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Abstract: Monte Carlo simulations are widely used for uncertainty analysis in the probabilistic safety
assessment of nuclear power plants. Despite many advantages, such as its general applicability,
a Monte Carlo simulation has inherent limitations as a simulation-based approach. This study pro-
vides a mathematical formulation and analytic solutions for the uncertainty analysis in a probabilistic
safety assessment (PSA). Starting from the definitions of variables, mathematical equations are de-
rived for synthesizing probability density functions for logical AND, logical OR, and logical OR with
rare event approximation of two independent events. The equations can be applied consecutively
when there exist more than two events. For fail-to-run failures, the probability density function for
the unavailability has the same probability distribution as the probability density function (PDF) for
the failure rate under specified conditions. The effectiveness of the analytic solutions is demonstrated
by applying them to an example system. The resultant probability density functions are in good
agreement with the Monte Carlo simulation results, which are in fact approximations for those from
the analytic solutions, with errors less than 12.6%. Important theoretical aspects are examined with
the analytic solutions such as the validity of the use of a right-unbounded distribution to describe
the uncertainty in the unavailability/probability. The analytic solutions for uncertainty analysis
can serve as a basis for all other methods, providing deeper insights into uncertainty analyses in
probabilistic safety assessment.

Keywords: probabilistic safety assessment; fault tree analysis; uncertainty analysis; analytic solutions;
Monte Carlo simulation

1. Introduction

As many countries declare their intention to achieve carbon neutrality by 2050, the
role of nuclear power is becoming more important. As nuclear safety is one of the key
concerns about nuclear power, quantitative assessment of nuclear safety is essential for
enhancing the safety of nuclear power plants and hence increasing the sustainability of
nuclear energy.

The probabilistic safety assessment (PSA) is an analytic technique used to estimate
quantitative risks and to make decisions associated with complex systems. The PSA
complements deterministic safety analysis and has been widely applied to the design,
operation, maintenance, and regulation of nuclear power plants. One of the major objectives
of the PSA is to identify scenarios that lead to consequences of interest and to quantify the
occurrence frequency of such scenarios, considering the system features [1]. The identified
scenarios and their occurrence frequencies provide important insights for decision-making
in the operation and safety management of nuclear power plants.

An uncertainty analysis, which is one of the major elements in PSA, involves quan-
tifying the uncertainties of the occurrence of scenarios. Since directly quantifying the
uncertainty of an entire system is practically impossible, the underlying principle of the
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uncertainty analysis is “divide and conquer,” i.e., decomposing a complex system into
manageable parts, making the assessment separately, and then performing appropriate
computations [2]. A typical method used to decompose a process is a fault tree analy-
sis. In a fault tree analysis, the failed state of a complex system is represented by a top
event and divided into logic gates and basic events. Basic events in a fault tree typically
represent component failures and have their associated probabilities. These probabilities
are constructed using mathematical models and associated parameters. The uncertainty
associated with model parameters is called the state-of-knowledge uncertainty. For the
state-of-knowledge uncertainty, subjective probability density functions (PDFs) are used as
the interpretation of probability to express the degree of beliefs [3]. The subjective PDF, as
a function of information, reduces the uncertainty when new information is available. The
formal method to handle this information is the subjective (Bayesian) probability theory [4].
The probability of a basic event also becomes a random variable with a PDF because of the
state-of-knowledge uncertainty.

As mentioned above, the uncertainty of the top event is represented by a PDF deter-
mined from the component uncertainties, which are also represented by PDFs. Various
methods have been developed and applied to determine the PDF of the top event from the
PDFs of basic events. In theoretical approaches, such as variable transformation [5], the
PDF of the top event is synthesized by integrating with the joint PDFs of basic events [6]. In
the method of moments [7], the moments of the top event are generated from the moments
of basic events and then applied to an assumed distribution of the top event to approximate
the PDF of the top event. In the method of discrete probability distributions [8], the continu-
ous PDFs of basic events are discretized and combined to produce an approximate discrete
PDF of the top event. A Monte Carlo simulation [9] can produce an approximate PDF of
the top event by repeated sampling from the PDFs of basic events and then calculating the
unavailability of the top events.

