energy balance constraints. The electric, gas,
cold, and heat energies do not need to be balanced in each energy station but should be
balanced in the IES. The energy balance constraints can be expressed as follows:

∆Pe,k(t) = PCCHP,e,k(t) + PPV,e,k(t)− PER,e,k(t)− PHP,e,k(t)+
Pmin

E,e,k(t)− Pmax
E,e,k(t)− Pcha

ES,k(t) + Pdis
ES,k(t)− PL,e,k(t)

(46)
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∆Pc,k(t) = PCCHP,c,k(t) + PER,c,k(t)− Pcha
CS,k(t) + Pdis

CS,k(t)− Pc
L,k(t) (47)

∆Fg,k(t) = FL,g,l(t) + FCCHP,g,k(t) + FCCHP,g,k(t) (48)

where ∆Pe,k(t), ∆Ph,k(t), and ∆Pc,k(t) are, respectively, the unbalanced power of electrical,
heating, and cooling energies of station k; ∆Fg,k(t) is the natural gas input of energy station
k in time period t; and FL,g,k(t) is the natural gas load of energy station k.

3.2.3. Operation Constraints of Electricity, Heat, and Gas Energy Networks

Grid operation constraints include the node voltage constraint and line transfer
power constraints.

The node voltage constraint can be expressed as follows:

Umin
i ≤ Ui(t) ≤ Umax

i (49)

where Umin
i and Umax

i are the upper and lower limits of allowable voltage of node i,
respectively.

The transfer power constraints between energy stations are as follows:

− Smax, e
ij ≤ Se

ij(t) ≤ Smax, e
ij (50)

where Smax, e
ij is the maximum transfer apparent power allowed on the power lines between

energy stations ij.
Natural gas network operation constraints include the node pressure constraint and

the pipeline flow constraint.
The node pressure constraint is expressed as follows:

τmin
i ≤ τi(t) ≤ τmax

i (51)

The pipeline flow constraint is expressed as follows:

Fmin
ij ≤ Fij(t) ≤ Fmax

ij (52)

To ensure the normal operation of the thermal system, some variables should meet
certain constraints. The commonly used constraints include the temperature constraint of
the supply and return water of the node, the hot-water flow constraint of the pipeline, and
so on.

Tmin
k ≤ Tk(t) ≤ Tmax

k (53)

Mmin
ij ≤ Mij(t) ≤ Mmax

ij (54)

3.2.4. Demand Response Constraints

An integrated energy system includes electricity, heating, and cooling loads, which
theoretically have the ability to participate in the demand response. However, considering
the current energy price mechanism, the pricing of thermal energy based on quantity
has not been implemented; only electric load is considered to participate in the demand
response. In consideration of the demand response, the optimized total electric energy
consumption in the operation day should equal the original electric load demand, and
the constraints of shiftable electric load should be satisfied in order to ensure the users’
comfort [38,39]. 

Tn
∑

t=t0

PR,e,k(t)∆t = DR,e,k

Dmin
R,e,k(t) ≤ PR,e,k(t)∆t ≤ Dmax

R,e,k(t)
(55)
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where PR,e,k(t) is the electric load power in time period t after participating in the demand
response; DR,e,k is the forecast electric load on the operation day; and Dmin

R,e,k(t) and Dmax
R,e,k(t)

are, respectively, the minimum and maximum electricity demands in time period t.

3.2.5. Intra-Day Rolling Optimization Operation Constraints

Energy storage output limits, start-up and shut-down state limits, and electricity,
heating, and cooling spinning reserve constraints of the intra-day rolling optimization
model are as follows.

• Energy storage output constraints

The rolling optimization will only be conducted in the remaining periods of the
day, with the energy storage being fully charged and discharged according to the output
generated by the day-ahead scheduling.

P(·)(t) = PDA
(·) (t) (56)

where PDA
(·) (t) represents the electrical, heating, and cooling energy storage output of the

day-ahead optimal dispatching, respectively, and P(·)(t) represents the electrical, heating,
and cooling energy storage output in the rolling stage of the day, respectively.

• Output adjustment constraint

Due to the limited adjustment ability of the equipment output of an IES in a single
dispatching period, the output of each equipment in the rolling dispatching stage must be
based on the units output obtained from the day-ahead plan, and the actual output should
be guaranteed within the allowable adjustment range of the units.∣∣∣Pi(t)− PDA

i (t)
∣∣∣ ≤ Pad

i (57)

where PDA
i (t) is the output of equipment i in the day-ahead optimization dispatching stage,

Pi(t) is the output of equipment i in the intra-day rolling optimization stage, and Pad
i is the

power adjustment capacity of equipment i.

• Spinning reserve constraints

As a terminal energy supply system, an IES needs to reserve a certain amount of
spinning reserve to ensure the reliability of regional energy supply. Due to the large inertia
time constant of cold and heat, even if the balance of supply and demand cannot be satisfied
in a short time, the safe and stable operation of the system will not be affected. Therefore,
it is not necessary to prepare the spinning reserve for cold and heat, and only focus on
spinning reserve for electricity. The spinning reserve of an IES can be provided not only
by the CCHP unit but also by the internal electrical equipment such as the ER and the HP
when the regional multi-energy supply system is equivalent to a virtual power plant.

min
{

Pad
CCHP, Pmax

CCHP − PCCHP(t)
}
+ PHP(t) + PER(t) + Pmax

E − PE(t) >= Pχ (58)

where Pχ is the minimum spinning reserve of the regional multi-energy supply system,
kW.

