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Abstract: Gerotor technology is an important research area in the field of hydraulics which attracts
the attention of both academic scientists and industry. Despite the numerous publications announced
by academics, as well as a considerable number of projects made by industry, the subject has
not been exhausted. This paper presents a new approach to gerotor technology which has been
formed by gathering the authors’ knowledge of gerotors in a synthetic form. The following scientific
and technical results have been obtained: (1) A uniform system of parameters and basic concepts
regarding toothing and cycloidal gearing (z, m, λ, v, g) which is consistently used to describe the
geometry, kinematics, hydraulics and manufacture of those elements; (2) description of the geometry
and kinematics of the epicycloidal and hypocycloidal gears with the use of the adopted system of
parameters. Additionally, the epicycloidal/hypocycloidal double gearing is presented, which is an
original idea of the authors; (3) description of the hydraulics of the gerotor and orbital machines,
and in particular: (i) determination of equations for delivery (capacity) q and irregularity of delivery
(capacity) δ using the above-mentioned system of basic parameters; (ii) formulation of the principles
of designing internal channels and clearances in the gerotor machines and presentation of the original
disc distributor in the epicycloidal/hypocycloidal orbital motor; (iii) presentation of the methods
of manufacturing the epicycloidal and hypocycloidal gearings with 12 examples of the systems
implemented in practice; (4) presentation of the research methods applied for the examination of the
gerotor machines, combining computer simulation and experimental research into a coherent and
cohesive whole which results in the effect of research synergy. Such a synthesis of knowledge may
serve the improvement, creation and investigation of gerotor and orbital machines carried out by
academics and industry.

Keywords: gerotor technology; geometry; kinematics; hydraulics; manufacturing; gerotor and
orbital machines

1. Introduction—From the Kepler Pump to the Gerotor and Orbital Machines. Aims of
the Paper

The gear pump was invented by Johannes Kepler in 1604 [1], while the first sketch
shown in Figure 1a was made by Jean Laurecheon in 1624 [2]. That pump had four-tooth
external gears, and the profile of the teeth and roots was defined by curves similar in shape
to a circle. Over the next centuries, gear pump design solutions were improved [3,4] until
now, when hi-tech machines were made, an example of which is the machine shown in [5]
shown in Figure 1b. Gear pumps are currently utilizing high-precision involute external
gearings, with no side clearance but featuring axial clearance compensation [6] and, more
and more frequently, radial clearance compensation as well as high-strength housing.

New development possibilities were created with the use of involute internal gearing
in gear pumps, as shown in [7] and in Figure 1c. By successively reducing the tooth
difference z2 − z1 between the inner and outer gears, machines with a more compact
structure compared to the machines featuring external gearing were designed. Furthermore,
axial and radial clearance compensation and durable housings were applied. Modern
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gear pumps, both the external and internal ones, generate high operating pressures of
p = 20–30 MPa and perform at high total efficiency of η = 80–90%.

Figure 1. Overview of hydraulic gear machines: (a) Kepler’s gear pump; (b) external gear pump; (c) internal gear pump;
(d) gerotor pump; (e) orbital motor.

For the development of the theory of gear machines, the study [8] is of particular
importance, indicating the principle of equivalence of mechanical and hydraulic energy as
the source of equations for the determination of gear pump delivery and delivery pulsation.
That work was later developed by the publications [9–12] in relation to various types of
involute and cycloidal teeth. Those publications show that the use of internal gearing
allows not only to obtain a system of smaller gears but also pumps with reduced pulsation
of delivery and pressure, as well as reduced noise of their operation.

Further development of gear pumps was associated with the application of internal
gears featuring special profiles, derived predominantly from cycloidal curves. Those teeth
have been developed since the 18th century, and in the 19th century, an American, Myron
F. Hill, called them “gerotor” pumps, combining the words “generated” and “rotor”. A
gerotor pump is presented in [13]; Figure 1d. It has an epicycloidal gearing featuring a
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tooth difference of z2 − z1 = 1, which ensures the compact structure and small dimensions
of the unit. At the same time, further reductions in the delivery and pressure pulsation as
well as a reduction in the noise levels are obtained. Gerotor units, generally, have no axial
clearance compensation and do not exceed working pressures of p = 14 MPa and efficiency
η = 70–80%.

The tooth difference z2 − z1 = 1 and the smooth profile of the teeth enable the co-
operation of the cycloidal gears according to the orbital motion principle. This design
feature was used to build the low-speed and high-torque orbital motors shown after [14] in
Figure 1e, as well as the construction of the Orbitrol steering systems.

In recent decades, a systematic development of gerotor and orbital machines has been
described in a number of publications. The works deal with a variety of issues related to
the machines, namely:

• The analysis of epitrochoidal curves and methods of constructing outlines of gerotor
wheels [15];

• The comparison of the operation principles of gerotor and orbital machines [14];
• The history of gerotor and orbital machines’ development in the USA [16];
• The fundamentals of designing machines with cycloidal gearing [17–19];
• The calculation of the efficiency and pulsation of the efficiency in gerotor machines [20–22];
• The determination of forces and torques in the gearing of gerotor pumps [23];
• The computer simulation of the flow phenomena observed in gerotor pumps [24,25];
• The presentation of design solutions for gerotor pumps and orbital motors [26–28];
• The review of publications on gerotor technology and setting development trends in

this field [29].

Even though each of those publications contains some scientific and technical novelty,
they are focused only on a fragment of the theory and practice of gerotor and orbital
machines. There are no publications which would deal with this problem synthetically.

Therefore, the general aim of the work was formulated as the development of a syn-
thetic approach to design, manufacture and examine gerotor and orbital hydraulic machines.

Within the general objective, specific objectives can be distinguished, including the
development of:

• Fundamentals of the geometry and kinematics of gerotor and orbital gears;
• Hydraulics of gerotor and orbital machines;
• Principles of manufacturing gerotor and orbital gear systems;
• Methods of examining gerotor and orbital gear systems and machines.

The presented goals were achieved using the original design method, which includes
the following stages:

• Development of the theoretical foundations of gerotor and orbital gearing, including
geometry and kinematics;

• Development of the basics of hydraulics for gerotor and orbital machines, including
equations defining the delivery (capacity), delivery pulsation and design of the internal
channels and clearances of those machines;

• Development of methods of producing gerotor and orbital systems;
• Development of simulation and experimental methods of examination of gerotor and

orbital machines.

The design method containing the authors’ knowledge can be used to improve, create
and investigate gerotor and orbital machines. It may be found useful both for the academia
and industry.

2. Geometry and Kinematics of Gerotor and Orbital Gears
2.1. Cycloidal Curves and Cycloidal Gears

Three basic groups of curves are used in the design process, i.e., epicycloids, hypocy-
cloids and pericycloids (Figure 2).
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Figure 2. Family of cycloidal curves: (a) shortened epicycloid (shortened epitrochoid), (b) com-
mon epicycloid, (c) shortened hypocycloid (shortened hypotrochoid), (d) common hypocycloid,
(e) common pericycloid and (f) extended pericycloid (extended peritrochoid).

As shown in Figure 2a,b, epicycloids are formed by rolling a circle with radius (ro)
and the associated point M on the outside of the basic circle with radius rb. If point M lies
inside the movable gear, then a shortened epicycloid is drawn (Figure 2a). If the point is on
its circumference, a common epicycloid is created (Figure 2b). When the point is outside of
the rolling gear, an extended epicycloid is made.

