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Abstract: During the day, photovoltaic (PV) systems are exposed to different sunlight conditions in
addition to partial shading (PS). Accordingly, maximum power point tracking (MPPT) techniques
have become essential for PV systems to secure harvesting the maximum possible power from the PV
modules. In this paper, optimized control is performed through the application of relatively newly
developed optimization algorithms to PV systems under Partial Shading (PS) conditions. The initial
value of the duty cycle of the boost converter is optimized for maximizing the amount of power
extracted from the PV arrays. The emperor penguin optimizer (EPO) is proposed not only to optimize
the initial setting of duty cycle but to tune the gains of controllers used for the boost converter and the
grid-connected inverter of the PV system. In addition, the performance of the proposed system based
on the EPO algorithm is compared with another newly developed optimization technique based on
the cuttlefish algorithm (CFA). Moreover, particle swarm optimization (PSO) algorithm is used as
a reference algorithm to compare results with both EPO and CFA. PSO is chosen since it is an old,
well-tested, and effective algorithm. For the evaluation of performance of the proposed PV system
using the proposed algorithms under different PS conditions, results are recorded and introduced.

Keywords: photovoltaic; particle swarm optimization; cuttlefish algorithm; emperor penguin opti-
mizer; partial shading condition; duty cycle; maximum power point tracking

1. Introduction

Worldwide, the increased awareness of the drawbacks of fossil fuels raised up the
interest in developing renewable energy-based power plants. Lately, the drawbacks of
fossil power plants were proved to be a beyond developed and sustained industry. The
environment is highly harmed by fossil fuels through the enormous emissions of carbon
dioxide, global warming, depleted ozone, and more. That is why replacing fossil resources
by renewable energy resources has become a necessity in order to lessen these global
environmental difficulties. It is always preferable to use renewable energy resources since
they are ecological and accessible to everyone and everywhere.

Recently, the most popular and trendy renewable energy resources are wind and solar
energies due to their significant availability and easy set-up. Moreover, solar energy had a
lot of research interest globally since it depends on ever-lasting resource, which is the sun.
Moreover, because it is power electronic based, it is dependent on the speedy electronics
field development. Researchers are keen on continuously developing solar power plants,
to maximize its benefits as much as possible. Researchers are mainly challenged by the
conversion efficiency of PV and output power generated as it is required to keep it at
its predictable maximum value [1–3]. Therefore, several maximum power point tracking
(MPPT) approaches are proposed [1,4]. The most important part of PV’s control system is
MPPT controlling unit, where the maximum power point (MPP) is variable with the sun’s
irradiance which is changeable along the day.
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Various MPPT approaches were proposed in the past decade [5]. Perturb and observe
(P&O) is not only the most well-known and the most used method, but also the oldest
and most elementary method. However, with the growing interest in improving MPPT
techniques, P&O is shown to be the least effective approach. More functioning techniques
are recommended, such as incremental conductance (INC) method, constant voltage (CV)
method, hill climbing (HC) method, constant current (CC) method, and others [2]. Lastly,
INC is proved to be a relatively desirable technique since it is characterized by low complex-
ity and high tracking accuracy [5–15]. Various MPPT approaches are generally compared
and introduced in [6–18]. There are many challenges that face the process of MPPT, and
one of these major challenges is partial shading (PS). PS takes place when a part of the
PV array is shaded by a body or a cloud leading to a huge drop in the output power in
addition to a distortion in the power-voltage characteristics, as shown in Figure 1 [19],
which make PS quite an important issue for MPPT control.

Figure 1. Multiple peaked power–voltage (P–V) characteristics under the partial shading (PS) condition.

The distorted power–voltage characteristics result in multiple peaks on the curve.
Having multiple peaks means that there are several local maximum power points. This can
confuse the MPPT control unit in its search for the global MPP, where it may be trapped
in a local MPP region, not the global one. Consequently, the P&O approach is absolutely
ineffective in PS condition, while the INC method is more recommended. It is suggested
to numerically scan power–voltage characteristics so that it is easier and more accurate to
find the MPP. Several research works are introduced considering tracking the MPP for PV
systems under the PS condition.