• Equipment start-up and shut-down state constraints

In the intra-day rolling dispatching stage, the start-up and shut-down status of a GT
and a gas-fired boiler must be the same as the day-ahead optimal scheduling plan.{

uCCHP(t) = uDA
CCHP(t)

uGB(t) = uDA
GB (t)

(59)

where uDA
CCHP(t) and uDA

GB (t) are, respectively, the start-up and shut-down states of CCHP
units and gas-fired boilers in the day-ahead optimal dispatching stage, and uCCHP(t) and
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uGB(t) are, respectively, the start-up and shut-down states of CCHP units and gas-fired
boilers in the intra-day rolling optimization scheduling stage.

3.3. Optimal Operation Solution Method

To tackle the uncertainty in PV power output, we adopt the robust optimization
method for the day-ahead and intra-day operation so that the obtained solution is feasible
with any possible realizations of PV power output. The established robust optimization
model in general form is as follows:

min
x,u

max
w

C(x, u, w)

s.t. G(x, u, w) ≤ 0
x ∈ X
u ∈ U
w ∈W

(60)

where C(x, u, w) is the optimization objective; G(x, u, w) is the constraint; x and u are
decision variables, where x represents continuous variables and u represents 0–1 variables;
w represents uncertain parameters, such as PV power output; X and U are feasible sets
of x and u, respectively; and W is the set of w. The detailed objective and constraints are
established in Section 3 from Equations (20)–(59).

The day-ahead and intra-day collaborative robust optimization of an IES includes
continuous variables, 0–1 variables, and nonlinear terms. Among them, the continuous
variables are the output of the gas-fired boiler, heat pump, electric refrigeration, and lithium
bromide refrigeration of energy stations in the IES; the output of electrical, heating, and
cooling energy storage equipment of energy stations; the tie-line power of the electrical grid;
the electrical and heating power between energy stations; and the hot-water temperature of
energy station nodes; the nonlinear terms exist in the electric output of the CCHP unit, the
gas flow and pressure between energy stations, and the voltage and air pressure of energy
station nodes; 0–1 variables are the charging and discharging status of energy storage
equipment in energy stations and the start-up and shut-down status of CCHP units and
gas-fired boilers in energy stations.

The day-ahead and intra-day collaborative robust optimization model for multi-energy
stations in an IES is a mixed integer nonlinear programming model with multiple nonlinear
variables, as well as quality and inequality constraints. Limited by the current solving
technology, the CCHP unit model, power network, and gas network should be linearized
by linearization methods so that the optimal operation model becomes a mixed integer
linear programming model, which can be easily solved using off-the-shelf solvers.

After piecewise linearization [36,37,40], the output of CCHP units in energy stations
and the gas flow and gas pressure between energy stations are expressed by linear variables
and 0–1 variables. There are 9696 continuous variables, 3840 0–1 variables, and 1248
nonlinear terms before linearization. In the process of linearization, the nonlinear terms
have been eliminated and the number of continuous variables has increased to 17088. For
example, the statistics of variables in an IES with five energy stations are shown in Table 1.

Table 1. Statistical table of variables before and after linearization of a robust optimization model.

Variable Type Before Linearization After Linearization

Continuous variable (5 × 17 + 8) × 96 = 9696 (5 × 26 + 8 + 4 × 10) × 96 = 17,088
0–1 variable 5 × 8 × 96 = 3840 (5 × 18 + 4 × 10) × 96 = 12,480
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It can be seen from Table 1 that after adopting the piecewise linearization method,
the numbers of linear variables and 0–1 variables have increased significantly. The 0–1
variables have increased by 3.25 times, especially. To ensure the accuracy of the model, the
number of linearized segments of the CCHP unit and gas pipeline model is large, so the
variable number increases greatly.

For the day-ahead and intra-day collaborative robust optimization of an IES, the
day-ahead robust optimization needs to be conducted firstly with the time interval as
15 min. In the intra-day operation stage, the CCHP unit and gas-fired boiler start-up and
shut-down plans obtained from day-ahead robust optimization are taken as constraints,
and the charging and discharging status of the electrical, heating, and cooling multi-energy
storage equipment under the day-ahead robust optimization are known. On this basis,
intra-day rolling robust optimization is carried out every 2 h according to the latest forecast
load and PV output data with the time interval as 5 min. The timescale of each optimization
is all the remaining periods of the day.

The time scheme of day-ahead and intra-day collaborative rolling robust optimization
of an IES is shown in Figure 7. The day-ahead optimization decision needs to be made 1 h
before 00:00 of the next day, and each optimization operation period is 24 h. The intra-day
rolling optimization decision scheme needs to be made every 2 hours, with 15 min in
advance each time, and each optimization operation time is the total of the remaining
periods of the day.

Figure 7. The decision time scheme of day-ahead and intra-day rolling robust optimization.