Figure 2c,d shows that hypocycloids are formed as a result of rolling the circle with
radius (ro) and the associated point M on the inside of the basic circle rb. When point M
lies inside the rolling gear, then a shortened hypocycloid is generated (Figure 2c). If point
M lies on its circumference, a common hypocycloid is drawn (Figure 2d). When the point
is on the outside, an extended hypocycloid is created.

Sometimes, in the literature [30], pericycloids, as shown in Figure 2e,f, are described.
Those curves are drawn by rolling a circle with radius (ro) and the associated point M on
the outside of the basic circle with radius rb, where (ro) > rb. As in the previous cases, if
point M lies inside the rolling gear, a shortened pericycloid is created. If it is located on its
circumference, a common pericycloid is obtained, and if on the outside of the rolling gear, an
extended pericycloid is drawn. As shown in [31], pericycloids are equivalent to epicycloids.
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The common pericycloid (Figure 2e) is equivalent to the common epicycloid (Figure 2b).
This is additionally illustrated by Figure 3. The shortened pericycloid is equivalent to
the extended epicycloid, while the extended pericycloid (Figure 2f) is equivalent to the
shortened epicycloid (Figure 2a).

Figure 3. Equivalence of the common epicycloid (index 1) and the common pericycloid (index 2).

In the literature [32–34], the term also used is “trochoid”, which, according to the
mathematical Equation (30), refers to the extended or shortened cycloidal curves. Trochoids
do not refer to the common curves.

A question arises, namely, which curves can be used to design gerotor and orbital
gearings and how should they be named?

The common and shortened curves with no loops on their profile ought to be applied.
Those curves are shown in Figure 2. The figure shows that the curves can be addressed in a
variety of ways.

For example, in paper [35], the name “extended peritrochoids” is used referring to the
curves which in paper [36] are called “shortened epicycloids” and in paper [37], “trochoids”.
This variety of names may be the source of misunderstanding or even errors.

In this paper, the terms “cycloidal”, “epicycloidal” and “hypocycloidal curves” are
used consistently, additionally modified by the adjectives “common” or “shortened”.

Obviously, even though the term “trochoidal curves” can be used, they refer only
to shortened epitrochoids and shortened hypotrochoids. They do not include common
epicycloids and hypocycloids which do not have loops and can be used in the design of
gerotor and orbital gears (Figure 2a–e). The term “cycloidal curves” is more universal than
“trochoidal curves”. The term “pericycloids” is omitted because those curves are identical
to epicycloids.

2.2. Parameters of the Cycloidal (Epicycloidal and Hypocycloidal) Teeth and Gearing

As stated in Section 2, gerotor and orbital systems are treated as gear systems. A set
of parameters, uniform with the involute gearing, was adopted for the description of the
systems. Those are the following parameters:

z—the number of teeth equal to the number of arcs of the epicycloid or hypocycloid found
in the entire closed cycloidal curve;
m—a module which, according to the principle of drawing cycloidal curves, is equal to the
diameter of the movable gear ρ, i.e., m = 2ρ (Figure 4a);
λ—tooth depth coefficient which is equal to λ = OM/ρ (Figure 4a);
η—cycloidal curve angle (Figure 4b);
v—cycloidal range correction factor;
g—gear profile shift which is equal to g = υς (Figure 4d);
b—tooth width.
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Figure 4. Design of teeth, gears and the internal epicycloidal gear systems: (a) uncorrected teeth; (b) basic uncorrected
external gear; (c) mating uncorrected internal gear; (d) corrected teeth; (e) basic corrected external gear; (f) mating internal
corrected gear.

As shown further in this paper, using these parameters, the geometry and kinematics
of cycloidal gears can be described and the hydraulic parameters of machines such as
delivery (capacity) and pulsation of delivery (capacity) can be determined. This indicates
the universality of the adopted system of parameters and its usefulness in the entire
design process.

2.3. Teeth, Gears and Epicycloidal Gear Systems

Figure 4, following [38–40] illustrates the principles of designing teeth, gears and
epicycloidal gear systems. Figure 4a shows that a single tooth is the arc of a shortened
epicycloid, which consists of a convex and concave part connected at the point of inflection
P. Figure 4b shows that the teeth of the outer gear are obtained by generating the subsequent
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epicycloid’s arcs and connecting them into a closed curve in the form of a shortened
epicycloid. Using the parametric equations of the epicycloid [30] and inserting the gearing
parameters given above, the equations for determining the coordinates of the profile of the
external basic gear are obtained:

xe1 = m
2 [(z + 1) cos η − λ cos(z + 1)η]

xe1 = m
2 [(z + 1) sin η − λ sin(z + 1)η]

(1)

According to Figure 4b, the equations for calculating the tip diameter da1 and the root
diameter df 1 of the external basic gear are:

da1 = 2(z1ρ + ρ + λp) = m(z1 + 1 + λ) (2)

d f 1 = 2(z1ρ + ρ− λp) = m(z1 + 1− λ) (3)

The tooth depth h is defined by the equation:

h1 =
da1 − d f 1

2
=

2λm
2

= 2λρ (4)

Subsequently, Figure 4c illustrates the design of an internal mating gear. By rolling
the basic gear with center O1 around point O2, a family of basic gears is generated. By
drawing the envelope external to this family, the profile of the internal mating gear with the
number of teeth z2 = z1 + 1 is defined. The shape and profile of the mating gear complete
the shape and profile of the basic gear. The distance between the axes O1, O2 of both gears
or, alternatively, the eccentric e is equal to:

O1, O2 = e =
h1

2
=

2λρ

2
= 2ρ (5)

The rolling radii of the basic and mating gears are:

rw1 = z1e = z1λρ

rw2 = z2e = z2λρ = (z1 + 1)λρ
(6)

The system of parametric equations describing the family of gears by the epicycloidal
profile in the X2Y2 system has the form:

x f e2 = m
2

[
λ cosγ + (z1 + 1) cos z1η−γ

z1
− λ cos (z1+1)z1η−γ

z1

]
y f e2 = m

2

[
λ sinγ + (z1 + 1) sin z1η−γ

z1
− λ sin (z1+1)z1η−γ

z1

] (7)

Equation (7) should be supplemented with the envelope condition that links the
angle of rotation γ of the basic gear with respect to the mating gear with the angle of the
epicycloid η (Figure 4b):

sin z1η − λ sin
[

z1η +
z1(η − γ)− γ

z1

]
+ sin

z1(η − γ)− γ

z1
= 0 (8)

By combining Equations (7) and (8), it is possible to determine the profile of the
internal mating gear. The characteristic diameters of the mating gear are determined by
the following equations:

da2 = 2(z1ρ + ρ− λp + λp) = m(z1 + 1)

d f 2 = 2(z1ρ + ρ + λp + λp) = m(z1 + 1 + 2λ)
(9)
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To sum up the considerations presented above, it is stated that:

• Equations (7) and (8) for determining the profile of the internal gear are difficult to
use directly;

• The teeth of both gears have disturbed proportions between the head and the root,
and the intertooth pressure may be too high (Figure 4c);

• Manufacturing of an internal gear of a complicated profile is difficult and expensive.