Jackson et al. [10] highlighted the difficulty in determining the exact solutions for the
distribution of the top event, and this is the major motivation behind using approximate
methods. Since then, the authors could find few studies that have been conducted on
theoretical approaches for uncertainty analyses. Among the approximate methods, such as
the method of moments, method of discrete probability distributions, and Monte Carlo
simulations, the Monte Carlo simulation is most widely used in practice, owing to its ease
of application to large-scale models of complex systems [11].

Although each approximate method has many advantages compared to finding ana-
lytic solutions, analytic solutions continue to serve as a basis for all approximate methods.
Moreover, analytic solutions provide deeper insights into an uncertainty analysis, thus
providing better explanations of the numerical results obtained from approximate methods
or Monte Carlo simulations.

Starting from conventional probability theories, this paper presents a theoretical
approach for uncertainty analyses in the context of PSA. Section 2 presents the mathematical
formulation and analytic solutions for the uncertainty analysis in PSA. Section 3 presents
the application of the analytic solutions to a simple example system and a comparison with
the Monte Carlo simulation results. Finally, Section 4 presents the conclusions of this study.

2. Analytic Solutions for Uncertainty Analysis

Mathematical formulation specific to the uncertainty analysis in PSA is developed on
the ground of the general probability theory. We first need to define Boolean variables in
event trees and fault trees. Random variables will be assigned to the probabilities of the
Boolean variables. After that, Boolean functions that are generally used in event trees and
fault trees will be identified, and then the numerical functions associated with the Boolean
functions will be derived and solved in their analytic forms.
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2.1. Mathematical Formulation and Analytic Solutions

Let B1, . . . , Bn be the Boolean variables for the basic events in a coherent fault tree and
X1, . . . , Xn be the random variables for the probabilities that B1, . . . , Bn are in the failed
state, i.e., true state in a fault tree. Let GTOP be the top event of the fault tree and XTOP be
the random variable for the probability that GTOP is in the failed state, i.e., unavailability.
XTOP is given as a Boolean function hTOP of Bi’s and XTOP is given as a numerical function
gTOP of Xi’s, as follows:

GTOP = hTOP(B 1, . . . , Bn) (1)

XTOP = gTOP(X 1, . . . , Xn
)

(2)

Because Xi’s and XTOP are the random variables for probabilities, the images of
the random variables are commonly bounded by (0, 1). The random variables for the
probabilities of basic events Xi’s are assumed to be independent each other due to the
assumption that the basic events of a fault tree are independent of each other. The random
variables Xi’s have the probability density functions f1(x), . . . , f n(x) which represent the
uncertainties. Here, x is a variable whose support is bounded by (0, 1). For any probability
density function f (x) for a random variable X, the cumulative distribution function F(x)
is given as:

F(x) = Pr[0 ≤ X ≤ x] =
∫ x

0
f
(
x′
)
dx′ (3)

In uncertainty analysis in PSA, right-unbounded distributions which are defined from
0 to infinity, such as lognormal distribution or gamma distribution, are also widely used
to model the uncertainty. The use of such right-unbounded distributions would only be
valid when the random variables are distributed in such small values, usually significantly
less than 1, that the integration of the probability density function from 0 to 1, i.e., the
cumulative distribution function of 1, almost approaches 1, as follows:

Pr[0 ≤ X ≤ 1] =
∫ 1

0
f (x)dx = F(1) ≈ 1 (4)

The purpose of uncertainty analysis is to find the probability density function for the
top event, fTOP(x), from the probability density functions of basic events, f1(x), . . . , f n(x).
Because those Xi’s are independent of each other, the cumulative distribution function for
the top event FTOP(x) is given as:

FTOP(x) =
∫ x

0
fTOP

(
x′
)
dx′ =

∫
DTOP

f1(x 1

)
· · · fn(x n)dx1 · · · dxn (5)

where DTOP is the region of the combination of variables x1, . . . , xn that gTOP(x 1, . . . , xn)
is smaller than x.