Moreover, several MPPT approaches are applied to PS conditions, such as meta-
heuristics [20–25], fuzzy logic [26,27], numerical methods [28–31], modified conventional
methods [32–34], hardware-based methods [35–40], and more detailed MPPT approaches
are studied in [41,42]. Currently, the research work is more oriented towards optimization
techniques that are inspired from nature. Generally, most of the optimization algorithms
would reach an optimum solution in a relatively short time with minimum complexity. With
their continuous improvement in the last few years, a fitting solution is always expected.
The authors of [43] presented some of the nature-inspired optimization algorithms such
as cuckoo search algorithm, genetic algorithm, ant colony optimization, bat optimization,
particle swarm optimization, bee colony optimization, firefly optimization, and more.

Nearly all of the meta-heuristics are popular and well-known. All of them have mainly
the same flow cycle, as shown in Figure 2 [43], in addition to being employed in a lot of
applications and subjects [44]. General reviews for applying various optimization algo-
rithms for MPPT are presented in [45–47]. In this paper, the emperor penguin optimizers
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(EPO) algorithm is proposed to optimize the parameter of the boost converter used for
MPPT. In addition, the proposed EPO algorithm is utilized to optimize the gains of the PI
controller used for grid-connected inverter to regulate the DC-link voltage. The perfor-
mance of the proposed EPO algorithm is compared with the particle swarm optimization
(PSO) [32] and cuttlefish algorithm (CFA) under different PS patterns and dynamic changes
in irradiance levels.

Figure 2. Flow cycle of evolutionary optimization methods.

2. PV System under Study

The PV system undergoing PS is modeled using MATLAB/SIMULINK. This model is
represented in Figure 3 and it consists mainly of two PV arrays. Each is built up of 3 series
modules and 66 parallel-connected strings. The overall generation of both arrays is 120 KW.
The PS is modeled by fixing the input irradiance of the first PV array at its maximum value
(1000 W/m2), while the input irradiance of the second one is changing. A second order
amplifier (SOA) is utilized to process the duty cycle estimated by the MPPT unit for the
boost converter, as shown in Figure 4, to enhance the output power under PS condition
and to reduce oscillations. Additionally, the inverter’s voltage control unit is based on a PI
controller used to regulate the DC-link voltage as shown in Figure 5. The sampling time
is 100 µs. The paper presents optimization techniques to tune the controller’s parameters
encountered in red circles.

Figure 3. PV system under study with circled blocks under study.
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Figure 4. Controlled initial duty cycle included in the maximum power point tracking (MPPT) unit with the second order
amplifier (SOA) connected.

Figure 5. PI controller used in the voltage control unit.

3. Objective Function and Optimization Algorithms
3.1. Objective Function

This study is defined to be multi-constrained and single objected. It aims to tune the
initial settings of duty cycle of the boost converter, in addition to the gains of the second
order amplifier (SOA) and the gains of the PI controller used for the DC-link voltage
regulation. This tuning is performed to maximize the output power and energy of the
lumped PV arrays under PS conditions. The formulation of the different parameters is
described as follows:

According to [48], the initial duty cycle Dc is tuned under the constraints described in
Equation (1), where SOA includes two gains to be optimized, named DD and MT, which
are defined by the transfer function, T.F1, in Equation (2) [49]. The parameters of the SOA
are defined in Equation (3) [50]. Moreover, the transfer function of the PI controller used for
the DC-link voltage regulation, T.F2, is represented by Equation (4) [50,51]. The objective
function Obj1 required to be maximized which is the sum of the per unit power and energy
harvested from the PV arrays as given by Equation (5).

0.1 ≤ Dc ≤ 0.9, (1)

T.F1 =
1

s2 + DD.s + MT
, (2)

DD =
1

Ct
, and MT =

1
CtDt

, (3)

T.F2 = P +
I
s

, (4)
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Obj1 =
1

max.energy
×
∫ t

0
Ptot dt +

Ptot

max.power
, (5)

where

Dc—the initial setting of duty cycle of the DC booster.
Ct—the charging time of the amplifier (sec)
Dt—the discharging time of the amplifier (sec)
P—the proportional gain of the PI controller
I—the integral gain of the PI controller
Ptot—the total output power of the lumped arrays (W)
DD and MT—the gains used in SOA transfer function. They are the functions of the
charging and discharging times of the SOA (sec-2).