The process of day-ahead and intra-day collaborative robust optimization of an IES is
shown in Figure 8, and the specific steps are as follows:

Step 1: Construct IES network and equipment models based on network construction and
equipment parameters.
Step 2: Establish the day-ahead optimal operation model of the IES with day-ahead PV
and load forecast information.
Step 3: Solve the day-ahead optimal operation model to obtain the start-up, shut-down,
and operation status of the unit equipment.
Step 5: Establish the intra-day collaborative optimization operation model based on day-
ahead pre-dispatch results and updated forecasting information.
Step 6: Solve the intra-day operation model to obtain the operation scheduling of equipment
for the subsequent time periods.
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Figure 8. Flowchart of day-ahead and intra-day collaborative optimization of an IES.

4. The Example Analysis
4.1. Example Data

This paper takes a demonstration project as an example, including five energy stations
connected to a 10 kV electrical distribution network. The energy flow network of the
regional IES is shown in Figure 1. The equipment configuration of the energy station is
shown in Table 2. Taking into account the different load types and PV power generation
configurations in different energy stations, the configuration of energy stations in the IES
is also different. The electrical and cooling load of energy station 1 is maximal, and it is
located in the regional center of the IES. It is also equipped with all energy production
conversion and energy storage equipment. Energy stations 4 and 5 are located at the edge
of the area and are not equipped with PV power generation, electric energy storage, and
thermal energy storage. Energy station 5 is not equipped with a gas boiler, and energy
station 4 is not equipped with a heat pump.

Table 2. Energy station equipment configuration.

Equipment ES1 ES2 ES3 ES4 ES5

Combined cool heat and power (CCHP)
√ √ √ √ √

Gas boiler (GB)
√ √ √ √

×
Electric refrigerator (ER)

√ √ √ √ √

Heat pump (HP)
√ √ √

×
√

Photovoltaic (PV)
√ √ √

× ×
Electric energy storage (ES)

√ √
× × ×

Heat energy storage (HS)
√ √

× × ×
Cold energy storage (CS)

√
× ×

√ √

The equipment parameters in the energy stations of the IES are shown in Tables 3 and 4.
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Table 3. The equipment parameters of energy stations.

Equipment Minimum Power
(kW)

Minimum Power
(kW)

Up/Down Ramp
Rate (kW·h−1)

Maintenance Cost
(CNY·kW−1)

CCHP

Generation
(PCCHP,e) 500 1000 200 0.1

Waste heat
(PCCHP,h) 750 1500 – –

Lithium bromide
(PCCHP,c) 0 1000 – 0.02

GB (PGB,h) 100 500 100 0012
ER (PER,e) 0 100 – 0.015
HP (PHP,e) 0 200 – 0.006
PV (PPV,e) 0 400 – 0.0235

Table 4. The equipment parameters of energy storage.

Energy Storage ES HS CS

Capacity (kWh) 800 200 200
Maximum charging and discharging ratio 0.2 0.2 0.2

Charging and discharging efficiency 0.90 0.98 0.95
Minimum SOC 0.2 0.2 0.2
Maximum SOC 0.9 0.9 0.9

The parameters of power lines, natural gas pipelines, and hot-water pipelines are as
shown in Table 5. The PV output and load forecast power curves of energy station 1 are
shown in Figure 9, and the PV output and load forecast power curves of the other energy
stations are shown in the attached pictures in Appendix A.

Figure 9. The day-ahead and intra-day forecast curves of PV and load output of the energy station 1.
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Table 5. Parameters of the pipelines.

Node Number
Line Number Length (km)

Beginning End

1 2 1 1
1 3 2 1.5
2 4 3 2
3 5 4 1

The electrical impedance per unit length of the power line is 0.0004 + j0.00028 Ω. There
are four sections using the same type of transfer lines. The maximum transfer power of
the line is 2000 kVA, and its maximum node voltage deviation is ±5%. The coefficient
of natural gas pipelines, Cij, is 80. The minimum value of pipeline node air pressure is
10 MPa, and the maximum one is 50 MPa. The temperature of the hot-water pipeline drops
by 2 ◦C per kilometer.

4.2. Analysis of Simulation Results

Table 6 shows a comparison between the results of independent and collaborative
optimization operations of five energy stations. The cost of the collaborative optimization
operation is 11.254 CNY, which is less than that of the independent operation, and is
reduced by 18%. The equipment maintenance cost of the collaborative optimization
operation is much lower than that of the independent operation. The start-up and shut-
down cost is also less, which indicates that the collaborative optimization operation reduces
the maintenance workload of the equipment, as well as start-up and shut-down times. The
collaborative optimization operation is more conducive to the operation and maintenance
of the equipment. In addition, the increase in the electricity purchase cost and the decrease
in the natural gas purchase cost indicate that the collaborative optimization operation
benefits the low-carbon environmental protection.

Table 6. The operating results of independent and collaborative optimization operations.

Categories Independent
Operation (CNY)

Collaborative
Operation (CNY)

Electrical Cost
Purchasing 6880 5865.7

Sale 8952 0
Total −2072 5865.7

Fuel cost 56,497 38,860
Start-up and shut-down cost 35 9

Maintenance cost 8244 6335.8
Demand response revenue 764 384.1

Total 61,940 50,686

To study the impacts of the electric load participation in the demand response and the
uncertainty of PV generation output on the optimal operation of the IES [41], simulation
analyses of optimized operation of the IES under different degrees of load demand response
participation and the uncertainty of PV generation output are carried out separately.