Hence, in order to eliminate the disadvantageous features of the design and manu-
facture, the teeth, the gears and the epicycloidal gear systems are corrected, which is also
shown in Figure 4. According to Figure 4d, the tooth correction consists of the formation of
the arc of the internal equidistant in relation to the arc of the shortened epicycloid, and the
equidistant shift is g = vρ. Figure 4e shows that the external gearing of the basic gear is the
equidistant in the form of a closed curve. The system of parametric equations describing
the equidistant has the form:

xeqe1 = m
2

[
(z + 1) cos η − λ cos(z + 1)η − v cos η− λ cos(z1+1)η√

1−2λcosz1η+λ2

]

yeqe1 = m
2

[
(z + 1) sin η − λ sin(z + 1)η − v sin η− λ sin(z1+1)η√

1−2λ cos z1η+λ2

] (10)

Equations for calculating the tip (addendum) diameter of the gear da1 and the root
(dedendum) diameter of the gear df1 in the corrected gear are:

da1 = 2(z1ρ + ρ + λp− g) = m(z1 + 1 + λ− v)

d f 1 = 2(z1ρ + ρ− λp− g) = m(z1 + 1− λ− v)
(11)

Next, the internal mating gear is corrected. As shown in Figure 4f, from the vertices of
the envelope, circles with the radius equal to the shift of the equidistant r = g are drawn,
and then, those circles are connected with each other by arcs of the circle with the diameter
df2, which turns from the center O2 of the mating gear. The characteristic diameters of the
mating gear after the correction are defined by the equations:

da2 = 2(z1ρ + ρ− λp− g + λρ) = m(z1 + 1− v)

d f 2 = 2(z1ρ + ρ + λp− g + λρ) = m(z1 + 1 + 2λ− v)
(12)

The correction of the epicycloidal gears can be compared to the P−0 correction (with-
out changing the axis distance) in classic involute gearing. It is noted that after applying
the correction, the following are obtained:

• Equations which are simpler and easier to use in the design process;
• More proportionate teeth and gears;
• Manufacture which is considerably simpler and cheaper than the manufacture of the

uncorrected gears, especially in the case of the internal mating gear.

2.4. Teeth, Gears and Hypocycloidal Gear Systems

Figure 5, following [38–40], presents the principles of designing teeth, gears and
hypocycloidal gear systems. Figure 5a shows that a single tooth is formed by a shortened
cycloid arc. Figure 5b, however, shows that a basic internal gear is made by joining succes-
sive hypocycloidal arcs into a closed curve in the form of a shortened hypocycloid. Utilizing
the parametric equations of the hypocycloid [30] and inserting the gearing parameters
into them, an equation for determining the coordinates of the basic internal gear profile
is defined:

xh2 = m
2 [(z2 − 1) cos η + λ cos(z2 − 1)η]

yh2 = m
2 [(z2 − 1) sin η + λ sin(z2 − 1)η]

(13)
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Figure 5. Design of teeth, gears and the internal hypocycloidal gear systems: (a) uncorrected teeth; (b) basic uncorrected
internal gear; (c) mating uncorrected external gear; (d) corrected teeth; (e) basic corrected internal gear; (f) mating external
corrected gear.

According to Figure 5b, the equations for calculating the tip (addendum) diameter da2
and the root (dedendum) diameter df2 of that gear are:

da2 = 2(z2ς− ς− λς) = m(z2 − 1− λ)

d f 2 = 2(z2ς− ς + λς) = m(z2 − 1 + λ)
(14)

Figure 5c illustrates the process of designing the external mating gear. By rolling the
basic gear with center O2 around point O1, families of basic gears are obtained. Drawing
the envelope internal to this family, the profile of the external mating gear and the number
of teeth z1 = z2 − 1 are obtained.
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The set of parametric equations describing the family of hypocycloidal gears in the x1,
y1 system takes the form:

x f h1 = m
2

[
−λ cosγ + (z2 − 1) cos z2η+γ

z2
+ λ cos (z2−1)z2η−γ

z2

]
yh1 = m

2

[
−λ sinγ + (z2 − 1) sin z2η+γ

z2
− λ sin (z2−1)z2η−γ

z2

] (15)

The relationship between the angles η and γ is:

sin z1η − λ sin
[

z1η +
z1(η − γ)− γ

z1

]
+ sin

z1(η − γ)− γ

z1
= 0 (16)

The characteristic average of the external mating gear is:

da1 = 2(z2ς− ς + λς− λς) = m(z2 − 1)

d f 1 = 2(zς− ς− λς− λς) = m(z2 − 1− 2λ)
(17)

For similar reasons as in the case of epicycloidal gearing, the correction of teeth, gears
and hypocycloidal gear systems is made, which is also shown in Figure 5. The main
difference is that the equidistant is formed outside the shortened hypocycloid. The shift
of the equidistant is similar to the one for the epicycloidal gearing, g = vρ. The system of
parametric equations describing the equidistant to the shortened hypocycloid describing
the teeth of the corrected basic gear is:

xeqh2 = m
2

[
(z2 − 1) cos η − λ cos(z2 − 1) + v cos η− λ cos(z2−1)η√

1−2λ cos z2η+λ2

]

yeqh2 = m
2

[
(z2 − 1) sin η − λ sin(z2 − 1)η + v sin η− λ sin(z2−1)η√

1−2λ cos z2η+λ2

] (18)

The equations for calculating the characteristic diameters of the corrected hypocy-
cloidal gears are:

da2 = 2(z2ς− ς− λς + g) = m(z2 − 1− λ + v)

d f 2 = 2(z2ς− ς + λς + g) = m(z2 − 1 + λ + v)
(19)

da1 = 2(z2ς− ς + λς + g− λς) = m(z2 − 1 + v)

d f 1 = 2(z2ς− ς− λς + g− λς) = m(z2 − 1− 2λ + v)
(20)

The correction of the hypocycloidal gear assembly is also a P−0 correction without
changing the distance of the axis. As a result of this correction, the obtained design and
technological advantages are similar to the ones obtained for the epicycloidal gearing.

2.5. Kinematics of Gerotor and Orbital Gears

Figure 6 shows the principles of co-operation of the cycloidal gears at fixed rotation
axes O1, O2. Such co-operation takes place in gerotor machines.
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Figure 6. Meshing of the cycloidal corrected gears with fixed axes: (a) path of contact in epicycloidal gears; (b) distance
from the point of action to the pitch point in epicycloidal gears; (c) path of contact in hypocycloidal gears; (d) distance from
the point of action to the pitch point in hypocycloidal gears.