For coherent fault trees, any Boolean function can be expressed with the combination
of AND and OR logics. The application of AND and OR logics to multiple (more than
two) basic events can be performed by consecutively applying the logics to two events,
as follows:

B1 ∩ B2 ∩ B3 ∩ . . . ∩ Bn = (B1 ∩ B2) ∩ B3 ∩ . . . ∩ Bn = [(B ∩ B2) ∩ B3] ∩ . . . ∩ Bn (6)

B1 ∪ B2 ∪ B3 ∪ . . . ∪ Bn = (B1 ∪ B2) ∪ B3 ∪ . . . ∪ Bn = [(B1 ∪ B2) ∪ B3] ∪ . . . ∪ Bn (7)

Therefore, the probability density function for the top event, fTOP(x), which is
calculated from the probability density functions for n independent random variables,
f1(x), . . . , f n(x), can be found by consecutively finding probability density functions of
AND and OR logics for two independent variables.

Let BX and BY be the Boolean variables for two basic events, and let X and Y be two
independent random variables for the probabilities of BX and BY. Let Z be the Boolean
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variable as the result of the Boolean function h of the two Boolean variables, BX and BY,
and let T be a random variable for the probability of Z, as follows:

Z = h(B X , BY) (8)

T = g(X, Y) (9)

where g(X, Y) is the numerical function associated with h(B X , BY).
In uncertainty analysis in PSA, Boolean variables in event trees and fault trees are

basically independent of each other. When the two random variables, X and Y, are
independent of each other, the cumulative distribution function of T is given by

F(t) =
∫

Dh

fX(x) fY(y)dydx (10)

where Dh denotes the region of the xy plane for the Boolean function h such that the
numerical function g of the two independent variables, x and y, is lower than t, as follows:

Dh = {(x, y) |g(x, y) ≤ t, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (11)

The PDF of T, i.e., f(t), is expressed as the derivative of the cumulative distribution
function of T, i.e., F(t) in Equation (10), with respect to t, as follows:

f (t) =
d
dt

F(t) (12)

The Leibniz integral rule shown below can be used to derive f(t) [6]

d
dt

∫ b(t)

a(t)
f (t, x)dx = f (t, b(t))· ∂

∂t
b(t)− f (t, a(t))· ∂

∂t
a(t) +

∫ b(t)

a(t)

∂

∂t
f (t, x)dx (13)

The following three subsections present the procedures applied to derive the PDFs
for the (1) AND logic, (2) OR logic and (3) OR logic with rare event approximation of two
independent random variables, X and Y.

2.1.1. AND Logic

A Boolean variable ZAND is defined as the result of the AND logic of two Boolean
variables, BX and BY, and a random variable TAND is defined for the probability of ZAND,
as follows:

ZAND = BX ∩ BY (14)

TAND = XY (15)

Then, the cumulative distribution function of TAND, i.e., FAND(t), is given by

FAND(t) =
∫

DAND

fX(x) fY(y)dydx =
∫ t

0

∫ 1

0
fX(x) fY(y)dydx+

∫ 1

t

∫ t
x

0
fX(x) fY(y)dydx

(16)
where DAND is given by Equation (17) and shown in Figure 1 when t equals 0.5.

DAND= {(x, y) |x ·y ≤ t, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (17)



Energies 2021, 14, 929 5 of 15

Figure 1. Region of the xy plane for the logical AND of two Boolean variables, BX and BY .

The PDF of TAND, i.e., fAND(t), can be derived as the derivative of the cumulative
distribution function FAND(t), expressed in Equation (16), as follows:

fAND(t) = d
dt FAND(t) = d

dt

∫ t
0

∫ 1
0 fX(x) fY(y)dydx+ d

dt

∫ 1
t

∫ t
x

0 fX(x) fY(y)dydx

= d
dt

∫ t
0 fX(x)[FY(1)−FY(0)]dx+ d

dt

∫ 1
t fX(x)

[
FY
( t

x
)
−FY(0)

]
dx

= f X(t)− f X(t)FY(1) +
∫ 1

t
∂
∂t fX(x)FY

( t
x
)
dx =

∫ 1
t

1
x fX(x) fY

( t
x
)
dx

(18)

It should be noted that FY(1) = 1, FY(0) = 0, and the Leibniz integral rule are
applied in Equation (18).

2.1.2. OR Logic

A Boolean variable ZOR is defined as the result of the OR logic of two Boolean variables,
BX and BY, and a random variable TOR is defined for the probability of ZOR, as follows:

ZOR = BX ∪ BY (19)

TOR = X + Y − XY (20)

Then, the cumulative distribution function of TOR, i.e., FOR(t), is given by

FOR(t) =
∫

DOR

fX(x) fY(y)dydx =
∫ t

0

∫ t−x
1−x

0
fX(x) fY(y)dydx (21)

where DOR is given by Equation (22) and shown in Figure 2 when t equals 0.5.

