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Abstract: The conversion of the electrical energy into the mechanical is usually realized by a motor,
power electronics and cascade control. The relative stability (Θ-stability), i.e., the displacement of its
eigenvalues of this system is analyzed for a drive with a BLDC motor. The influence of changing
the basic parameters of the motor and power supply system on the drive operation is considered.
4th order closed-loop transfer-function of the cascade control is presented, where boundaries of
the transfer-function coefficients are used. The cascade system which uncertainty of the resistance,
inductance, flux and gain parameters is analyzed. Theoretical calculations for the cascade control,
simulations and laboratory tests are included in the article.

Keywords: energy conversion; BLDC motor; cascade control; PI controller; relative stability; Kharitonov
theorem

1. Introduction

Typical uncertainty control problems are presented for one feedback loop, but this
paper presents uncertainty analysis for two feedback loops in the cascade control system.
This article describes the change in the eigenvalue placement when the parameters of the
mathematical model are changed (are uncertain).

Mathematical model parameters in every plant are varying when it works, so they
are uncertain. Additionally, the parameters identification method are not perfect, so
model parameters are uncertain also. This, uncertainty analysis is very important in every
automatic control system. Uncertainty in theory leads to the following methods:

• Classical Nyquist criterion which leads to gain and phase margin [1,2],
• Hardy space (H∞) analysis and synthesis [2,3],
• Kharitonov theorem [4,5],
• relative stability [6–8]

In this paper Kharitonov and relative stability are used to cascade control of Brushless
Direct Current (BLDC) motor. The motor model is similar to synchronus (with and without
permanent magnets), separately-excited DC and induction motor [9]. The closed-loop
system eigenvalues for nominal transfer-function parameters of a plant are in certain sector
in Gauss’s plane, but if parameters of a plant are uncertain, then sector will be larger—it is
relative stability.

The paper presents model of the motor and the cascade system with uncertainty of the
resistance, inductance, flux and gain parameters. Moreover, relative stability is analized,
thus Kharitonov and Θ-stability theory is used.

Article presents:

• relative stability theory which is more stringent than asymptotic stability [4,6–8,10],
• model of BLDC motor with power converter,
• uncertainty of model parameters,
• cascade control system, where transfer-function of the closed-loop system is analyzed,

this 4th order function is the basis of Θ-stability analysis in the paper,
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• the boundaries of the transfer-function coefficients,
• relative stability analysis of the uncertainty closed-loop cascade control,
• some experimental results of the BLDC motor speed control.

The asymptotic stability testing, but not relative stability, for electric drives is used
among other papers [11–16].

2. Idea of Relative Stability and Generalization of Routh Theorem

The theory and method for testing relative stability (θ-stability) is described in this
section. θ-stability [6] of linear feedback system is described by angle θ between imaginary
axis Im and sector’s band (Figure 1a). Sector Sθ determination for control system poles
leads to minimal value of relative damping factor ξ, therefore overshoot of step response.

A development method for study stability from [10] is article [6], where has been
presented another approach. The linear time-invariant dynamic control system is relatively
θ-stability, if all roots of characteristic equation are located inside specified area (θ angle or
damping coefficient ξ). In literature [4], this area called Sθ .
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Figure 1. θ-stability in term generalization of Routh theorem: (a) s-plane (b) ω-plane

For characteristic polynomial M(s), which can be written in a short form:

M(s) =
n

∑
k=0

aksk = 0 (1)

where coefficients ak have real value, and coefficient an > 0.
If a control system is relatively stable then relative-damping coefficient ξ is greater

than the smallest, real relative-damping coefficient results from polynomial coefficient (1):

s = ω0ejΨ = −ξω0 + jω0

√
1− ξ2

ξ = − cos(Ψ) = const
(2)

where: 0 ≤ ξ ≤ 1 and ω0 is natural undamping frequency.
For value ξ=0 control system described by (1) is stable, because Sθ area, contained all

left-half complex variable s (Figure 1). Make substitution as follows:

s = ωejθ = ωej(Ψ− π
2 ) (3)

to (1) received complex polynomial of the variable ω in the form:

M1(ω) =
n

∑
k=0

akejkθωk (4)

The roots of (1) are located from left side of straight line l1 in s-plane (Figure 1a), if all
roots of complex polynomial (4) are inside the left-half ω variable (Figure 1b).
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On the other hand, applying substitution:

s = ωe−jθ = ωe−j(Ψ− π
2 ) (5)

to (1) we can receive the complex polynomial:

M2(ω) =
n

∑
k=0

ake−jkθωk (6)

The roots of real polynomial (1) are located on the left side of straight line l2 in s-plane,
if all roots of after substitution (6) are inside the left-half ω variable (Figure 1b).

A complex polynomial (4) and (6) are obtained:

M1(ω) =
n

∑
k=0

akejkθωk =
n

∑
k=0

(bk + jck)ω
k (7)

M2(ω) =
n

∑
k=0

ake−jkθωk =
n

∑
k=0

(bk − jck)ω
k (8)

where: bk and ck are coefficients in the following form:

bk = akcos(kΘ)

ck = aksin(kΘ)
(9)

where: k = 0, 1, 2, . . . , n
Polynomial (1), whose roots lie in Sθ area, is relatively θ-stable if and only if M1(ω)

or M2(ω) are Hurwitz polynomial.
To check, do a polynomials M1(ω) or M2(ω), which have complex coefficients, have

all roots with negative real parts, can apply generalization of the Hurwitz criterion, which
was discussed in [10], so the Routh criterion generalization can be used, too. The roots of
both polynomials (4) and (6) have complex roots, which do not conjugate complex pairs.
While roots of M1(ω) are conjugate with correspodning roots of with M2(ω).

In order to study only θ-stability generalization of the Routh criterion, it is necessary
to build a modified Routh array, which has real coefficient.

Given polynomials (7) and (8) done multiply both polynomials in order to find real
coefficients. Thus, the following polynomial is obtained:

D(ω) = M1(ω) ·M2(ω) =
2n

∑
i=0

diω
i (10)

where: di are real coefficients:

d0 = b2
0 + c2

0

d1 = 2(b0b1 + c0c1)

d2 = b2
1 + c2

1 + 2(b0b2 + c0c2)

d2 = 2(b1b2 + c1c2) + 2(b0b3 + c0c3) (11)
...

d2n−1 = 2(bn−1bn + cn−1cn)

d2n = b2
n + c2

n

Using (9), the following relationships are obtained:

b2
i + c2

i = a2
i , bibj + cicj = aiaj cos[(j− i)θ] (12)
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After substituting (12) to (11) the coefficients di of polynomial D(ω) are in the form:

d0 = a2
0

d1 = 2a0a1cosθ

d2 = a2
1 + 2a0a2cos(2θ)

d3 = 2a1a2cos(θ) + 2a0a3cos(3θ) (13)
...

d2n−1 = 2a2n−1ancosθ

d2n = a2
n

Thus, the Routh array has 2n + 1 rows:

ω2n | d2n d2n−2 · · · d2 d0

ω2n−1 | 2nd2n (2n− 2)d2n−2 · · · 2d2

· | · · ·
· | · · · (14)

· | · · ·
ω0 | d0

Condition of the θ-stability, using the generalization Routh criterion, is no change of
sequence sign:

d2n, 2nd2n, . . . , d0 (15)

in the first column of the Routh array (14).

3. Mathemathical Model of BLDC Motor

The Figure 2 shows diagram of a BLDC motor supplies by a voltage source inverter.

2

Ud

2

I

isA

T1 T3 T5

T6T4T2
Ud

isC

Rs

Ls

eC

eA

eB

Ls

Rs

Ls

Rs

isB

usC
usB

usA

Figure 2. Diagram of a BLDC motor supplies by a voltage source inverter.