It can be observed in Figure 6a that the co-operation of individual pairs of the epicy-
cloidal teeth begins at the point of contact A1, where the so-called engagement occurs.
During the rotation of the gears, the point of contact moves to the next positions A2, A3
and A4 until it reaches point An, where the disengagement occurs. Later, the point of
contact returns to point A1. Looking at the entire gerotor assembly, it is noted that there are
simultaneously as many points of contact as there are teeth in the mating gear. The path
of contact is in the shape of a double loop, namely, a large loop around the entire gearing
and a small loop around the central pitch point C. This loop resembles a conchoid [30]. The
path of contact can be divided by the vertical axis of symmetry A1O1O2An into the active
part (solid line) and the passive part (dashed line). In the active part, the teeth come into
contact with each other and transmit the torque, while in the passive part, they come into
contact by sliding on each other and do not transmit a load. The number of contacts is
determined as the ratio of the CB1 gearing arc to the pw pitch on the rw1 rolling wheel, i.e.,

ε =
CB1

pw
=

z2

2
pw (21)

The value of the number of contacts exceeds 1 and is much higher than the number
of contacts for the involute gearing. As a result, the gear co-operation is smoother and
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the pressure exerted on the teeth is reduced. Based on Figure 6b, the relation between the
distance u of the point of contact A1 and the pitch point C is determined as:

u =
m
2
(z1 + 1)

√
1 + λ2 − 2λ cos

(
z1

z1 + 1

)
α1 − g (22)

Figure 6c shows that the co-operation of a single pair of hypocycloidal teeth and the
entire gearing is similar to the epicycloidal gearing described above. The engagement
occurs at point A1 and the disengagement occurs at point A1n. The path of contact also
has the shape of a double loop and is divided by the vertical axis A1O1O2A1n into a
load-carrying active part and a passive part carrying no load. The number of contacts
is determined using Equation (21). The distance of point A1 from the pitch point C is
determined on the basis of Figure 6d as:

u =
m
2
(z2 − 1)

√
1 + λ2 − 2λ cos α1 + g (23)

Figure 7 shows the principles of co-operation of cycloidal gears at the movable axes of
rotation O1, O2. Such rules apply to orbital machines. As shown in this figure, there are
two variants of the co-operation. In the first of them (Figure 7a), the internal gear has a
fixed axis of rotation O2 and remains fixed, and inside of it, with the planetary (orbital)
motion, the external gear with the center O1 rotates. In the second variant (Figure 7b), the
situation is the opposite, i.e., the external gear has a fixed axis of rotation O1 and remains
fixed, while the internal gear with the center O2 moves around it in a planetary motion. In
both cases, all gear teeth remain in mutual contact; therefore, the moving gear is guided
by the fixed gear without the need for applying a yoke, which is necessary in the classic
planetary gear transmissions. The gear movement is forced by the pressure of the working
medium supplied from the hydraulic system by means of a positive displacement pump.
The ratio in orbital machines is determined as the ratio of the rotational velocity of the
movable gear n1 or, alternatively, n2 to the rotational velocity nJ of the yoke marked in
Figure 7 with a dashed line. In the first case (Figure 7a), the ratio is:

n1

nJ
= − 1

z1
(24)

This means that for the shaft associated with the movable gear z1 to make one rotation
n1 = 1, the yoke should rotate z1 times, i.e., nJ = z1. The minus sign means that the yoke
rotates in the direction opposite to the shaft. In the second case (Figure 7b), the ratio is:

n2

nJ
= +

1
z2

(25)

The plus sign means that the yoke rotates according to the shaft.
Cycloidal gears can be combined into multi-gear systems, e.g., three-gear ones, as

shown in Figure 7c. The co-operation in such a gearing is shown in Figure 8. Gear 2, in the
form of an externally and internally toothed ring, rolls simultaneously with a planetary
(orbital) motion on the fixed gear 3 and on the movable gear 1. In this situation, the O2 axis
moves around the fixed O3 axis and, at the same time, around the movable, but defined,
axis O1. The movement of the planet of ring 2 is caused by the injection of the working
medium into the intertooth displacement chambers formed between gears 1, 2 and 3. The
equation for the kinematic ratio in such a mesh is:

n1

nJ
= − 2

z3
(26)
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Figure 7. Meshing of the cycloidal gears with movable axes: (a) movable external gear with the
central point O1; (b) movable internal gear with the central point O2; (c) movable gearing with
external and internal gearings and central point O.
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Figure 8. Double cycloidal gearing, epicycloidal/hypocycloidal: 1—central external gear; 2—ring;
3—internal gear.

This means that gear 1 and the associated shaft rotate 2/z2 times slower than the
imagined yoke that drives the active gear. The minus sign means that the yoke rotates in
the direction opposite to the shaft.

3. Hydraulics of Gerotor and Orbital Machines
3.1. Delivery (Capacity) and Delivery Pulsation (Capacity) of Gerotor and Orbital Machines

In [8–11], it was demonstrated that the universal principle of mechanical and hydraulic
energy equivalence can be used to calculate the hydraulic performance of gear machines
(HGM). Using the model of the epicycloidal gerotor machine shown in Figure 9, this
principle can be described as:

M1dα1 + M2dα2 = dqu∆p (27)

where:
M1, M2—torques on the active and passive gears, respectively;
Dα1, dα2—angles of rotation of the active and passive gears, respectively;
qu—elementary volume delivered at the gear rotation by angles dα1 and dα2;
∆p—pressure difference on the inlet and outlet of the pump, approximately equal to

the delivery pressure ∆p = p.
After the transformations presented in detail in [41–43], the equation for the elemen-

tary delivery is defined:

dqu =
b
2

[
r2

a1 −
r2

w1
r2

w2
r2

a2 − rw1(rw1 − rw2)−
(

1− rw1

rw2

)
u

]
dα (28)

where b—gear width.
Having done the integration in the range from α1 = − αz1/2 to α1 = + αz1/2 (see

Figure 9), delivery qz corresponding to the rotation of the gears by one angular pitch,
namely by one tooth, is determined:

qz =
∫ α1=+

αz1
2

α1=−
αz1

2

dqn (29)
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Figure 9. Model of a gerotor machine with epicycloidal gearing.

Multiplying the delivery qz by the tooth number z1, the delivery q displaced from the
pump by the z teeth is determined, i.e., the delivery by one revolution of the drive shaft,
also called the specific delivery:

q = qz × z (30)

Considering Equations (6), (11), (12) describing radius rw1, rw2, ra1, ra2, as well as
Equation (22) defining the point of contact u, and carrying out all necessary transformations,
the equation for the specific delivery qe of the gerotor pump or, alternatively, for the capacity
of the epicycloidal gear motor is determined:

qe =
1
4

πbm2
[
(z1 + 1 + λ− v)2 − z1

z1 + 1
(z1 + 1− v)2 + z1λ2

]
(31)

This equation uses the number of teeth z1 because, according to the design rules
(Figure 4), the basic gear in the assembly is the external gear.

Using the model of the hypocycloidal gerotor machine shown in Figure 10 and carry-
ing out similar calculations as the ones presented above, using dependencies (14, 17, 23,
28), the equation for the specific delivery qh of the gerotor pump relative to the capacity of
the hypocycloidal motor is obtained:

qh =
1
4

[
(z2 − 1 + v)2 − z2 − 1

z2
(z2 − 1− λ + v)2 + (z2 − 1)λ2

]
(32)

The number of teeth z2 is used in the equation because the basic gear in the system is
the external gear (Figure 5).

Equations (31) and (32) are easily applicable in engineering practice. They enable
determination of the impact of a design solution and the parameters of epicycloidal or
hypocycloidal gearing on the performance (capacity) of the machine. Irregularity of
delivery (capacity) or flow (capacity) pulsation is determined by means of the defining
equation given, among others, in [20,42] as:

δ =
Qumax −Qumin

Qusr
(33)
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Figure 10. Model of a gerotor machine with hypocycloidal gearing.