DOR= {(x, y) |x + y − x ·y ≤ t, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (22)
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Figure 2. Region of the xy plane for the logical OR of two Boolean variables, BX and BY .

The PDF of TOR, i.e., fOR(t), can be derived as the derivative of the cumulative
distribution function FOR(t), expressed in Equation (21), as follows:

fOR(t) = d
dt FOR(t) = d

dt

∫ t
0

∫ t−x
1−x

0 fX(x) fY(y)dydx = d
dt

∫ t
0 fX(x)

[
FY
( t−x

1−x
)
−FY(0)

]
dx

= f X(t)FY
( t−t

1−x
)
+
∫ t

0
∂
∂t fX(x)FY

( t−x
1−x
)
dx =

∫ t
0

1
1−x fX(x) fY

( t−x
1−x
)
dx

(23)
Similarly, FY(0) = 0, and the Leibniz integral rule are applied in Equation (23).

2.1.3. OR logic with Rare Event Approximation

In PSA, the Boolean expression for the top event is typically rearranged to the logical
OR of minimal cutsets. When the probabilities of events are sufficiently lower than 1,
rare event approximation is widely used in calculating the probability of the top event.
Therefore, the PDF for the OR logic with rare event approximation has practical importance.

For the Boolean variable ZOR for the result of the OR logic of two Boolean variables,
BX and BY, are given in Equation (19), and a random variable TOR,REA is defined for the
probability of ZOR with rare event approximation, as follows:

TOR,REA = X + Y (24)

Then, the cumulative distribution function of TOR,REA, i.e., FOR,REA(t), is given by

FOR,REA(t) =
∫

DOR,REA

fX(x) fY(y)dydx =
∫ t

0

∫ t−x

0
fX(x) fY(y)dydx (25)

where DOR,REA is given by Equation (26) and shown in Figure 3 when t equals 0.5.

DOR,REA= {(x, y) |x + y ≤ t, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (26)

The PDF of TOR,REA, i.e., fOR,REA(t), can be derived as the derivative of the cumulative
distribution function FOR,REA(t), expressed in Equation (25), as follows:

fOR,REA(t) = d
dt FOR,REA(t) = d

dt

∫ t
0

∫ t−x
0 fX(x) fY(y)dydx = d

dt

∫ t
0 fX(x)[FY(t− x)−FY(0)]dx

= f X(t)FY(t− t) +
∫ t

0
∂
∂t fX(x)FY(t− x)dx =

∫ t
0 fX(x) fY(t− x)dx

(27)
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Figure 3. Region of the xy plane for the logical OR of two Boolean variables, BX and BY , with rare
event approximation.

Similarly, FY(0) = 0, and Leibniz integral rule are applied in Equation (27). It is noted
that fOR,REA(t) is the convolution of fX(x) and fY(y).

2.2. Implementation of Analytic Solutions

As mention previously, it is possible to obtain the PDF for any event in a coherent
fault tree by repeatedly applying Equations (18), (23), or (27). The cumulative distribution
function for the event can be obtained by repeatedly applying Equation (16), (21), or (25).
A MATLABTM code is developed to implement the analytic solutions shown above and
the procedure for obtaining the PDF or the cumulative distribution function for the events
of interest.

It is often difficult to determine the PDF or cumulative distribution function in a closed
form, particularly when various distribution functions are associated with different ba-
sic events. Therefore, numerical integration is used when closed-form solutions for the
integration in analytic solutions are not available. In numerical integration, relative and
absolute tolerances are used for a trade-off between the accuracy and the computation time.
In Section 3, the absolute tolerance is set to 0, and the relative tolerance is set to 0.1%. This
is because the relative tolerance determines the accuracy of the numerical integration in
the case of small-event probabilities.

3. Application to an Example System
3.1. Example System and Fault Tree Model

Figure 4 shows an example auxiliary feedwater system (AFWS). This system provides
adequate feedwater from a condensate storage tank to a steam generator (SG) for the
continuous residual heat removal from the primary system when the main feedwater
system is unavailable. The AFWS comprises two pumps, a motor-driven pump, and
a turbine-driven pump. Even if one of the pumps fail, the system can still perform its
intended function because each pump has the capacity to provide enough feedwater to
the SG. This corresponds to the logical conjunction in a fault tree because the system is in
a failed state only when all the components are in the failed state.
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Figure 4. Example auxiliary feedwater system for a steam generator.