The mathematical model of BLDC motor is in the following form [17]:usA

usB

usC

 =

Ls − Lµ 0 0
0 Ls − Lµ 0
0 0 Ls − Lµ

disA /dt
disB /dt
disC /dt

+

Rs 0 0
0 Rs 0
0 0 Rs

isA

isB

isC

+

eA
eB
eC

 (16)

where Lµ is mutual inductance between stator coils.
Considering the principle of the motor control (at any moment, the current flows

through two stator windings) which result from the design, it is possible to show (present
courses of) currents and electromotive forces as in Figure 3, where α is the position of
the rotor.
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Figure 3. The current (- - -) and electromotive forces (—) of the motor.

At any time of the control, the current flows through the two stator windings, thus it
is assumed:

R = 2RS, L = 2(LS − Lµ) (17)

The transistors of voltage source inverter (Figure 2) are controlled by the pulse width
modulation (PWM) method, with modulation factor d = 0÷ 1, so U(t) = dUd.

Finally, the differential equations can be written:

U(t) = RI(t) + ψeω(t) + L
dI(t)

dt

J
dω(t)

dt
= Me(t)−Mm(t)

Me(t) = ψe I(t)

E(t) = ψeω(t)

(18)

where E is back EMF of the two windings, J is moment of inertia, ψe is permanent magnets
flux, Me is electromagnetic torque, Mm is a load torque.

4. Uncertainty of Model Parameters

The BLDC motor considered in the paper is characterized by a model error, which is
due to the uncertainty of the parameters. These errors result from: parameters identification,
the conditions and nature of the motor operation.

One of the parameters is the stator windings resistance. This value, apart from
the identification errors, changes as the motor temperature increases during operation,
according to the relation:

R = RT0 [1 + α(Tb − T0)] lub R = RTbN(1 + α∆T) (19)

where:
T0 = 293 K⇒ 20 ◦C,
Tb—operating temperature,
TbN—rated operating motor temperature, depend on the insulation class,
α—temperature coefficient of resistance in Cu α = 4 · 10−3 1

K .
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Another parameter that affects the model’s uncertainty is the moment of inertia J,
which, in extreme cases can change during operation. For example, a sheet metal reeler.
The article omits changes to this parameter.

The inductance of motor windings, which is defined as the ratio of the flux ψ to the
current I also contributes to the mathematical model error. In the initial start-up flux
and current values change so that their ratio is constant. However, in the further stage
of start-up, the flux saturates, while the current arises, which causes the L inductance
to decrease.

The above parameters have a particular impact on the values of time constants:

- T = L
R , where T is electromagnetic time-constant,

- B = J R
ψ2

e
, where B is electromechanical time-constant,

that directly affect the nature of the drive operation.

5. BLDC Motor—Speed Control System

Angular speed of the BLDC motor is controlled by using a cascade control structure,
where the control of the inverter transistors depends on the current position of the rotor
(feedback Kα). In this type of cascade control, the motor current is usually measured in the
intermediate circuit of the inverter, the position of the rotor is measured by the Hall sensors
placed on the motor stator, and a incremental encoders are used to measure accurate
angular speed.

The control structure shown in Figure 4 consists of a master controller (angular speed
control) and the slave controller that is responsible for controlling the electromagnetic
torque or quantity proportional to it. In direct current drives, the quantity proportional
to the electric torque is the current which is defined as: Me = ψe I. The system works in a
closed-loop, so that the gains of measuring are also included:

• Y is the gain of the current measuring,
• KT is the gain of the angular speed measurement ,
• Kα is the feedback path, measuring the current position of the rotor.

The block diagram of the BLDC drive (Figure 5) was determined from the mathemati-
cal model (18), from the diagram in Figure 4 and the inverter gain Kp.