In the case of the machines with epicycloidal or hypocycloidal gearing considered in
Figures 9 and 10, the maximum instantaneous delivery Qu max will be obtained for umax, i.e.,
for the angle of rotation of the inner gear α = ± αz1/2, and the minimum delivery for umin,
i.e., for the angle of rotation α = 0. The average delivery is obtained as (Qu max + Qu max)/2.
After detailed calculations shown in [42], the equations for the delivery pulsation of the
machines with epicycloidal gearing are finally obtained:

δe =

1
z1+1

{ [
(z1 + 1)

√
1 + λ2 − 2λ cos

(
π

z1+1

)
− v
]2

−
[
(z1 + 1)

√
1 + λ2 − 2λ − v

]2
}

(z1 + 1 + λ + v)2 − z1
z1+1 (z1 + 1− v)2 + z1λ2

(34)

Furthermore, for the hypocycloidal gear machines:

δh =

1
z2

{ [
(z2 − 1)

√
1 + λ2 − 2λ cos

(
π

z2−1

)
+ v
]2

−
[
(z2 − 1)

√
1 + λ2 − 2λ + v

]2
}

(z2 − 1 + v)2 − z2−1
z2

(z2 − 1− λ + v)2 + (z2 − 1)λ2
(35)

Equations (34) and (35) describe the pulsation of delivery (capacity) are more compli-
cated than Equations (31) and (33) regarding delivery. However, these equations also allow
to study the influence of a design solution and cycloidal tooth parameters on the value of
delivery pulsation.

As shown in Figures 9 and 10, the gears in gerotor machines work at fixed axes. Hence,
as a result of one rotation of the machine drive shaft, one rotation of the driving (basic) gear
and, consequently, the so-called specific delivery qe or qh are generated. This delivery can be
determined by means of Equations (31) and (32). In the orbital machines shown in Figure 7,
the gear axes are movable. In this situation, one rotation of the shaft results in a multiplied
number of revolutions of the yoke and of the driving (basic) gear connected to it. When the
external gear (Figure 7a) is driven, according to Equation (24), the number of rotations is
n1 = z1, and when the internal gear (Figure 7b) is driven, according to Equation (25), the
number of rotations is n1 = z2. As a result, the delivery (capacity) of an orbital machine is
determined by the formula:

qorb (e,h) = q(e,h) × n1 (36)
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where:
qorb—delivery (capacity) of the orbital machine;
q(e, h)—delivery (capacity) of the gerotor machine calculated according to Equation

(31) or (32);
n1 = z1 or z2—number of rotations of the driving gear per one revolution of the drive

shaft.

3.2. Shaping the Arrangement of Internal Channels and Clearances in Gerotor and
Orbital Machines

The gear system of a gerotor or orbital machine co-operates with a system of internal
channels and clearances formed in the body of the machine, ensuring the inflow and
outflow of the working medium. There are two basic systems of channels and clearances.
Those are:

• System of fixed channels;
• System of movable channels.

A diagram of a system of fixed channels is shown in Figure 11. It consists of:

• Inlet channel CLI, inlet chamber CRI and inlet bridge BI;
• Outlet channel CLO, outlet chamber CRO and outlet bridge BO;
• Axial clearance GA;
• Radial clearance GR.

Figure 11. The system of fixed channels and clearances in gerotor machines: J—inlet port; O—outlet
port; CLJ, CJ, CRJ, BJ—inlet channel, inlet chamber, inlet bridge; CLO, CO, CRO, BO—outlet channel,
outlet chamber, outlet bridge; GA—axial clearance; GR—radial clearance; d, d0—diameters of inlet and
outlet ports; 1′, 1′′, 2′, 2′′, 3′, 3′′—teeth; A1, A2, A3—intertooth contact points; ra1, ra2—addendum
radius; rf1, rf2—dedendum radius; ρJ, ρJO, ρO, ρoJ—angles of inlet, inlet bridge, outlet, outlet bridge;
φT—angle of intertooth displacement chamber; b—gear width; e = O1, O2—center distance.

As shown in Figures 9 and 10, the gears in gerotor machines work at fixed axes. Hence,
as a result of one rotation of the machine drive shaft, one rotation of the driving (basic) gear
and, consequently, the so-called specific delivery qe or qh are generated. The shape and
dimensions of the channels and clearances result directly from the shape and dimensions
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of the gears. Therefore, in Figure 11, the channels are drawn with a dashed line against the
background of the gears drawn with a solid line.

The CLI inlet channel is shaped as a cylinder of a diameter equal to or greater than the
width of the gear system dI ≥ b. This channel grows wider in the form of a “chalice” CI
and is connected to the CRI inlet chamber. The inlet chamber is located in the side body
of the pump and has the shape of a kidney widening within the angle ϕI, and its arched
walls are defined by the root radius rf1 of the external gear. The CLO outlet channel and the
CRO outlet chamber are shaped in a similar way.

The inlet bridge is a fragment of the side body that separates the inlet zone from
the outlet zone. It extends within the angle ρIO, which is larger than the angle of the
displacement chamber ϕT. The CRO outlet chamber, narrowing in the form of a “chalice”,
CO and the CLO outlet channel with the diameter do are similar in shape to their counterparts
on the inlet side.

The outlet bridge is also a fragment of the side body, separating the inlet and outlet
zones. It extends within the angle ϕIOmin–ϕIOmax.

As shown in the upper part of Figure 11, the first minimum value of the angle ϕIOmin
appears when tooth 1′ of the external gear is in the central position on the axis O1, O2 and
its sides co-operate with points A1 and A2 with two adjacent teeth, 1′′ and 2′′ of the internal
gears. The minimum outlet bridge ϕIOmin extends between the points of contact A1 and A2.
At the same time, the lower part of Figure 11 shows that the second maximum value of
the angle ϕIOmax appears when the next tooth 2′ of the external gear starts co-operating
with tooth 2′ at point A2. In this situation, the preceding pair of 1′ and 1′′ teeth co-operate
at point A1 and the following pair of 2′ and 3′ teeth contact each other additionally at
point A3. The maximum outlet bridge extends between points A1 and A3 in the angle
range ρOImax. The minimum bridge (ρOImin) ensures separation of the inlet and outlet
zones, but in practice, when there are manufacture inaccuracies and deformation of the
machine components, the minimum bridge (ρOImax) may not be sufficient. Simultaneously,
the maximum bridge (ρOImax) may turn out to be too large and cause accumulation of the
working medium in the intertooth spaces. Finally, the outlet bridge remains in the range
ρOImin < ρOI < ρOImax. Corresponding to the bridge angle ρOI, the angle of the inlet chamber
ρI and the outlet chamber ρO increase. The axial GA and the radial GR clearances are formed,
taking into account two basic requirements for the operation of the gear assembly. On the
one hand, the intention is to keep these clearances as small as possible (going to zero) in
order to maintain high internal tightness of the machine. On the other hand, the minimum
values of these clearances should be maintained to ensure smooth friction between the
gear teeth, the gear assembly and the body. The optimum values of the axial clearance are
GA allow = 0.02–0.05 mm and the radial clearance GRallow = 0–0.1 mm [42,43].

In orbital machines featuring gear systems with movable axes, movable systems of
channels and clearances are used. According to [44], two basic types are distinguished:

• A system of channels built on the basis of a rotary distributor, in which the channels
and clearances are formed between a rotating shaft (sleeve) and a fixed housing;

• A system of channels made using a disc distributor, in which the channels and clear-
ances are formed between the rotating and the fixed disc of the distributor.