3.2. The Proposed Optimization Algorithm (EPO)

Two optimization algorithms are proposed in this paper. The first is the cuttlefish
algorithm (CFA), which is proved to be a very effective optimization algorithm [51,52].
The second proposed optimization algorithm used for solving the objective function of
(5) is the emperor penguin optimizer (EPO). The EPO is a new meta-heuristic algorithm
that was developed by Dhiman in 2018 [53]. The EPO algorithm was inspired by social
huddling behavior of emperor penguins. The original environment of emperor penguins is
the Antarctica continent and the temperature during winter may fall to a very low level,
which would make it very hard for emperor penguins to survive. That’s why emperor
penguins flock huddle in behavior that would help all individuals to keep their body
temperature in a quite suitable range for survival. Huddling behavior is confined to
emperor penguins only. It is dependable on many factors, such as temperature, distance,
and effective movers throughout the huddle. The EPO algorithm is based on all these
factors and more, where the temperature and the distance are emulated in the observer
and update equations, respectively. The EPO algorithm is tested for several optimization
problems and has proved its effectiveness. The main purpose of the emperor penguins
huddling is to maximize the ambient temperature in the huddle and conserve energy.
Therefore, the value of temperature T is dependent on the radius of the huddle polygon R
as follows:

T =

{
0 , if R > 1
1 , if R < 1

, (6)

The temperature profile T0 is a factor that is responsible for exploration and the
exploitation process. It is calculated as follows:

T0 = T − MI
CI − MI

, (7)

where

T0—the temperature profile all around the huddle
MI—the maximum number of iterations
CI—the current iteration.

After generating the huddle boundary, the distance between the emperor penguin
and the best obtained optimal solution D is computed as follows.

D = S(A).Pep(x)− C.P(x), (8)

where

S(A)—the social forces of emperor penguins.
P (x)—the current position vector of the emperor penguin
A, C—anti-collision factors between neighbors
Pep(x)—the vector of the best optimal solutions found.
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A and C are responsible for tuning the distance D, and they can be calculated from
equations:

C = rand1, (9)

A = M ×
(
T0 + Pg(ac)

)
× rand2 − T0, (10)

Pg(ac) = Pep(x)− P(x), (11)

where

M—the movement parameter that maintains a gap between search agents for collision
avoidance.
Pg (ac) defines the polygon grid accuracy by comparing the difference between emperor
penguins.

Note that S(A) is responsible for moving towards the direction of best optimal search
agent, and can be calculated from Equation (12), while the position is updated from
Equation (13).

S(A) =
(√

f.e−x/l − e−x
)2

, (12)

P(x + 1) = Pep(x)− A × D, (13)

where

f & l—control parameters for better exploration and exploitation.
P(x+1) represents the next updated position of the emperor penguin.

According to [53], the suggested values of the parameters used for the EPO algorithm
are given in Table 1. Figure 6 shows the flow chart of EPO algorithm, while the main steps
of performing EPO are as follows:

Step 1: set initial values for rand1, rand2, R, T, T0, A, C, S(A), M, f, and l.
Step 2: generate initial values for key parameters P(x), and calculate their corresponding
fitness values (objective function).
Step 3: define the initial best optimal solution from the calculated fitness.
Step 4: start the first iteration by calculating the new values of T0, S(A), Pg(ac), and A.
Step 5: calculate the value of D, and use it with best solution Pep(x) to calculate the new
updated solution P(x+1).
Step 6: determine the new best optimal solution and save it in Pep(x). Besides, save the
corresponding best fitness.
Step 7: check if the iterations have ended, if not return to Step 4 and repeat until the
maximum number of iterations is reached.
Step 8: observe the fitness array to determine the optimum fitness and display its corre-
sponding solution.

Table 1. Settings of parameters used for the emperor penguin optimizer (EPO) algorithm [53].

Parameter M Rand 1 Rand 2 f l

Minimum value
Set to 2

0 0 2 1.5

Maximum value 1 1 3 2
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Figure 6. Flow chart of EPO.