4.2.1. The Impacts of Demand Response

Simulations of optimized operation of the IES under different levels of load demand
response participation are conducted, as shown in Case 1 to Case 5. Note that to guarantee
users’ comfort, the demand response participation levels are set relatively small. In Table 7,
results in different situations are listed.

Case 1: The demand response and the uncertainty of PV power generation output are
not considered.
Case 2: The demand response is not considered, and the uncertainty of PV power genera-
tion output is 60%.
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Case 3: The demand response participation is 5% of the total electric load, and the uncer-
tainty of the PV output is 60%.
Case 4: The demand response participation is 10% of the total electric load, and the
uncertainty of the PV output is 60%.
Case 5: The demand response participation is 20% of the total electric load, and the
uncertainty of the PV output is 60%.

Table 7. The operating results considering different demand respond participations.

Categories Case 1 (CNY) Case 2 (CNY) Case 3 (CNY) Case 4 (CNY) Case 5 (CNY)

Electrical Cost
Purchasing 6468.6 6382.9 5448.1 5357.3 5362.6

Sale 0 0 0 0 0
Total 6468.6 6382.9 5448.1 5357.3 5362.6

Fuel cost 38,350 38,638 39,440 39,519 39,514
Start-up and shut-down cost 15 15 15 15 6

Maintenance cost 6267.9 6307.1 6416.3 6427.2 6426.5
Demand response revenue 0 0 190.8 384.8 771.9

Total 51,101 51,343 51,129 50,933 50,537

According to the total expense of the five operating cases shown in Table 7, the cost of
Case 2 tops the rank, while the cost of Case 5 is lowest ranked, which indicates that robust
optimization will increase the operating expense to allow the IES to ensure the supply
of electricity and other energy sources when the PV output deviates from the predicted
value. In addition, the higher the demand response participation is, the lower the system
operating expense will be. The participation of the power load demand response can offset
the growth of the operating expense caused by the uncertainty of the PV output when it
reaches a certain percentage. In this paper, only the translational load’s participation in
the demand response is taken into consideration. To ensure users’ normal demand and
energy comfort, the proportion of translational load to total load must be low. As a result,
the reduced operating expense due to that the demand response participation level is
relatively smaller.

4.2.2. The Impacts of Uncertainty of PV Power Output

To test the impact of uncertainty of PV on the operation results, another five cases
with varying PV uncertainty levels are set and compared. In addition to normal conditions
with smaller uncertainty levels, an extreme condition where the day-ahead PV uncertainty
reaches 90% is also used to test the robustness of the proposed optimization strategy.
Simulation analysis and the optimized operation results are shown in Table 8.

Case 1: The uncertainty of the PV output and the demand response are not taken into account.
Case 2: The uncertainty of the PV output is not considered, while the power load demand
response participation rate is 10%.
Case 3: The uncertainty of the PV output is 30%, and the participation rate of the power
load demand response is 10%.
Case 4: The uncertainty of the PV output is 60%, and the participation rate of the power
load demand response is 10%.
Case 5: The uncertainty of the PV output is 90%, and the participation rate of the power
load demand response is 10%.

According to the results in Table 8, we can see that except for Case 1, in which the
power load demand response is not considered, from Case 2 to Case 5, the yield of the
demand response is basically the same. This manifests that different degrees of the PV
output uncertainty barely have an effect on the demand response. In addition, when the
participation rate of the demand response is 10%, machine group start-up and shut-down
costs under different degrees of the PV output uncertainty are 9 CNY, 15 CNY, 27 CNY, and
15 CNY, respectively. This indicates that PV output uncertainty casts a great influence over
the CCHP machine group and start and stop of the gas boiler. The uncertainty of the PV
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output acts as a guide to working out the day-ahead machine group start and stop plan. In
terms of the total expense, the PV output in Case 3 embodies the biggest uncertainty (90%),
while the one in Case 2 shows the minimum indeterminacy (0%).

Table 8. The operating results of different PV output uncertainties.

Categories Case 1 (CNY) Case 2 (CNY) Case 3 (CNY) Case 4 (CNY) Case 5 (CNY)

Electrical Cost
Purchasing 6468.6 5865.7 5872.7 5357.3 5477.3

Sale 0 0 0 0 0
Total 6468.6 5865.7 5872.7 5357.3 5477.3

Fuel cost 38,350 38,860 38,964 39,519 39,626
Start-up and shut-down cost 15 9 9 15 15

Maintenance cost 6267.9 6335.8 6350.3 6427.2 6442
Demand response revenue 0 384.1 384.5 384.8 385.4

Total 51,101 50,686 50,812 50,933 51,175

Correspondingly, in Case 3, the operating cost is the highest, while in Case 2, the
operating cost is the lowest, with a difference of 489 CNY. In Case 3, compared with the fee
of Case 2, the operating cost increases by 1%.

4.2.3. The Operation of Tie-Lines

To study the effect of energy complementarity and energy supply reliability brought by
optimal operation, it is necessary to analyze the operation of tie-lines between energy stations.

When the participation degree of the power load demand response is 20% and
the uncertainty of the PV output is 60%, the operation of tie-lines between energy sta-
tions is shown in Figures 10 and 11, in which Pij,e, PE,e, and Ui have been explained in
Equations (11) and (12). To reduce the impact of tie-line capacity, the maximum grid in-
teraction power of the integrated system is ±1000 kVA In Figure 10, it can be clearly
seen that with collaborative operation of multiple energy stations, the IES does not send
electricity back to the grid, and either it is purchasing electricity from the grid or it is under
the condition of neither purchasing nor selling electricity during all operating periods of
the day.