The detailed solution of the arrangement of the channels and clearances depends on
the design of the machine and is different for different types of machines. The problem
was considered specifically by the example of the MAX orbital hydraulic motor, where
double cycloidal gearing, previously presented in Figure 8, was utilized. There, a movable
channel system designed using a disc distributor was applied. It is presented in [42,45] and
in Figure 12 and consists of a system of inlet (high pressure) channels, marked in black,
and a system of outlet (low pressure) channels, marked in white.
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Figure 12. System of the internal channels and clearances in the MAX orbital motor of the fourth group of the machines:
1,2,3,4—housing elements; 5—shaft; 6,7,8—cycloidal gear; SI, CLI, CRI, WI, GRI—slot, channel, chamber, window, inlet
groove; SO, CLO, CRO, WO,GRO—slot, channel, chamber, window, outlet groove.

Figure 12, in the main view, depicts the working medium flowing into the rear cover
of the machine (4), and next, through the cylindrical inlet socket (SI) and the cone-shaped
inlet channel CLI to the CRI kidney-shaped inlet chamber. Figure 12, in the cross-section
A-A, shows that this kidney is transformed into the circular chamber CRI and the grooves
going radially outside that chamber. Figure 12, in the cross-section B-B, presents the radial
grooves supplying the working medium to the round WI inlet windows located in the
intermediate cover (3). Consequently, cross-section C-C shows that the windows connect
to the CRI grooves located on the side planes of the orbiting toothed ring (7). One part
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of the grooves is directed towards the outer intertooth chambers T formed between the
toothed ring (7) and the internal toothed gear (8). The second part of the grooves is directed
to the inner chambers T formed between the ring (7) and the gear (6). When half of the
outer and inner chambers reach their maximum volume (Figure 12, cross-section C-C)
and the toothed ring (7) rolls on, then the GRI inlet grooves roll along with it and are
transformed into GRO outlet grooves. As a result, the working medium is discharged on
the way: window (WO); circular chamber (CRO); channel CLO; socket S. The main view
in Figure 12 also shows the internal clearances, i.e., the axial clearance GA and the radial
clearance GR, occurring in the orbital motor. The principles of their shaping are similar to
those observed in the gerotor machines.

4. Manufacturing of the Gerotor and Orbital Gear Systems

Two methods of making cycloidal teeth of gerotor and orbital machines can
be distinguished:

• The method in which the path of the universal tool maps the profile of the gearing;
• The method in which the shape of the cutting edge of a special tool copies the form of

the gearing.

Both methods are closely related to the geometry and kinematics of the gears presented
in Section 3 of this paper. The principles of making the gearing according to the first
method, following [44], are presented in Figure 13a–c. Figure 13a,b depict that they are
manufactured using two-lip end mills of diameters d1 or d2, which move along the line
mapping the profile of the gearing. It is a line parallel to the theoretical profile of the teeth,
which is described by Figure 4e or Figure 5e and Equation (16) or Equation (18). The path of
the tool must be defined in the numerically controlled milling machine, taking into account
the diameters d1 and d2 of the cutters. The diameter d1 should be as large as possible so
that the cutter does not bend while machining, and the diameter d2 must be smaller than
the width of the intertooth space so as to ensure free movement of the cutter in the groove
of the gear during machining. Grinding of the teeth can be carried out using the same
method, by means of finger-shaped grinders. The described method is also used in the case
of electrical discharge machining, as shown in Figure 13c [44]. Accuracy of the gearing can
be ensured by using, among others, low-speed machining and by repeating the process
several times.

The principles of manufacturing the teeth by means of the second method are pre-
sented in [44] and in Figure 13d–g. Figure 13d shows that the external gearing is made
using a gear cutting hob. Figure 13e, however, shows that the internal gearing can be
made by broaching, using a special broach, whereas in Figure 13f,g, it is presented that
grinding of the teeth is carried out with the use of grinders of special profiles. In all the
cases presented, the cutting tool closely reproduces the gear tooth profile. It can be said
that the cutting edge is a negative of the tooth profile. Furthermore, in this method, the
cutting edges are formed according to Figure 4e or Figure 5e and Equation (10) or (18).

The results of utilizing both of these methods are presented in Figure 14. Figure 14a–c
depict the cycloidal gearing made by the finger-shaped grinding. Figure 14d–f show the
gearing made by the electrical discharge machining. Figure 14g,h present the gears made
by means of hobbing and shape grinding. The last group, presented in Figure 14j–l, are
gear systems made of plastics [46,47]. The gears depicted in Figure 14j,f were made by
means of a two-lip end drill, whereas the gear shown in Figure 14l was manufactured by
injection molding. Both the injection mold and the process are described in [44].
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Figure 13. Methods of manufacturing cycloidal teeth: (a,b)—cutting; (c)—electrical discharge machining; (d)—hobbing;
(e)—broaching; (f,g)—grinding.
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Figure 14. Gerotor and orbital gear systems manufactured using different methods: (a–c)—systems manufactured by
the use of an end mill; (d–f)—systems manufactured by the use of electrical discharge manufacturing; (g–i)—systems
manufactured by the use of hobbing, broaching and grinding; (j–l)—plastic systems manufactured by the use of injection
molding and hobbing.

5. Examination of Gerotor and Orbital Machines

Research on gerotor and orbital machines is carried out in two basic forms, i.e., in the
computer or experimental form. The computer research is carried out during the design
process using virtual models. Its purpose is to initially verify the design solution of the
machine and to predict the processes and phenomena, the occurrence of which should be
expected in it. Experimental research is conducted at the end of the design process, using
real machine models. Its aim is to finally verify the machine by examining its operation,
determining its technical parameters and examining the real processes and phenomena
which occur in it.

The best solution seems to be a combination of computer and experimental research.
In such a case, the research process can be carried out by cascading from the simulation
to the experimental research and, optionally, implementing feedback between them. The
combined research results are complementary and give a synergistic effect. Characteristic
examples of such research are presented in the paper.
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5.1. Forecasting of the Axial and Radial Clearances and Working Pressures in a Pump with Gerotor
Wheels Made of POM

The object of the research was an epicycloidal gerotor system designed according to
Figure 4f and Equations (10) and (12). A special feature of the assembly was that it was
made of Polyoxymethylene (POM), which has a much lower yield point Re than steel.
Therefore, both different gear co-operation and technical parameters can be expected.

It is assumed that the computer model of the gerotor system features no axial and
radial clearances, i.e., GA = 0 and GR = 0.

A computer study using the Finite element method (FEM) method on a model of
a virtual gerotor assembly was conducted [45]. The aim of the study was to define the
principles of co-operation of the system and to determine the scope of their load capacity
in the aspects of strength and hydraulics. The results of the study are shown in Figure 15.

Figure 15. Results of the strength analysis of the epicycloidal gerotor systems by use of the FEM method: (a)—stress
distribution; (b)—strain distribution; (c)—increase in radial clearance ∆GR depending on the working fluid pressure p;
(d)—increase in axial clearance ∆GA depending on the working fluid pressure p.