4. Results and Comparison

Three different PS patterns are considered. The irradiance of one PV array is set at
the maximum value of 1000 W/m2, while the irradiance of the second PV array is set
to a specific profile according to the case under study. The performance of the system
is evaluated under each PS pattern when the parameters are optimized using either the
PSO, the CFA or the proposed EPO algorithm. Five scenarios are presented. In the first
and second scenarios, only the initial value of the duty cycle Dc is optimized. The third
and fourth scenarios are dedicated to evaluate dynamic performance of the system under
changing the PS pattern. In these cases, the system is fully optimized, where the gains
of the PI controller and SOA are optimized in addition to the initial duty cycle. The last
scenario is dedicated to check the dynamic performance of the system under different
PS pattern than that used to obtain optimized parameters utilizing the proposed EPO
algorithm. Tables 2 and 3 show comparisons between the PSO, CFA, and EPO algorithms
used for optimizing Dc for case 1 and case 2, respectively. The shaded PV array used for
case 1 and case 2 is exposed to an irradiance of 800 W/m2 and 400 W/m2, respectively.
For case 1, Figure 7a shows the duty cycle. Meanwhile, Figure 7b shows the extracted
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power from the PV system using the default initial Dc compared to that optimized by CFA
and EPO algorithms. As should be expected, the duty cycle is inversely proportional to
the PV power. Figure 8a,b illustrates the current fed to grid and the DC-link voltage. It is
obvious from these results that using the optimized initial setting of the duty cycle obtained
from the proposed EPO algorithm improves the harvested PV power and consequently the
current fed to the grid. Additionally, the load current is increased with the decrease of duty
cycle as the PV power is increased, while the DC voltage is tightly regulated at a specific
level for all cases. Moreover, the tracking efficiency for the three algorithms is compared in
Figure 9. By observing it, the three algorithms reach very close results at the end of the last
iteration; despite the search region of each one which is detected randomly within fixed
pre-specified ranges for all of them. Figures 10 and 11 give comparisons of case study 2,
where the irradiance levels of the PV arrays are set to 1000 W/m2 and 400 W/m2. It is
clear from the results that the proposed EPO algorithm succeeds to set the initial setting of
the duty cycle to harvest more power from the PV arrays than that obtained from using
the CFA. It is worth mentioned that the DC-link voltage is tightly regulated regardless the
setting of the initial duty cycle since the parameters of the PI based voltage regulator is
kept constant during the tests. Figure 12 illustrates the tracking efficiency for case 2. It is
obvious that all algorithms converge to close optimum solutions despite their different
search region.

Table 2. Case 1 of partial shading condition when the irradiance of the second PV array is 800 w/m2.

Parameter Default PSO CFA EPO

DC 0.5 0.338629 0.3974 0.3394

Energy (KW. sec) 155.02 196.978 184.79 197.843

Max power (KW) 78.282 99.89 94.08 100.7

Max Power (%) 74.55 95.17 89.6 95.9

Table 3. Case 2 of partial shading condition when the irradiance of the second PV array is 400 w/m2.

Parameter Default PSO CFA EPO

DC 0.5 0.3289 0.4052 0.3599

Energy (KW. sec) 77.938 100.34 90.245 98.488

Max power (KW) 38.84 50.12 45.93 49.05

Max power (%) 76.15 98.27 90.05 96.17

Figure 7. Case 1: (a) the duty cycle; (b) the harvested PV power using EPO, cuttlefish algorithm (CFA), particle swarm
optimization (PSO), and default Dc.
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Figure 8. Case 1: (a) the grid current; (b) the DC-link voltage.

Figure 9. Tracking efficiency of case 1.

Figure 10. Case 2: (a) the duty cycle; (b) the harvested PV power using EPO, CFA, and default Dc.
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Figure 11. Case 2: (a) the grid current; (b) the DC-link voltage.

Figure 12. Tracking efficiency of case 2.

In the first two cases, static PS patterns are considered. Practically, this may occur if
the PV array is installed near a fixed body, which may block the sunlight during certain
period of the day. Despite it can rarely happen, these cases are considered to analyze the
response of the system to the change in the initial setting of the duty cycle even in static
mode. Case study 3 is dedicated to study the performance of the proposed PV system
under dynamic PS pattern, shown in Figure 13a, where the irradiance of the shaded array
is changed from 1000 W/m2 to 800 W/m2 to 400 W/m2 to 800 W/m2 to 1000 W/m2.
These dynamic changes require that all the control parameters such as PI and SOA gains
beside initial Dc value to be optimized. Results are recorded in Table 4 and optimized
parameter values are given in Table 5. Moreover, the time needed for each algorithm—PSO,
CFA, and EPO—to find the best solution is presented in Table 4. While the PSO takes the
longest time to reach optimum setting, the EPO shows a little improvement compared
to the CFA. Figure 13b shows the duty cycle, while Figure 13c illustrates the harvested
PV power using the default Dc, PSO-optimized, CFA-optimized, and EPO-optimized
parameters. This result reveals that using the optimized parameters of the proposed EPO
algorithm results in more accurate operation of the MPPT compared to the CFA even
under dynamic PS conditions. It is observed that PSO results are quite divergent to that
of EPO. Figure 14a indicates that using the PSO algorithm results in severe oscillations
in the grid current during transition from mode to another. Consequently, the DC link
voltage may experience a severe overshoot as illustrated in Figure 14b. However, using the
proposed EPO algorithm results in the best performance compared to the other techniques.
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Despite the PSO results in slightly higher power and energy harvesting than the EPO, its
corresponding grid current and DC voltage are not acceptable. Figure 15 illustrates the
tracking efficiency of case 3 and shows how close the solutions of EPO and PSO at the end
of last iteration.