When a pump fails, the cause of the failure lies in one of the failure modes of the
pump. Generally, failure on demand and running failure are the two most significant
failure modes of a pump [12]. This corresponds to the logical disjunction in a fault tree
because each failure mode prevents the pump from performing its intended function. In the
case of a pump, a fail-to-start failure is one of the failures on demand and a fail-to-run
failure is one of the running failures. Accordingly, the Boolean expression for the top event
is given by

BTOP = (B A ∪ BB) ∩ (B C ∪ BD) (28)

where BA, BB, BC, BD, and BTOP are the Boolean variables for the four basic events (AFMPS-
P1A, AFMPR-P1A, AFTPS-P1C, AFTPR-P1C), and the top event (GAF-SG1) in Figure 5,
respectively. Figure 5 shows the fault tree for the example AFWS with two pumps and
their failure modes

Figure 5. Fault tree for the example auxiliary feedwater system.

3.2. Uncertainty Data, Application and Comparison with Monte Carlo Simulation Results

The model parameters of the unavailability are the probability of failure on demand
and the failure rate. For the PSA of nuclear power plants, various distributions have been
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used to model the uncertainties in the parameters. The lognormal distribution has been
widely used in many studies, such as [13]. Recent studies, such as [14], used the beta
distribution for the probability of failure on demand and gamma distribution for the failure
rate. Beta and gamma distributions have advantages over other distributions because they
yield good results when data follow binomial and Poisson distributions, respectively, and
are conjugate prior distributions in the Bayesian estimation of parameters.

Table 1 provides the industry-average data for fail-to-start failure and fail-to-run
failure of motor-driven pumps and turbine-driven pumps. The source of the data is [14].
For the fail-to-start failure, a beta distribution is used to model the uncertainty in the
probability of failure on demand. For the fail-to-run failure, a gamma distribution is used
to model the uncertainty in the failure rate. The mission time is assumed to be 24 h in
this example.

Table 1. Fail-to-start and fail-to-run data for motor-driven and turbine-driven pumps.

Failure Mode Distribution
Parameters

α β

Motor-driven pump fail-to-start Beta 0.909 6.175 × 102

Motor-driven pump fail-to-run Gamma 0.500 8.619 × 104

Turbine-driven pump fail-to-start Beta 0.414 5.976 × 101

Turbine-driven pump fail-to-run Gamma 0.500 6.803 × 103

For fail-to-run failures, the PDF for the unavailability of the event has the same proba-
bility distribution as that for the failure rate (see Appendix A). Therefore, for fail-to-run
failure events, AFMPR-P1A and AFTPR-P1C, the PDFs of the unavailability follow gamma
distributions, similarly to the PDFs for the failures rates provided in 0, as shown below:

fΛ(λ; α, β)dλ =
βα

Γ(α)
λα−1e−βλdλ (29)

f (u)du = f Λ
( u

t
)
d
( u

t
)
= βα

Γ(α)

( u
t
)α−1e−β u

t d
( u

t
)
=

(
β
t

)α

Γ(α) uα−1e−
β
t udu = f Λ

(
u; α, β

t

)
du (30)

Figure 6 shows the PDFs for four basic events in the example. The PDFs for the
two events (GAF-P1A and GAF-P1C) and the top event (GAF-SG1) can be derived using
the equations provided in Section 2 and shown in Figure 7. Figure 8 shows the proba-
bility distributions for the events in a semi-log scale, with logical relationships between
the events.

Monte Carlo simulations are performed with 1,000,000 samples. Simulations are
performed on the same set of minimal cutsets obtained for the mean values of basic
event probabilities [15]. Their results are compared with the analytic solutions, as shown
in Figures 6–8. The analytic solutions and Monte Carlo simulation results are in good
agreement.
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Figure 6. Probability density functions (PDFs) for basic events along with Monte Carlo simulation
result: (a) AFMPS-P1A (beta distribution); (b) AFMPR-P1A (gamma distribution); (c) AFTPS-P1C
(beta distribution); (d) AFTPR-P1C (gamma distribution).