The principles of the co-operation can be analyzed in Figure 15a,b. The figures show
that the gerotor assembly is loaded with torque M transmitted from the drive shaft by
means of three keys and pressure p of the working medium acting on the intertooth
displacement chambers in the outlet zone. The torque M and pressure p make the teeth of
both gears co-operate in the inlet zone within the arc of contact. Forces F1, F2 and F3 are
generated between the teeth, and the ratio of the forces is approximately 3:2:1. Those forces



Energies 2021, 14, 624 24 of 31

generate stresses σ1, σ2 and σ3 the mutual ratio of which is similar to the ratio of the forces.
Figure 15b shows that under pressure, the gerotor assembly is deformed. The external
gear (the “star”) with center O1 moves towards the inlet zone and, simultaneously, its teeth
are deformed in that direction. The internal gear with the O2 center (the “ring”) moves
towards the outlet zone and its teeth are similarly deformed. As a result of the deformation
of both gears, the intertooth clearances in the outlet zone and the largest radial intertooth
clearance ∆GR between the teeth located on the border between the inlet and outlet zone
are created.

Figure 15b shows that loading the gear assembly with pressure p acting on its front
surface causes its compression, as a result of which additional axial clearance ∆GA appears.
Figure 15c,d show the dependence of the clearances ∆GR and ∆GA on the working pressure
p acting on the gerotor assembly. It can be observed that an increase in those clearances is
directly proportional to the pressure.

The load capacity should be determined from the point of view of two criteria: the
strength criterion and the hydraulic criterion. Considering the strength criterion, it should
be checked whether the maximum intertooth stresses σ1, σ2 and σ3 are lower than the
allowable stresses, which, for POM, are equal to the yield point Re = 40 MPa, i.e., σ1, σ2
and σ3 ≤ Re. This condition for the considered system of gerotor POM wheels loaded with
torques M = 0.18 Nm and pressure p = 10 MPa has the form σ ≤ 40 MPa. In practice, this
means that the deformation of the teeth is elastic, i.e., when relieved, the teeth return to
their original shape.

When considering the hydraulic criterion, it ought to be checked whether the assembly
intertooth clearance (radial GR or axial GA) enlarged by the increase in the clearance ∆GR
or ∆GA, is smaller than the allowable radial clearance GR allow = 0.1 mm or axial clearance
GA allow = 0.05 mm, which was adopted in Section 5 due to the internal tightness of the gear
system [42,43]. These dependencies can be expressed as:

GR + ∆GR ≤ GR allow (37)

GA + ∆GA ≤ GA allow (38)

Using Figure 15c,d, certain prognoses can be made. It is assumed that the gerotor
assembly will be made with high accuracy, i.e., the radial assembly clearance will be
GR = 0 mm and the axial clearance GA = 0.01–0.02 mm.

According to Equations (37) and (38): 0 + ∆GR ≤ 0.1 mm for the radial clearance,
0.01–0.02 + ∆GA ≤ 0.05 mm for the axial clearance. Hence, the allowable increase in the
clearance due to the strains are: ∆GR <= 0.1 for the radial clearance and ∆GA <= 0.03–0.04
for the axial clearance.

Figure 15c,d show that the radial increase ∆GR = 0.1 mm corresponds to pressure
p = 4 MPa while the axial increase ∆GA = 0.03 mm corresponds to pressure p = 6 MPa.
Taking into account both limitations, it can be anticipated that the system of gerotor wheels
made of POM can work within the pressure range p = 4–6 MPa.

The prognosis resulting from the computer study was verified experimentally. The
study was carried out using a gear system made of POM and manufactured in accordance
with Equation (10) by a finger-shaped cutter (Figure 14f). The gear system was closed in a
rigid housing made of an aluminum alloy (Figure 16a). The assembly axial clearance was
GA = 0.02 mm and the radial clearance was GR = 0.0 mm. The results of the volumetric
efficiency tests are shown in Figure 16b.
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Figure 16. Experimental gerotor pump with plastic epicycloidal gearing: (a)—view of the pump;
(b)—volumetric efficiency ηv.

The figure shows that the gear system worked correctly within the working pressure
range of p = 3–6 MPa, at the volume efficiency of ηr = 80–50%. The research results suggest
that the increases in the radial clearance ∆GR and the axial clearance ∆GA were in the
anticipated range and the total value of the axial and radial clearances remained in the
range of the allowable values, calculated from Equations (36) and (37). The experimental
studies have also shown that using the higher rotational velocity of n = 2000 rpm and the
working medium at the lower temperature of T = 25 ◦C (higher viscosity), higher working
pressure p and volumetric efficiency ηr can be obtained. Such operating conditions ensured
an increased frequency of the pumping process at reduced flow rates through the internal
clearances in the pump, which provided higher volumetric efficiency.

The described research on the gerotor system made of POM shows that by combin-
ing the computer and experimental research methods, more complete and more reliable
results are obtained. Consequently, it is possible to define an improved design of the
gerotor system.

5.2. Research into the Hydraulic Processes and Phenomena in the Internal Channels and
Clearances of the Gerotor Pump

The object of the research was a theoretical model of a gerotor pump with epicycloidal
gearing, designed according to Equations (10) and (12), and a system of internal channels
and clearances, designed according to Figure 11. In [48], a theoretical model describing the
course of the flow processes occurring inside the displacement chamber of a gerotor pump
was developed. The general Equation for determining the pressure pt in the displacement
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chamber of the gerotor pump depending on angle ρ, describing the position of this chamber,
has the form:

dpT
dϕ

= f (VT , QG, QTI , QOT , ρ) (39)

where:
pt—pressure in the displacement chamber T;
ρ—angle determining the location of the displacement chamber T;
VT—displacement chamber volume;
QG—main flow rate;
QTI—leakage flow rate on the way: displacement chamber–inlet chamber (suction

chamber);
QOT—leakage flow rate on the way: outlet chamber (discharge)–displacement

chamber.
In the model, the volume of the displacement chamber VT and the flow rates QG, QTI

and QOT are closely related to the geometrical parameters of the gearing (z, m, λ, υ), the
working fluid compressibility modulus (Ec) and the machine operating parameters (n, T,
po). Using the theoretical model, a special computer program was developed to calculate
the pressure pt in the intertooth displacement chamber T. The purpose of the computer
research was to determine the pressure range pt in the displacement chamber T during
the full working cycle, i.e., during suction, pressure increase, discharge and pressure drop
or rotation displacement chamber with the angle ρ = 2π. Based on that diagram, it can
be predicted whether the pump designed in accordance with Equations (10) and (12) and
Figure 11 will work properly. In other words, it can be predicted whether the gerotor
system will work properly with the system of internal channels and clearances. Selected
results of the simulation are presented in Figure 17a,b. Figure 17a shows that the intertooth
displacement chamber rotates successively through the following zones: the inlet zone (ρI),
the pressure increase zone (ρIO), the outlet zone (ρO) and the pressure drop zone (ρoI). It
can be observed in Figure 17b that the pressure pt in the chamber changes the value from
pT = pI ≈ 0 in the inlet zone to pT = po = 8 MPa in the outlet zone (the pressure assumed in
the simulation process).