PWM Inverter
BLDC

motor--

SPEED 

CONTROLLER

CURRENT

CONTROLLER

K �t ref

KR�

KR�

TR�

1

s

Iref
*

uz0

Iref

KRi

KRi

TRi

1

s

Mm

K

Y

K

Us

�

�

α

Figure 4. Cascade control of BLDC drive.
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��

kE

Y

- -

KT

TRs+1
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KR

-

Figure 5. Block diagram of the control system for a BLDC motor drive.
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The PI current controller assumes the form:

GRI(s) = KR
TRs + 1

TRs
=

KRTRs + KR
TRs

=
ms + 1

Vs
(20)

and the PI speed controller:

GRω(s) = Kω
Tωs + 1

Tωs
(21)

Thus, closed-loop transfer-function is equal:

Gz(s) =

(
Kω

Tωs+1
Tωs

)( BKpm
R s+

BKp
R

BTVs2+
(

BV+
BKpmY

R

)
s+
( BKpY

R +V
)
)

kT
1
Js

1 + KT

(
Kω

Tωs+1
Tωs

)( BKpm
R s+

BKp
R

BTVs2+
(

BV+
BKpmY

R

)
s+
( BKpY

R +V
)
)

kT
1
Js

(22)

which leads to:

Gz(s) =
b2s2 + b1s + b0

a4s4 + a3s3 + a2s2 + a1s + a0
(23)

where:

b2 = KωTωkTKpm
1
R

b1 = KωTωkTKp
1
R
+ KωkTKpm

1
R

b0 = KωkTKp
1
R

a4 = Tω JTV

a3 = Tω JV + Tω JKpmY
1
R

a2 = Tω JKpY
1
R
+ KωTωkTKtKpm

1
R
+ TωV

k2
E

R

a1 = KωTωkTKtKp
1
R
+ KωkTKtKpm

1
R

a0 = KωkTKtKp
1
R

(24)

The article considers the uncertainty of the following parameters: Kp, L, R, ψe. By
applying the parameter limits (lower or upper) for the denominator coefficients of the
closed-system transfer-function, an interval polynomial is obtained in the form:

M(s) = [a4, a4]s4 + [a3, a3]s3 + [a2, a2]s2 + [a1, a1]s + [a0, a0] (25)

where: an, an are the lower and upper ranges of coefficients (24) and an > 0. Their values
are determined according to the following approach:

• boundary coefficient a4 at s4:

a4 = Tω JV Lmin
Rmax

a4 = Tω JV Lmax
Rmin

• boundary coefficient a3 at s3:

a3 = Tω JV + Tω JKpmin mY 1
Rmax

a3 = Tω JV + Tω JKpmax mY 1
Rmin
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• boundary coefficient a2 at s2:

a2 = Tω JKpminY 1
Rmax

+ KωTωkTmin KtKpmin m 1
Rmax

+ TωV
k2

Emin
Rmax

a2 = Tω JKpmax Y 1
Rmin

+ KωTωkTmax KtKpmax m 1
Rmin

+ TωV
k2

Emax
Rmin

• boundary coefficient a1 at s:

a1 = KωTωkTmin KtKpmin
1

Rmax
+ KωkTmin KtKpmin m 1

Rmax

a1 = KωTωkTmax KtKpmax
1

Rmin
+ KωkTmax KtKpmax m 1

Rmin

• boundary coefficient a0:

a0 = KωkTmin KtKpmin
1

Rmax

a0 = KωkTmax KtKpmax
1

Rmin

6. Uncertainly Parameters of BLDC Drive

The BLDC motor drive with the following rated parameters is considered:

• Rs = 5.25 [Ω]—single-phase resistance,
• Ls = 0.46 [mH]—single-phase inductance,
• E = 2.62 [ V

1000
obr
min ]—electromotive force,

• kT = 24.9 [ mNm
A ]—torque constant,

• kE = 24.9 [ mNm
A ]—emf constant,

• J = 9.9 · 10−7 [kgm2]—moment of inertia.