Comparing Figures 10 and 11, it can be found that the node voltages of each energy
station operate within the operating range (0.95, 1.05). Energy station 1 is located at the
node of the power grid and is basically in the state of power output. As for energy station 5,
it is located on the edge of the IES and has long been under the state of negative power
output, and it only outputs small power for a short time during the peak period of electrova-
lence. The output power of energy stations 2 and 4 is both positive and negative, which
indicates that enhancing the power grid strength between energy stations is conducive to
promoting energy complementarity between energy stations and reducing the impact on
the power grid.

Figure 10. Electrical power exchange between multi-energy stations in the IES.
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Figure 11. Voltage of energy stations in the IES.

The power exchange in hot-water pipelines between multi-energy stations in the IES
is shown in Figure 12. The power fluctuation of thermal energy flow between energy
stations is relatively small, and energy stations 1, 2, and 3 are basically under the state of
heat input. Additionally, energy stations 4 and 5 are located on the edge of the IES and
are primarily in the stage of power output. There is only a short-term power fluctuation
between 3:00 a.m. and 4:00 a.m. The steady transfer characteristic of thermal energy and
thermal power coincides with the slow control response of the hot-water pipeline.

Figure 12. Transfer power of hot-water pipelines between multi-energy stations in the IES.

According to Figure 12, thermal energy transfer between energy stations is mainly
decided by the temperature of the hot water—the heat transfer medium. The temperature
of the energy station as the thermal-energy-receiving node is basically 100 ◦C, which is the
upper limit of the temperature constraint. The thermal energy output node is at 50 ◦C, and
this is the lower limit of the hot-water temperature. Since there is a loss of thermal energy
during the transfer period in the long-distance pipeline, and the farther the distance is,
the greater the loss and the temperature drop will be, the thermal input power of energy
station 1 is greater than that of energy station 2. In addition, the energy station 2 heat input
power is more than that of station 3.

4.2.4. Power Exchange between the Main Grid and the IES

Day-ahead and intra-day operation results are compared and analyzed under the
condition that power load demand response participation is 10% and the uncertainty of
the PV output is 60%. Figure 13 has clarified the purchase and sale of electricity from
the power grid by the IES. It can be observed that the day-ahead sale power from the
IES remains 0, meaning that the IES does not sell but only purchases electricity from the
power grid during most of the time periods. When the electrovalence reaches its peak,
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the purchasing power is 0. In most time periods, the IES buys electricity from the power
grid during intra-day rolling dispatch, but actually, there are several periods of time where
power is sold to the grid. Analyzing the day-ahead and within-day purchasing power, we
can clearly find that the former period is more stable and there is almost no fluctuation in
tie-line power except the one in the situation of switching from the full power purchase
state to the zero power purchase state. However, lots of dense pinnacles come into existence
in Figure 13 during day-ahead optimization. This phenomenon indicates that more refined
energy optimization management is implemented to trace load fluctuations during the
period of with-day rolling operation.

Figure 13. Electrical power exchange between the main grid and the IES in day-ahead and intra-
day optimization.

The day-ahead and intra-day optimized power output curves of CCHP units in energy
station 1 and energy station 2 are shown in Figure 14. The black line represents the day-
ahead optimal scheduling result, and the red one is the intra-day rolling optimal scheduling
curve. As we can see in Figure 14, since both the unit dispatching times of intra-day rolling
operation and the load prediction power step are 5 min, the power output of the CCHP
units fluctuates more smoothly than it has been in the day-ahead one and the amount of
output adjustment all fluctuates within the allowable range.

Figure 14. Day-ahead and intra-day optimized power output curves of CCHP units in the IES.
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5. Conclusions

Integrated energy systems including several energy stations can realize multi-energy
supply of electricity, gas, cold, and heat. In this paper, focusing on the collaborative opera-
tion of energy stations, a robust day-ahead and intra-day operation method is proposed,
aiming at minimizing the total operation cost. Detailed and comprehensive integrated
equipment and energy network constraints are incorporated, and the influence of both
the electrical demand response and the uncertainty of the PV output are also taken into
account. Further, to make the established optimization model tractable, linearization
methods are adopted to convert the optimization model into a mixed-integer linear pro-
gramming model. A case study on a test system with five energy stations verifies the
effectiveness of the proposed method. From case study results, the following conclusions
can be drawn: (1) The proposed collaborative operation scheduling strategy helps reduce
the total system operating cost via energy exchange among energy stations. Meanwhile,
utilization of distributed PV generation can be promoted. (2) The electric load demand
response contributes to cost-effective operation results. The higher the demand response
participation level is, the more the operation costs are saved. (3) The operation scheduling
results are affected by the prediction accuracy of the PV power output. The operating cost
grows as the uncertainty level increases.
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Abbreviations

CCHP combined cool heat and power
CHP combined heat and power
CNY Chinese yuan
CS cold energy storage
ER electric refrigerator
ES electric energy storage
GB gas boiler
GT gas turbine
HP heat pump
HS heat energy storage
IES integrated energy system
LR lithium bromide refrigeration
MILP mixed integer linear programming
PV photovoltaic
SOC state of charge
WHB waste heat boiler

Appendix A

The day-ahead and intra-day rolling forecast curves of the PV output and load of
energy station 2–5 are shown from Schedule 1 to Schedule 4. Those of energy station 1 have
been shown in Figure 9. The day-ahead load forecasting duration is all the time periods
of the next day which includes 24 h. The intra-day forecasting time is all the remaining
periods of the day. The forecast is carried out once every two hours, and the results are
input into the optimization model for solution. The case data of rolling robust optimization
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of IES are the same as the day-ahead robust optimization. The PV and load data are taken
from the same day.