Figure 7. Analytic solutions for the PDFs of (a) GAF-P1A; (b) GAF-P1C; (c) GAF-SG1 (top event),
along with Monte Carlo simulation results.
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Figure 8. Probability distribution in a semi-log scale with logical relationships between events and comparison with Monte
Carlo simulation results.

3.3. Discussions

Although a gamma distribution is a right-unbounded distribution, the domain of the
random variables for the unavailability is bounded by (0, 1). As a result, the integration
of the PDF from 1 to infinity is inevitably truncated. Table 2 lists the truncated values,
i.e., 1 − F(1), of the events. It is first noted that the truncated values are zero when
using beta distributions, AFTPS-P1C and AFMPS-P1A, because the beta distributions are
bounded by (0, 1). When gamma distributions are used, the truncated values are low
enough to justify the use of the right-unbounded distribution to describe the uncertainty
in the unavailability/probability. Similarly, the analytic solutions enable the analysts
to quantify the truncation errors due to the use of a right-unbounded distribution for
unavailability/probability in uncertainty analysis, which is hardly quantified with Monte
Carlo simulation.
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Table 2. Truncated values of events in the fault tree.

Events Truncated values

GAF-SG1 1.76 × 10–6

GAF-P1A 0

GAF-P1C 1.88 × 10–6

AFMPS-P1A 0

AFMPR-P1A 9.00 × 10–16

AFTPS-P1C 0

AFTPR-P1C 7.00 × 10–15

When the mean unavailability of the events is significantly lower than 1, the applica-
tion of rare event approximation is valid for the logical OR of the events. Figure 9 compares
the PDFs for the top event unavailability between the exact results calculated using Equa-
tion (23) and the rare event approximation made using Equation (27). The PDFs are in
good agreement. In 0, the maximum error is 1.39% when the unavailability is 1 × 10−3,
the rightmost point in the figure. Thus, the rare event approximation is found to provide a
reasonable approximation to the exact result, not only for the mean unavailability but also
for the PDF, that characterizes the uncertainty in the unavailability of the event. The use
of rare event approximation in uncertainty analysis with analytic solutions is expected to
significantly reduce the computational burden in calculating the PDFs of events in a fault
tree with limited errors.

Figure 9. Comparison of PDFs for the top event between exact results and rare event approximation.

In the case of lognormal distributions, there are many previous studies such as Fenton-
Wilkinson [16], Schwartz-Yeh [17], and El-Shanawany et al. [18], on finding the approximate
PDF of the unavailability of an event. However, there have been few discussions on theoret-
ical methods or approximations on PDFs when using probability distributions other than
lognormal distributions, or when using combinations of different probability distributions.
For example, there are few theoretical methods or approximation methods to determine
the PDFs when beta and gamma distributions are logically combined, as in GAF-P1A and
GAF-P1C in the example above, as well as in the case of their combination (GAF-SG1). The
importance of uncertainty analysis with beta and gamma distributions can be emphasized,
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with the recent trend in employing them for modeling the uncertainty of events owing to
the advantages mentioned above. The mathematical formulation and analytic solutions,
presented in Section 2, provide a theoretical foundation for the uncertainty analysis with
probability distributions other than lognormal distributions or a combination of probability
distributions. As beta and gamma distributions are widely adopted in uncertainty analysis
of PSA, further research on the combination of those distributions and their approximations
are expected on the theoretical foundations described in this paper.

4. Conclusions

Monte Carlo simulations are widely used for uncertainty analysis in PSA. Although
approximation approaches have been developed for specific probability distributions, such
as a lognormal distribution, few theoretical approaches have been proposed for general
probability distributions.

This study provides a mathematical formulation and analytic solutions for the uncer-
tainty analysis in PSA. Starting from the definitions of variables, mathematical equations
are derived to synthesize the PDFs for the logical AND, logical OR, and logical OR with
rare event approximation of two independent events. When there are more than two
events, the derived equations can be applied consecutively.

The effectiveness of the analytic solutions is demonstrated by applying them to an
example system. The PDFs synthesized with the analytic solutions are found to be in good
agreement with the Monte Carlo simulation results. Hence, the analytic solutions can be
used to validate Monte Carlo simulation results and explain those aspects that cannot
be done using other methods. For example, the analytic solutions can provide truncated
values when right-unbounded distributions, such as lognormal and gamma distributions,
are used to model the uncertainty in the unavailability of an event.