Figure 13. Case 3: (a) the irradiance profile; (b) the duty cycle; (c) the harvested PV power using EPO, CFA, PSO, and
default parameters.

Figure 14. Case 3: (a) the grid current; (b) the DC-link voltage.

Table 4. Case 3 of dynamic PS pattern.

Parameter Default PSO CFA EPO

DC 0.5 0.333 0.3638 0.3537

Energy (KW. sec) 139.86 179.3 173.07 173.75

Max power (KW) 97.75 121.5 119.91 120.66

Max power (%) 79.4 98.78 97.48 98.09

Consumed time (sec.) - 60.45 59.31 58.98
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Table 5. Optimized values of parameters.

Parameter PSO CFA EPO

Kp 10 8.1624 3.408

Ki 811.87 721.3269 433.7475

DD 96.77 112.9311 149.1025

MT 138.063 184.1047 211.7289

Figure 15. Tracking efficiency of case 3.

Case 4 is dedicated to evaluate the proposed objective function. The irradiance profile
is the same as in case 3. However, a comparison is made between two objective functions
given in Table 6. The first one obj1 is given in Equation (5). The second objective function
Obj2 given in Equation (14), where the optimization process is focused only on maximizing
power value, without taking into account the harvested energy. Figures 16 and 17 present
the results of this case. It is obvious that eliminating the energy term from the objective
function deteriorate the dynamic system performance. Using the optimized parameters,
when the energy term is considered in the objective function, results in fast dynamic
response without oscillations.

Obj2 =
Ptot

max.power
. (14)

Figure 16. Case 4: (a) the irradiance profile; (b) the duty cycle; (c) the harvested PV power using Obj1 and Obj2 by EPO.
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Figure 17. Case 4: (a) the grid current; (b) the DC-link voltage.

Table 6. Two objective cases.

Parameter Obj1 Obj2

DC 0.3537 0.3489

Kp 3.408 0.3774

Ki 433.7475 59.6189

DD 149.1025 142.7446

MT 211.7289 75.5418

The last case is dedicated to check the robustness of using the optimized parameters
using the proposed EPO algorithm under a PS profile different than used in the optimiza-
tion process. The irradiance at the second PV array is set to a dynamic profile shown in
Figure 18a, where it is set at 300 W/m2, then it is abruptly raised to 600 W/m2, then to
900 W/m2, and it falls again in reverse manner. Figure 18b illustrates the duty cycle. A
comparison is made for the harvested power between the optimized initial duty cycle
found by EPO and the default value in Figure 18c. Furthermore, the grid current and the
DC-link voltage are shown in Figure 19a,b, respectively. It is obvious from these results
that using the optimized parameters obtained from the proposed EPO algorithm improve
the harvested PV power and consequently the current fed to the grid.

Figure 18. The robustness test applied to the system: (a) the irradiance profile; (b) the duty cycle; (c) the harvested PV
power using EPO, and default Dc.
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Figure 19. The robustness test applied to the system: (a) the grid current; (b) the DC-link voltage.

5. Conclusions

The paper shows that optimizing the initial setting of the duty cycle is quite an effective
way of handling the drawbacks of partial shading on PV systems. However, under dynamic
partial shading patterns, it is preferable to fully optimize the PV system by tuning the gains
of the PI controller used for the DC-link voltage regulation in addition to the duty cycle
and SOA gains used for the boost converter to guarantee accurate performance. The EPO
algorithm proved its effectiveness as a new meta-heuristic technique used for optimizing
the system parameters. The EPO algorithm is quite easy to implement and its mathematical
burden is lower than that of the CFA. Moreover, the results show that considering the
energy term in the objective function results in faster response time without oscillations
compared to objective function based only on the harvested power. Furthermore, testing
the system assured its robustness to different dynamic changes in irradiance.
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