The ranges of the parameters uncertainty for the tests according following forms:

• R ∈ [0.5RN , 1.1RN ]⇒ R ∈ [5.25 Ω, 11.55 Ω]
• L ∈ [0.7LN , 1.1LN ]⇒ L ∈ [0.644 mH, 1.012 mH]

• Kp ∈ [0.95KpN , 1.3KpN ]⇒ Kp ∈ [1.996 V
V , 2.7313 V

V ]

• Ψe ∈ [0.85ΨeN , ΨeN ]⇒ Ψe ∈
[
0.0102 Vs

rad , 0.012 Vs
rad

]
Thus, the interval polynomial coefficients are:

• a4 ∈
[
2.7174 · 10−14, 9.3943 · 10−14]

• a3 ∈
[
4.9362 · 10−10, 5.0621 · 10−10]

• a2 ∈
[
8.1549 · 10−8, 2.4617 · 10−7]

• a1 ∈
[
7.1677 · 10−6, 2.5386 · 10−5]

• a0 ∈
[
3.5682 · 10−4, 1.3 · 10−3]

If the current controller (20) parameters are:

m = 0.0879 · 10−3, V = 0.0123 (26)

and for velocity controller (21):

Kω = 8.9474, Tω = 0.02 (27)

This rated closed-loop transfer-function (23) is:

GN(s) =
7.87 · 10−8s2 + 8.998 · 10−4s + 0.04479

4.27 · 10−14s4 + 4.946 · 10−10s3 + 9.807 · 10−8s2 + 9.764 · 10−6s + 4.861 · 10−4 (28)

The obtained transfer-function GN(s), more precisely the characteristic polynomial,
is subjected to algebraic studies of the relative θ -stability and the value of the relative
damping factor is ξ = 0.5, which corresponds to the angle θ = 30◦. Upper values determine
the boundary sector of relative stability (Figure 6), “to which the results of changes of
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individual parameter values will refer”. to which there will be referred the results of the
particular parameter value changes.
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Figure 6. Sector of relative θ-stability at rated drive parameters.

6.1. Interval of the Stator Resistance

The first uncertain parameter is the resistance of the motor stator, which is in the range:

R ∈ [0.5RN , 1.1RN ]

Applying the minimum resistance value (Rmin) to the transfer-function coefficients (23)
equation can be written:

GRmin(s) =
1.574 · 10−7s2 + 1.8 · 10−3s + 0.08958

8.54 · 10−14s4 + 5.019 · 10−10s3 + 1.96 · 10−7s2 + 1.95 · 10−5s + 9.72 · 10−4 (29)

Analyzing the denominator of transfer-function (29), we get the relative damping
factor ξ = 0.693, corresponding to the angle θ = 43.87◦. On the other hand, if we use the
maximum value of resistance (Rmax) to the transfer-function coefficients (23), we obtain
the transfer-function of a closed circuit in the form:

GRmax(s) =
7.155 · 10−8s2 + 8.18 · 10−4s + 0.04072

3.882 · 10−14s4 + 4.94 · 10−10s3 + 8.92 · 10−8s2 + 8.88 · 10−6s + 4.42 · 10−4 (30)

where dumping factor ξ = 0.4524 and angle θ = 26.90◦.
The Figure 7 shows sectors of relative stability determined by characteristic polynomial

roots, for different resistance values.

Im

Re

Figure 7. Sectors of relative θ-stability for different stator resistance values.
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After sector analysis with disturbed parameters and referring them to the nominal sec-
tor the system is relative θ-stable for a resistance lower than the nominal one (Rmin < RN),
because this sector is located inside the nominal sector θN . When the resistance reaches
the maximum value of (Rmax), study object will lose relative stability because θRmax sector
is located outside the nominal sector (all roots aren’t inside the θRN sector). Thus, for
R = Rmax the system has greater overshoot and oscillations during start-up than for rated
parameters. On the other hand, for the R = Rmin the system has the smallest overshoot,
which is confirmed by the relative damping factor ξ.

The simulation results (in Matlab environment) obtained for angular velocity (Figure 8)
and current of the inverter (Figure 9) confirm θ-stability analysis.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
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n for R=R
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n for R=0.5R
N
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t [s]

390
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 [

rp
m

]

Figure 8. Speed waveforms during start-up with disturbed stator resistance parameters.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

-0.2

0

0.2

0.4

0.6

0.8

I 
[A

]

I for R=R
N

I for R=0.5R
N

I for R=1.1R
N

Figure 9. Current waveforms during start-up with disturbed stator resistance parameters.