Thus far, there have been few discussions on theoretical methods or approximation
methods to determine the PDFs of such events when using probability distributions
other than lognormal distributions or when using combinations of various probability
distributions. Monte Carlo simulations seem to be the most widely used for such conditions.
The analytic solutions proposed herein provide a new method for performing uncertainty
analysis when using a combination of various probability distributions, e.g., a combination
of beta and gamma distributions, that has been widely used in PSA in recent times.

The theoretical approach for uncertainty analyses remains a basis for all other ap-
proaches, such as approximation methods and Monte Carlo simulations. Moreover, a the-
oretical approach provides deeper insights into the uncertainty analysis that cannot be
provided by approximation methods or Monte Carlo simulations. Although the theoret-
ical approach is computationally burdensome, we found that it has significant potential
and should be further investigated. The mathematical formulation and analytic solutions
provided in this study are expected to serve as a basis for future studies on theoretical
approaches for the uncertainty analysis in PSA.
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Appendix A

In the practice of PSA, two types of unavailability are widely considered for hard-
ware components: the probability of failure on demand for fail-to-start failures and the
probability of failure in performing intended functions under a specified mission time for
fail-to-run failures. For fail-to-start failures, the probability of failure on demand equals the
unavailability; hence, the PDF for the unavailability is the same as that for the probability
of failure on demand. For fail-to-run failures, it is shown below that the PDF for the un-
availability has the same probability distribution as that for the failure rate under specified
conditions.

When the random variable for the time to failure T is modeled using an exponential
distribution with a constant failure rate λ, the unavailability u due to the fail-to-run failures
as a function of the mission time t is given by

u = Pr[T ≤ t] = F(t) =
∫ t

0
λe−λτdτ = 1− e−λt (A1)

When λt is significantly lower than 1, Equation (28) can be approximated as

u = 1 − e−λt ≈ λt (A2)

The random variables Λ and U are defined for the failure rate λ and unavailability u,
as follows:

U = 1 − Λe−Λt ≈ Λt (A3)

The cumulative distribution function of U, i.e., FU(u), is given by

FU(u) =
∫ u

0 fU(u′)du′ = Pr[U ≤ u] ≈ Pr[Λt ≤ u]= Pr
[
Λ ≤ u

t
]
=
∫ u

t
0 fΛ(λ)dλ = FΛ

( u
t
)

(A4)

where fU(u) and fΛ(λ) are the PDFs for U and Λ, respectively, and FΛ(λ) is the cumulative
distribution function of Λ. The PDF of U, i.e., fU(u), can be derived as the derivative of the
cumulative distribution function FU(u), expressed in Equation (A1), as follows:

fU(u)du = dFU(u)
du du =

dFΛ( u
t )

d( u
t )

d( u
t )

du du = f Λ
( u

t
) 1

t du = f Λ
( u

t
)
d
( u

t
)
= f Λ(λ)dλ (A5)

Therefore, the PDF for the unavailability due to fail-to-run failures has the same proba-
bility distribution as that for the failure rate fΛ(λ) when the time to failure is exponentially
distributed and the product of the failure rate and mission time λt is significantly lower
than 1.
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of Probabilistic Safety Assessment (PSA) for Nuclear Power Plants; International Atomic Energy Agency: Vienna, Austria, 2001.
2. Winkler, R.L. Uncertainty in probabilistic risk assessment. Reliab. Eng. Syst. Saf. 1996, 54, 127–132. [CrossRef]
3. Apostolakis, G. The Concept of Probability in Safety Assessments of Technological Systems. Science 1990, 250, 1359–1364.

[CrossRef] [PubMed]
4. Apostolakis, G.E. Uncertainty in Probabilistic Safety Assessment. Nucl. Eng. Des. 1989, 115, 173–179. [CrossRef]
5. Cook, A.S.; Downs, T. Estimating Manufacturing Yield by Means of Jacobian of Transformation. IEE Proc. G (Electron. Circuits

Syst.) 1982, 129, 127–133. [CrossRef]
6. Papoulis, A.; Saunders, H. Probability, Random Variables and Stochastic Processes (2nd Edition). J. Vib. Acoust. 1989, 111, 123–125.