Figure A1. The day-ahead and intra- day forecast curves of PV and load output of the energy station 2.
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Figure A3. The day-ahead and intra-day forecast curves of PV and load output of the energy station 4.
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Figure A4. The day-ahead and intra-day forecast curves of PV and load output of the energy station 5.

References
1. Wang, Y.; Wang, X.; Yu, H.; Huang, Y.; Dong, H.; Qi, C.; Baptiste, N. Optimal Design of Integrated Energy System Considering

Economics, Autonomy and Carbon Emissions. J. Clean. Prod. 2019, 225, 563–578. [CrossRef]
2. Fang, S.; Xu, Y.; Wen, S.; Zhao, T.; Wang, H.; Liu, L. Data-Driven Robust Coordination of Generation and Demand-Side in PV

Integrated All-Electric Ship Microgrids. IEEE Trans. Power Syst. 2020, 35, 1783–1795. [CrossRef]
3. Cheng, Y.; Zhang, N.; Zhang, B.; Kang, C.; Xi, W.; Feng, M. Low-Carbon Operation of Multiple Energy Systems Based on

Energy-Carbon Integrated Prices. IEEE Trans. Smart Grid 2020, 11, 1307–1318. [CrossRef]
4. Ponocko, J.; Milanovic, J.V. Multi-objective Demand Side Management at Distribution Network Level in Support of Transmission

Network Operation. IEEE Trans. Power Syst. 2020, 35, 1822–1833. [CrossRef]
5. Ju, C.; Wang, P.; Goel, L.; Xu, Y. A Two-Layer Energy Management System for Microgrids with Hybrid Energy Storage Considering

Degradation Costs. IEEE Trans. Smart Grid 2018, 9, 6047–6057. [CrossRef]
6. Pan, Z.; Guo, Q.; Sun, H. Feasible Region Method Based Integrated Heat and Electricity Dispatch Considering Building Thermal

Inertia. Appl. Energy 2017, 192, 395–407. [CrossRef]
7. Tan, X.; Li, Q.; Wang, H. Advances and Trends of Energy Storage Technology in Microgrid. Int. J. Electr. Power Energy Syst. 2013,

44, 179–191. [CrossRef]
8. Teng, Y.; Wang, Z.; Li, Y.; Ma, Q.; Hui, Q.; Li, S. Multi-Energy Storage System Model Based on Electricity Heat and Hydrogen

Coordinated Optimization for Power Grid Flexibility. CSEE J. Power Energy Syst. 2019, 5, 266–274.
9. Zeng, Z.; Ding, T.; Xu, Y.; Yang, Y.; Dong, Z. Reliability Evaluation for Integrated Power-Gas Systems with Power-to-Gas and Gas

Storages. IEEE Trans. Power Syst. 2020, 35, 571–583. [CrossRef]

http://doi.org/10.1016/j.jclepro.2019.03.025
http://doi.org/10.1109/TPWRS.2019.2954676
http://doi.org/10.1109/TSG.2019.2935736
http://doi.org/10.1109/TPWRS.2019.2944747
http://doi.org/10.1109/TSG.2017.2703126
http://doi.org/10.1016/j.apenergy.2016.09.016
http://doi.org/10.1016/j.ijepes.2012.07.015
http://doi.org/10.1109/TPWRS.2019.2935771


Energies 2021, 14, 936 29 of 30

10. Chen, Y.; Wei, W.; Liu, F.; Mei, S. A Multi-Lateral Trading Model for Coupled Gas-Heat-Power Energy Networks. Appl. Energy
2017, 200, 180–191. [CrossRef]

11. Fan, F.; Tai, N.; Zheng, X.; Huang, W.; Shi, J. Equalization Strategy for Multi-Battery Energy Storage Systems Using Maximum
Consistency Tracking Algorithm of the Conditional Depreciation. IEEE Trans. Energy Convers. 2018, 33, 1242–1254. [CrossRef]

12. Chen, X.; Kang, C.; O’Malley, M.; Xia, Q.; Bai, J.; Liu, C.; Sun, R.; Wang, W.; Li, H. Increasing the Flexibility of Combined Heat and
Power for Wind Power Integration in China: Modeling and Implications. IEEE Trans. Power Syst. 2015, 30, 1848–1857. [CrossRef]

13. Li, J.; Fang, J.; Zeng, Q.; Chen, Z. Optimal Operation of the Integrated Electrical and Heating Systems to Accommodate the
Intermittent Renewable Sources. Appl. Energy 2016, 16, 244–254. [CrossRef]