These results confirm validity of the statements regarding relative damping factor
ξ, whose value represents the overshoot value in the real system. Each waveform, for
a resistance value of Rmin = 5.25 Ω, or ξ = 0.693, has the lowest overshoot, and for a
resistance value of Rmax = 11.55 Ω, or ξ = 0.4524, has the highest overshoot.

Thus, the statements of the relative damping factor ξ, whose the value corresponds to
the overshoot in the real system, are confirmed (Figures 8 and 9).

6.2. Interval of the Inductance

The range of inductance variation is:

L ∈ [0.7LN , 1.1LN ]
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thus, transfer-function for Lmin and Lmax are in the following forms:

GLmin(s) =
7.87 · 10−8s2 + 8.998 · 10−4s + 0.04479

2.989 · 10−14s4 + 4.95 · 10−10s3 + 9.81 · 10−8s2 + 9.764 · 10−6s + 4.86 · 10−4 (31)

GLmax(s) =
7.87 · 10−8s2 + 8.998 · 10−4s + 0.04479

4.697 · 10−14s4 + 4.95 · 10−10s3 + 9.81 · 10−8s2 + 9.764 · 10−6s + 4.86 · 10−4 (32)

After analysing above transfer-functions, we get:

• for (28): θ = 30◦,
• for (31): θ = 29.95◦,
• for (32): θ = 30.013◦.

So θ-stability is always fulfilled and the simulation studies confirmed above results
and conclusions.

6.3. Interval of Inverter Gain

The range of variability inverter parameter Kp is determined by the voltage on capaci-
tor in DC circuit:

Kp ∈ [0.95KpN , 1.3KpN ]

where transfer-function (23) for (Kpmin) assumes form:

GKpmin(s) =
7.477 · 10−8s2 + 8.548 · 10−4s + 0.04255

4.27 · 10−14s4 + 4.94 · 10−10s3 + 9.39 · 10−8s2 + 9.276 · 10−6s + 4.62 · 10−4 (33)

Analysis of the denominator (33) gives the relative damping factor ξ = 0.4785 correspond-
ing to the angle θ = 28.59◦.

Applying (Kpmax) substitution, transfer-funtcion (23) is in the following form:

GKpmax (s) =
1.023 · 10−7s2 + 1.17 · 10−3s + 0.05823

4.27 · 10−14s4 + 4.97 · 10−10s3 + 1.23 · 10−7s2 + 1.269 · 10−5s + 6.32 · 10−4 (34)

where for (Kpmax) damping factor eqauls ξ = 0.6130 and angle θ = 37.81◦.
Figure 10 shows relative stability sectors determined by the roots of characteristic

polynomials for different values of the inverter gain Kp.

Im

Re

Figure 10. Sectors of relative θ-stability for different gain inverter values Kp.

Analysis of the received sectors with disturbed parameters and reference to the nom-
inal sector, shows that the system is relative θ-unstable for gain value less than nominal
(Kpmin < KpN), because this sector is located outside of the nominal sector. In second case
the gain value is Kpmax and the system is relative stable because the sector θKpmax is within
the nominal sector. The simulations (Figure 11) confirm the studies results. For Kpmax, the
control system has the lowest overshoot compared to the speed waveforms at rated and
minimum Kp gain value, which is presented in Figure 11.
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Figure 11. Speed waveforms during start-up with disturbed gain inverter parameters.

6.4. Interval of the Flux Linkage

The last parameter tested is flux linkage ψe, which takes limit values in the range:

ψe ∈ [0.85ΨeN , ΨeN ]

and gets a transfer-function for ψmin:

Gψmin(s) =
6.69 · 10−8s2 + 7.648 · 10−4s + 0.03807

4.27 · 10−14s4 + 4.95 · 10−10s3 + 9.387 · 10−8s2 + 8.3 · 10−6s + 4.132 · 10−4 (35)

According to the analysis of the characteristic polynomial (35), the result is ξ = 0.4744
and θ = 28.32◦. This polynomial compared to the characteristic transfer-function polyno-
mial (28) is relative θ-unstable (Figure 12).