On the borders of the pressure rise zone, there is a slight decrease and increase in
the pressure caused by mismatch of the chamber dimensions to the dimensions of the
inlet bridge. A similar situation occurs at the border of the pressure drop zone where the
mismatch causes a significant pressure surplus in the intertooth displacement chamber
with a value of ∆p = 5 MPa, which means that the pressure pt in the displacement chamber
exceeds the outlet pressure pO by more than 50%. The prognoses resulting from the
computer analysis were experimentally verified. An experimental gerotor pump was built
as shown in Figure 17c. The gearing was designed according to Equations (10) and (12)
and was manufactured by means of a gear cutting hob (Figure 13d) and by broaching
(Figure 13e). The gear was ground with specially shaped grinders (Figure 13f,g). A ready-
made gear system is shown in Figure 14l. A characteristic feature of the experimental pump
was the miniature pressure sensor S installed in an intertooth space of the external gear,
which, through the device D, was connected with the amplifier A and the computer C. The
entire system was used to measure the pressure in the intertooth displacement chamber
T during the operation of the pump. The results of the experimental study are presented
in Figure 17d.
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Figure 17. Research of pressure pT in the displacement chamber T of the gerotor pump during the full
working cycle: (a) division into the internal working zones ϕJ, ϕJO, ϕO, ϕOJ; (b) results of pressure
simulation pT = f(ψ); (c) view of the experimental gerotor pump (S—pressure sensor; D—device;
A—amplifier; C—computer); (d) results of the experimental pressure research pT = f(ψ).
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The figure shows that pressure pt in the intertooth displacement chamber changes
according to similar principles as in the virtual model (Figure 17b). There are the same
zones: the inlet zone (ρI), the pressure increase zone (ρIO), the outlet zone (ρO) and the
pressure drop zone (ρoI), where the pressure in the chamber assumes similar values. At the
same time, it is noted that in the zones of the increase (ρIO) and decrease (ρOI), the change
in pressure pt is different than that predicted in the virtual model. In the increase zone
(ρIO), there is a significant pulsation of pressure pt, while in the decrease zone (ρOI), there is
a significant reduction in the pressure surplus up to the value of ∆p = 1 MPa. The reduction
in the pressure surplus in the decrease zone (ρOI) is explained by the fact that the GA axial
clearance in the experimental pump was about twice as large as the clearance in the virtual
model. Through that enlarged clearance, there is an easier outflow of the working medium
from the intertooth displacement chamber and, as a result, a drop in pressure pt.

In order to explain the pressure pulsation in the increase zone (ρIO), a visualization
study using the Particle Image Velocimetry (PIV) method was conducted according to
the principles given in [42,49]. The object of the research was the special gerotor pump
presented in Figure 18a, in which the rear body was made of technical glass, enabling
observation of the flow processes taking place inside the pump.

Figure 18. Visualization study using the PIV method: (a) experimental gerotor pump; (b) examination stand (1-hydraulic
system; 2—illuminative system; 3—high speed camera; 4—computer); (c–e) view of the flows through inlet bridge B, (ρJO)
cooperating with displacement chamber (T).
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The gearing and the system of channels and clearances were the same as in the
previously studied experimental pump. The pump with the transparent housing was
studied in a special stand, the diagram of which is illustrated in Figure 18b. The results of
the visualization study are presented in Figure 18c–e. Figure 18c shows that the intertooth
displacement chamber T entered the pressure increase zone ρI, i.e., the BI inlet bridge.
When it is completely closed and, at the same time, its volume increased, cavitation in the
form of bubbles B appeared. With further rotation of the T chamber, shown in Figure 18d,
the cavitation increased, which can be observed in the form of a larger number of bubbles.
Finally, when leaving the pressure increase zone, depicted in Figure 18c, and reducing the
volume of the T channel, the cavitation stopped. The cavitation phenomena are the main
reason for the pressure pulsation presented in Figure 17d in the pressure increase zone ρIO.

The integrated computer and experimental research proves that using this method,
it is possible to explain complex flow processes and phenomena occurring in the internal
channels and clearances of a gerotor machine. At the same time, this combined research
method can be used as a tool to improve the system of channels and clearances in gerotor
and orbital machines.

6. Conclusions

A synthetic approach to the design, manufacture and examination of gerotor and
orbital hydraulic machines has been developed. The paper has been prepared on the basis
of the authors’ own theoretical analyses, experimental research and design solutions.

The following scientific and technical effects have been obtained:

• A uniform system of parameters and basic concepts regarding toothing and cycloidal
gearing (z, m, λ, v, g) which is consistently used to describe the geometry, kinematics,
hydraulics and manufacture of those elements; that system is compatible with the
system applied for involute gearing, which allows for comparing the cycloidal and
involute gears;

• Description of the geometry and kinematics of epicycloidal and hypocycloidal gears
with the use of the adopted parameters system. Additionally, epicycloidal/hypocycloidal
double gearing is presented, which is an original idea of the authors;

• Description of the hydraulics of gerotor and orbital machines, and in particular,
• Determination of equations for delivery (capacity) q and irregularity of delivery

(capacity) ∆ using the above-mentioned system of basic parameters;
• Formulation of the principles of designing internal channels and clearances in gerotor

machines and presentation of the original disc distributor in the epicycloidal/hypocycloidal
orbital motor;

• Presentation of the methods of manufacturing epicycloidal and hypocycloidal gearings
and of 12 examples of the systems implemented in practice, which proves the above-
mentioned theoretical formulas to be correct and useful;

• Presentation of the research methods applied for the examination of the gerotor
machines, combining computer simulation and experimental research into a coherent
and cohesive whole, which results in the effect of research synergy. That concerned:

• Methods of modeling axial and radial clearances in gerotor assemblies using FEM and
experimental tests;

• Methods of studying the hydraulic processes and phenomena in the gerotor pump
using the authors’ own computer program as well as the pressure analysis and the
PIV visualization analysis.

The confirmation of the value and applicability of such integrated scientific and
technical knowledge was in the creation of innovative technical solutions for gerotor and
orbital machines, such as:

• A gerotor system for the Orbitrol steering blocks and the orbit motors [38];
• A gerotor pump with electromagnetic drive [50];
• A low-speed orbital motor with double epicycloidal–hypocycloidal gearing [45];
• A gerotor pump with plastic gears [46].



Energies 2021, 14, 624 30 of 31

To sum up, it can be stated that the presented synthesis may be the subject of further
research and development conducted by academia. It can also be recommended to industry
as an advanced scientific and technical tool for improving, creating and investigating
gerotor and orbital machines.
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Politechnika Warszawska: Warsaw, Poland, 1978. (In Polish)
37. Lobastov, V.K. K tieorii Vniecentroidnogo Epicykloidalnego Zacieplenia Planietarnych Miechanizmov; Tieoria Miechanizmov i Mashin;

Izdatielstvo Charkovskogo Gosudarstviennogo Univieristeta: Mashin, Russia, 1978. (In Russian)
38. Stryczek, J. Cycloidal Gears in Design of Gear Pumps and Motors. Arch. Masch. Des. 1990, 1–2, 57–88.
39. Stryczek, J. Principles of the Design of Cycloidal Gears in Hydraulic Machinery. Arch. Masch. Des. 1990, 3, 201–218.
40. Stryczek, J. Hydraulic Machines with Cycloidal Gearing. Arch. Masch. Des. 1996, 1, 29–72.
41. Stryczek, J. Projektieren der Zykloidenverzahnungen hydraulischer Verdrangermaschinen. Mech. Mach. Theory J. 1990,

6, 597–610. [CrossRef]
42. Stryczek, J. Fundamentals of Designing Hydraulic Gear Machines; Polish Scientific Publishers PWN: Warsaw, Poland, 2020.
43. Stryczek, J. Charakteristische Parameter hydraulischer Verdrangermaschinen mit Zykloidenverzahnungen. Mech. Mach. Theory J.

1993, 1, 97–112. [CrossRef]
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