14. Zhou, H.; Li, Z.; Zheng, J.H.; Wu, Q.H.; Zhang, H. Robust Scheduling of Integrated Electricity and Heating System Hedging
Heating Network Uncertainties. IEEE Trans. Smart Grid 2020, 11, 1543–1555. [CrossRef]

15. Liu, G.; Starke, M.; Xiao, B.; Zhang, X.; Tomsovic, K. Microgrid Optimal Scheduling with Chance-Constrained Islanding Capability.
Electr. Power Syst. Res. 2017, 145, 197–206. [CrossRef]

16. Peng, C.; Hou, Y.; Yu, N.; Wang, W. Risk-Limiting Unit Commitment in Smart Grid with Intelligent Periphery. IEEE Trans. Power
Syst. 2017, 32, 4696–4707. [CrossRef]

17. Mieth, R.; Dvorkin, Y. Distribution Electricity Pricing under Uncertainty. IEEE Trans. Power Syst. 2020, 35, 2325–2338. [CrossRef]
18. Wang, B.; Dehghanian, P.; Zhao, D. Chance-Constrained Energy Management System for Power Grids with High Proliferation of

Renewables and Electric Vehicles. IEEE Trans. Smart Grid 2020, 11, 2324–2336. [CrossRef]
19. Baringo, L.; Conejo, A.J. Offering Strategy of Wind-Power Producer: A Multi-Stage Risk-Constrained Approach. IEEE Trans.

Power Syst. 2016, 31, 1420–1429. [CrossRef]
20. Wang, J.; Zhong, H.; Xia, Q.; Kang, C.; Du, E. Optimal Joint-Dispatch of Energy and Reserve for CCHP-Based Microgrids. IET

Gener. Transm. Distrib. 2017, 11, 785–794. [CrossRef]
21. Pazouki, S.; Haghifam, M.R.; Moser, A. Uncertainty Modeling in Optimal Operation of Energy Hub in Presence of Wind, Storage

and Demand Response. Int. J. Electr. Power Energy Syst. 2014, 61, 335–345. [CrossRef]
22. Moreira, A.; Street, A.; Arroyo, J.M. An Adjustable Robust Optimization Approach for Contingency- Constrained Transmission

Expansion Planning. IEEE Trans. Power Syst. 2015, 30, 2013–2022. [CrossRef]
23. Baringo, L.; Baringo, A. A Stochastic Adaptive Robust Optimization Approach for the Generation and Transmission Expansion

Planning. IEEE Trans. Power Syst. 2018, 33, 792–802. [CrossRef]
24. Wu, H.; Krad, I.; Florita, A.; Hodge, B.M.; Ibanez, E.; Zhang, J.; Ela, E. Stochastic Multi-Timescale Power System Operations with

Variable Wind Generation. IEEE Trans. Power Syst. 2016, 32, 3325–3337. [CrossRef]
25. Rong, S.; Li, Z.; Li, W. Investigation of the Promotion of Wind Power Consumption Using the Thermal-Electric Decoupling

Techniques. Energies 2015, 8, 8613–8629. [CrossRef]
26. Li, Z.; Wu, W.; Wang, J.; Zhang, B.; Zheng, T. Transmission-Constrained Unit Commitment Considering Combined Electricity and

District Heating Networks. IEEE Trans. Sustain. Energy 2016, 7, 480–492. [CrossRef]
27. Li, Z.; Wu, W.; Shahidehpour, M.; Wang, J.; Zhang, B. Combined Heat and Power Dispatch Considering Pipeline Energy Storage

of District Heating Network. IEEE Trans. Sustain. Energy 2016, 7, 12–22. [CrossRef]
28. Shao, C.; Wang, X.; Shahidehpour, M.; Wang, X.; Wang, B. A MILP-based Optimal Power Flow in Multicarrier Energy Systems.

IEEE Trans. Sustain. Energy 2017, 8, 239–248. [CrossRef]
29. Wu, C.; Gu, W.; Jiang, P.; Li, Z.; Cai, H.; Li, B. Combined Economic Dispatch Considering the Time-Delay of A District Heating

Network and Multi-Regional Indoor Temperature Control. IEEE Trans. Sustain. Energy 2018, 9, 118–127. [CrossRef]
30. Duquette, J.; Rowe, A.; Wild, P. Thermal Performance of A Steady State Physical Pipe Model for simulating District Heating

Grids with Variable Flow. Appl. Energy 2016, 178, 383–393. [CrossRef]
31. Lu, S.; Gu, W.; Meng, K.; Yao, S.; Liu, B.; Dong, Z.Y. Thermal Inertial Aggregation Model for Integrated Energy Systems. IEEE

Trans. Power Syst. 2020, 35, 2374–2387. [CrossRef]
32. Yang, H.; Zhang, J.; Qiu, J.; Zhang, S.; Lai, M.; Dong, Z.Y. Practical Pricing Approach to Smart Grid Demand Response Based on

Load Classification. IEEE Trans. Smart Grid 2017, 9, 179–190. [CrossRef]
33. Geramifar, H.; Shahabi, M.; Barforoshi, T. Coordination of Energy Storage Systems and Demand Response Resources for Optimal

Scheduling of Microgrids under Uncertainties. IET Renew. Power Gener. 2017, 11, 377–388. [CrossRef]
34. Nguyen, D.T.; Le, L.B. Joint Optimization of Electric Vehicle and Home Energy Scheduling Considering User Comfort Preference.