Im

Re

��n=��max=30
o

��min=28.32
o

Figure 12. Sectors of relative θ-stability for different flux values.

The transitions of angular speed, shown in the Figure 13, based on the cascade control
structure (Section 5) confirms that the system is θ-unstable for transfer-function (35).
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Figure 13. Speed waveforms during start-up with disturbed flux parameters.

7. Kharitonov Theorem

One of the most popular methods of testing uncertain dynamic systems is the Kharitonov
theorem. Unfortunately, successive maximum and minimum values of coefficients in the
interval characteristic equations are often mutually exclusive (in one equation). Therefore,
the theorem very quickly allows to determine asymptotic or relative stability, but the results
are approximate.

The interval polynomial is in the form [18]:

P(s) = [an, an]sn + [an−1, an−1]sn−1 + · · ·+ [a1, a1]s + [a0, a0] (36)

where [ai, ai] are a range of uncertain polynomial coefficients and an > 0.

Theorem 1 (Kharitonov Theorem). Every polynomial P(s) from the polynomial family (36) is
stable if and only if the following four Kharitonov polynomials are stable:

p1(s) = ansn + an−1sn−1 + an−2sn−2 + an−3sn−3 + an−4sn−4 + an−5sn−5 + . . . (37)

p2(s) = ansn + an−1sn−1 + an−2sn−2 + an−3sn−3 + an−4sn−4 + an−5sn−5 + . . . (38)

p3(s) = ansn + an−1sn−1 + an−2sn−2 + an−3sn−3 + an−4sn−4 + an−5sn−5 + . . . (39)

p4(s) = ansn + an−1sn−1 + an−2sn−2 + an−3sn−3 + an−4sn−4 + an−5sn−5 + . . . (40)

The stability conditions of the low degrees interval polynomials are given in [5] and
for an uncertain fourth-degree polynomial

P4(s) = [a4, a4]s4 + [a3, a3]s3 + [a2, a2]s2 + [a1, a1]s1 + [a0, a0] (41)

The interval polynomial is stable if the following inequalities occur:

a4 > 0, a3 > 0, a2 > 0, a1 > 0, a0 > 0 (42)

and polynomials
p2(s) = a4s4 + a3s3 + a2s2 + a1s1 + a0 (43)

p4(s) = a4s4 + a3s3 + a2s2 + a1s1 + a0 (44)

are stable, so from Liénarda-Chiparta theorem [18] stability conditions are in the form

432 = a3a2a1 − a2
3a0 − a4a2

1 > 0 (45)
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434 = a3a2a1 − a2
3a0 − a4a2

1 > 0 (46)

Thus, stability condition for considered interval polynomial are (42), (45) and (46).
After inserting the coefficients of interval polynomials a0÷ a4 for Kharitonov’s poly-

nomial (41) there are obtained four polynomials (37), (38), (39) and (40) representing the
worst conditions of the BLDC drive:

• for (37): θ = 0◦, ξ = 0
• for (38): θ = 1.83◦, ξ = 0.0319
• for (39): θ = 20.55◦, ξ = 0.3510
• for (40): θ = 13.64◦, ξ = 0.2358

Comparing received sectors with a nominal sector θGN (28), the drive is θ-unstable in
each case. The results obtained even show the possibility of loss of asymptotic stability by
the control system, while the real results are in the open left Gauss’s half plane.

8. Experimental Results

Low power BLDC motor (rated voltage is 15 V, current is 1.1 A) was used in laboratory
stand (Motion Control Kit F240 produced by Technosoft in 1998 year [19]), thus the experi-
ments were safe. MCK243 is a complete motion kit, including a voltage source inverter and
a three-phase permanent magnet synchronous motor with incremental encoder and Hall
sensors. The main element of this kit is the TMS320F243 Digital Signal Processor (DSP) for
digital motion control applications.

Unfortunately, not all calculations could be proved practically. The following section
presents the change of Kp and R. For a better representation of θ-stability laboratory
experiments were realized for an increased range of parameter changes.