[CrossRef]
7. Ulmeanu, A.P. Analytical Method to Determine Uncertainty Propagation in Fault Trees by Means of Binary Decision Diagrams.

IEEE Trans. Reliab. 2012, 61, 84–94. [CrossRef]
8. Kaplan, S. On The Method of Discrete Probability Distributions in Risk and Reliability Calculations–Application to Seismic Risk

Assessment. Risk Anal. 1981, 1, 189–196. [CrossRef]

http://doi.org/10.1016/S0951-8320(96)00070-1
http://doi.org/10.1126/science.2255906
http://www.ncbi.nlm.nih.gov/pubmed/2255906
http://doi.org/10.1016/0029-5493(89)90268-9
http://doi.org/10.1049/ip-g-1.1982.0025
http://doi.org/10.1115/1.3269815
http://doi.org/10.1109/TR.2012.2182812
http://doi.org/10.1111/j.1539-6924.1981.tb01415.x


Energies 2021, 14, 929 15 of 15

9. Levy, L.L.; Moore, A.H. A Monte Carlo Technique for Obtaining System Reliability Confidence Limits from Component Test Data.
IEEE Trans. Reliab. 1967, R-16, 69–72. [CrossRef]

10. Jackson, P.S.; Hockenbury, R.W.; Yeater, M.L. Uncertainty Analysis of System Reliability and Availability Assessment.
Nucl. Eng. Des. 1982, 68, 5–29. [CrossRef]

11. Durga Rao, K.; Kushwaha, H.S.; Verma, A.K.; Srividya, A. Quantification of Epistemic and Aleatory Uncertainties in Level-1
Probabilistic Safety Assessment Studies. Reliab. Eng. Syst. Saf. 2007, 92, 947–956. [CrossRef]

12. Jung, W.D.; Lee, Y.H.; Hwang, M.J. Procedure for Conducting Probabilistic Safety Assessment: Level 1 Full Power Internal Event Analysis;
IAEA: Vienna, Austria, 2003.

13. Eide, S.A.; Chmielewski, S.V.; Swantz, T.D. Generic, Component Failure Data Base for Light Water and Liquid Sodium Reactor Pras;
Idaho National Laboratory (INL): Idaho Falls, ID, USA, 1990.

14. Eide, S.A.; Wierman, T.E.; Gentillon, C.D.; Rasmuson, D.M.; Atwood, C.L. Industry-Average Performance for Components and
Initiating Events at US Commercial Nuclear Power Plants; NUREG/CR-6928; Nuclear Regulatory Commission: Washington, DC,
USA, 2007.

15. Rauzy, A. Notes on Computational Uncertainties in Probabilistic Risk/Safety Assessment. Entropy 2018, 20, 162. [CrossRef]
[PubMed]

16. Fenton, L. The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems. IRE Trans. Commun. Syst. 1960,
8, 57–67. [CrossRef]

17. Schwartz, S.C.; Yeh, Y.S. On the Distribution Function and Moments of Power Sums with Log-Normal Components. Bell Syst.
Tech. J. 1982, 61, 1441–1462. [CrossRef]

18. El-Shanawany, A.B.; Ardron, K.H.; Walker, S.P. Lognormal Approximations of Fault Tree Uncertainty Distributions. Risk Anal.
2018, 38, 1576–1584. [CrossRef] [PubMed]

http://doi.org/10.1109/TR.1967.5217462
http://doi.org/10.1016/0029-5493(82)90037-1
http://doi.org/10.1016/j.ress.2006.07.002
http://doi.org/10.3390/e20030162
http://www.ncbi.nlm.nih.gov/pubmed/33265253
http://doi.org/10.1109/TCOM.1960.1097606
http://doi.org/10.1002/j.1538-7305.1982.tb04353.x
http://doi.org/10.1111/risa.12965
http://www.ncbi.nlm.nih.gov/pubmed/29377195

	Introduction 
	Analytic Solutions for Uncertainty Analysis 
	Mathematical Formulation and Analytic Solutions 
	AND Logic 
	OR Logic 
	OR logic with Rare Event Approximation 

	Implementation of Analytic Solutions 

	Application to an Example System 
	Example System and Fault Tree Model 
	Uncertainty Data, Application and Comparison with Monte Carlo Simulation Results 
	Discussions 

	Conclusions 
	
	References