IEEE Trans. Smart Grid 2014, 5, 188–199. [CrossRef]
35. Tabar, V.S.; Jirdehi, M.A.; Hemmati, R. Energy Management in Microgrid Based on the Multi Objective Stochastic Programming

Incorporating Portable Renewable Energy Resource as Demand Response Option. Energy 2017, 118, 827–839. [CrossRef]
36. Lei, S.; Hou, Y.; Qiu, F.; Yan, J. Identification of Critical Switches for Integrating Renewable Distributed Generation by Dynamic

Network Reconfiguration. IEEE Trans. Sustain. Energy 2018, 9, 420–432. [CrossRef]
37. Wang, C.; Wang, Z.; Hou, Y.; Ma, K. Dynamic Game-Based Maintenance Scheduling of Integrated Electric and Natural Gas Grids

with A Bilevel Approach. IEEE Trans. Power Syst. 2018, 33, 4958–4971. [CrossRef]
38. Alipour, M.; Zare, K.; Mohammadi-Ivatloo, B. Short-Term Scheduling of Combined Heat and Power Generation Units in the

Presence of Demand Response Programs. Energy 2014, 71, 289–301. [CrossRef]
39. Cheng, Y.; Zhang, P.; Liu, X. Collaborative Autonomous Optimization of Interconnected Multi-Energy Systems with Two-Stage

Transactive Control Framework. Energies 2019, 13, 1. [CrossRef]

http://doi.org/10.1016/j.apenergy.2017.05.060
http://doi.org/10.1109/TEC.2018.2827105
http://doi.org/10.1109/TPWRS.2014.2356723
http://doi.org/10.1016/j.apenergy.2015.10.054
http://doi.org/10.1109/TSG.2019.2940031
http://doi.org/10.1016/j.epsr.2017.01.014
http://doi.org/10.1109/TPWRS.2017.2672939
http://doi.org/10.1109/TPWRS.2019.2954971
http://doi.org/10.1109/TSG.2019.2951797
http://doi.org/10.1109/TPWRS.2015.2411332
http://doi.org/10.1049/iet-gtd.2016.0656
http://doi.org/10.1016/j.ijepes.2014.03.038
http://doi.org/10.1109/TPWRS.2014.2349031
http://doi.org/10.1109/TPWRS.2017.2713486
http://doi.org/10.1109/TPWRS.2016.2635684
http://doi.org/10.3390/en8088613
http://doi.org/10.1109/TSTE.2015.2500571
http://doi.org/10.1109/TSTE.2015.2467383
http://doi.org/10.1109/TSTE.2016.2595486
http://doi.org/10.1109/TSTE.2017.2718031
http://doi.org/10.1016/j.apenergy.2016.06.092
http://doi.org/10.1109/TPWRS.2019.2951719
http://doi.org/10.1109/TSG.2016.2547883
http://doi.org/10.1049/iet-rpg.2016.0094
http://doi.org/10.1109/TSG.2013.2274521
http://doi.org/10.1016/j.energy.2016.10.113
http://doi.org/10.1109/TSTE.2017.2738014
http://doi.org/10.1109/TPWRS.2018.2812702
http://doi.org/10.1016/j.energy.2014.04.059
http://doi.org/10.3390/en13010001


Energies 2021, 14, 936 30 of 30

40. Zhang, Y.; Hu, Y.; Ma, J.; Bie, Z. A Mixed-Integer Linear Programming Approach to Security-Constrained Co-Optimization
Expansion Planning of Natural Gas and Electricity Transmission Systems. IEEE Trans. Power Syst. 2018, 33, 6368–6378. [CrossRef]

41. Zhai, J.; Wu, X.; Zhu, S.; Yang, B.; Liu, H. Optimization of Integrated Energy System Considering Photovoltaic Uncertainty and
Multi-Energy Network. IEEE Access 2020, 8, 141558–141568. [CrossRef]

http://doi.org/10.1109/TPWRS.2018.2832192
http://doi.org/10.1109/ACCESS.2020.3013396

	Introduction 
	Integrated Energy System Modeling 
	An Overview of Integrated Energy Systems 
	Equipment Modeling of an Integrated Energy System 
	CCHP Unit of the Gas Turbine 
	Gas Boiler 
	Electric Refrigeration 
	Heat Pump 
	Multi-Energy Storage 

	Modeling of the Multi-Energy Network 
	Electrical Power Network 
	Natural Gas Network 
	Thermal Network 


	Day-Ahead and Intra-Day Collaborative Robust Optimization Model for an IES 
	Objective Functions 
	Objective Function of Day-Ahead Optimized Operation of the IES 
	Objective Function of Intra-Day Optimized Operation of an IES 

	Constraints 
	Equipment Operation Constraints 
	Energy Balance Constraints of an Energy Station 
	Operation Constraints of Electricity, Heat, and Gas Energy Networks 
	Demand Response Constraints 
	Intra-Day Rolling Optimization Operation Constraints 

	Optimal Operation Solution Method 

	The Example Analysis 
	Example Data 
	Analysis of Simulation Results 
	The Impacts of Demand Response 
	The Impacts of Uncertainty of PV Power Output 
	The Operation of Tie-Lines 
	Power Exchange between the Main Grid and the IES 


	Conclusions 
	
	References