Testing the changes of resistance is difficult, so for 2RN additional resistances were
used and a start-up was performed. However, for 0.5RN , the controllers were optimized
for a higher stator resistance, and the experiment was carried out for the rated one—this
case is an artificial proof of previous calculations. The experimental results are shown in
Figure 14.
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Figure 14. Step responses for different stator resistances.

Obtained results are similar to presented in Figure 8.
The next stage of laboratory tests was the change of voltage on the capacitor in the DC

circuit, which was considered in the analysis as a change Kp. Experiments were carried out
for 12, 15 and 25 V, again the results for a larger range of parameter changes were observed.
The aim was to observe the effects of voltage changes in the DC circuit (Figure 15)—the
step responses for 12 V and 15 V are practically the same, so for 12 V is omitted.



Energies 2021, 14, 704 15 of 17

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

0

500

1000

1500

2000

2500

3000

3500

n
 [

rp
m

]

U=U
N

=15V

U=25V

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

t [s]

2400

2600

2800

3000

3200

3400

n
 [

rp
m

]

Figure 15. Step responses for different voltage in the DC circuit—Kp interval.

Obtained results are similar to presented in Figure 11, so laboratory results confirm
previous mathematical analysis.

Experimental verification of the remaining theoretical calculations and simulations is
difficult on a real motor, but the presented experiments of uncertainty the most important
parameters R, Kp showed the correctness of theoretical calculations.

The next experiments are not as simple because changing the inductance of the motor
windings is difficult to implement. For this reason, optimization of the controllers for the
incorrectly identified inductance L was done. It was assumed, in the optimization of the
controllers where L = 1/0.7L̇N = 1.31 mH (the inverse of the uncertainty assumptions
of L) and the experiment was performed for the nominal value of L. The results are shown
in Figure 16.
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Figure 16. Step responses for too large inductance in the optimization of the controllers.

The obtained results slightly differ from the theory, possibly due to the nonlinearity of
the low-power motor tested. In addition, the obtained result can be interpreted as: what
happens if L is incorrectly identified and used to adjust controllers.

The next step was to introduce multiple perturbations of the motor model parameters
to selection of the controllers settings and additionally lower supply voltage was used.
Two experiments were realized/prepared for:

1. R = 0, 5RN , L = 0, 5LN , ψ = 0, 8ψN , U = 15 V,
2. R = 2RN , L = 1, 2LN , ψ = 1, 2ψN , U = 10 V.

The step responses are shown in Figure 17.
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Figure 17. Step responses for many mistakes in identification.

Experiment 1 shows less damping ratio than the nominal case, so the system is not
Θ-stable. This is similar to the case shown in Figure 18. On the other hand, experiment 2,
where the supply voltage is reduced, shows that the obtained signal is deformed (almost
flat part for t = 0.06–0.14 s) and this is the effect of voltage limitation which is not considered
in the calculation.
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Figure 18. Sectors of relative θ-stability for Kharitonov’s theorem.

9. Conclusions

The analytical approach was used to determine the fourth-order transfer function
for a cascade control system with a BLDC motor, for which the limits of changes of the
numerator and denominator coefficients were determined.The denominator polynomial
was used to calculate the relative stability of the closed-loop control system for different
cases (numerical calculations).

Simulation researches confirmed the correctness of analytical-numerical calculations
from the first part of the article. Later, experimental results were presented.

The article presents θ-stability test for the cascade control structure of the BLDC motor
drive, where the influence of changes in individual parameters (uncertainty) of the motor
model and voltage inverter amplification were examined. The biggest influence on the
relative stability is the change of resistance, followed by the amplification of the converter
and the combined rotor flux. The inductance of stator windings has practically no effect
on the θ-stability of the cascade control structure and this is the most important result of
this work.

The results presented in the paper can be extended to electric drives with PMSM
or DC motors. Furthermore, the considered closed-loop transfer-function can be used
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for uncertainty studies by frequency domain methods, although the open-loop transfer-
function (Nyquist criterion) is more appropriate in this case.
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