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Abstract: In this study, a GLSDC (Gaussian Least Squares Differential Correction) based parameter
estimation algorithm is used to identify a PMSM (Permanent Magnet Synchronous Motor) model. In
this method, a nonlinear model is assumed to be the correct representation of the underlying state
dynamics and the output signals are assumed to be measured in a noisy environment. Using noisy
input and output signals, parameters that constitute the coefficients of the nonlinear state and input
signal terms are to be estimated using the state transition matrix which is computed by the numerical
means that are detailed. Since a GLSDC algorithm requires correct initial state value, this term is
also estimated in addition to the unknown coefficients whose bounds are assumed to be known,
which is mostly the case in the industrial applications. The batch input and output signals are used
to iteratively estimate the parameter set before and after the convergence, and to recover the filtered
state trajectories. A couple of different scenarios are tested by means of numerical simulations and
the results are addressed. Different methods are discussed to compute better initial estimate values,
to shorten the convergence time.

Keywords: parameter estimation; GLSDC; PMSM

1. Introduction

Permanent Magnet Synchronous Motor (PMSM) is a type of electric motor which
is widely preferred in Electric Vehicle (EV) and industrial automation applications, such
as in robot arm joints to actuate the motion and commercial production lines, due to its
high generated torque per volume ratio. There are some variations of PMSMs that are
also popular in unmanned aerial vehicle (UAV) applications, such as propeller mover in
fixed wing aircrafts and as camera motion stabilizers in surveillance applications. The
reason for their popularity is additionally dependent on not having brushes such as DC
motors and brushed synchronous motors, since the flux is generated by the permanent
magnet, which also allows them to be used in operations where low maintenance of the
critical components is an important necessity. The flux being generated by the permanent
magnet also facilitates the control aspect of this types of motors which eliminates the need
to estimate the slip angle between the stator and rotor magnetic field angles, which is the
case in squirrel cage asynchronous motors. Furthermore, the developed field-oriented
control (FOC) algorithms to control the speed and angular position of the rotor have made
it possible to reduce the problem from a linear time variant control to a linear time invariant
control for a specified operating point. For the estimator aspect of this plants, the developed
rotor position and speed estimation schemes, that are initially designed for the sensorless
control implementations, have eliminated the necessity to incorporate a sensor to measure
the rotor speed such as encoders or tachometers [1].

Large classes of the control algorithms, that are implemented in industrial applications,
require a reliable model or a set of models that model the dynamics of the plant to an
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agreeable extent. State feedback controllers such as linear quadratic regulator (LQR) and
state feedback sliding mode control (SMC) algorithms require a plant model being available,
and are designed based on the assumption that there is a robust state estimator working
in tandem with the designed control algorithms, such as Luenberger state observer or
KF(Kalman Filter) for linear plant models. However, there is also a wealth of literature
when it comes to output feedback type of control schemes. For SISO (Single Input Single
Output) cases, PIDs (Proportional Integral Derivative) have been implemented in industrial
applications to this day, due to their easiness and ability to tolerate parametric uncertainties
that are inherent in the system. However, as the dimensions of the plants increase, PIDs
start to become harder to tune as the parameters to be tuned grows accordingly. The strong
need to design control schemes for MIMO (Multiple Input Single Output) systems are
answered byH∞ control schemes. In this framework, the plant in question is considered
in addition to the disturbance signals that effect the plant and the terms that are to be
regulated, and their relationship with the inherent plant signals are brought into the
problem; the problem is posed as one of optimization, where the control is designed so
that the effect of the disturbance signals on the objective signals is minimized. This effect
is expressed by a set of transfer functions and the minimization is achieved based on the
h-infinity norm of the disturbance terms. Due to its generality, the framework can be used
so that the problem can be expressed, additionally to include the input or other significant
internal signals which are to be kept in specified bounds, such as in mixed sensitivity
problems. In more computationally intensive versions, such as the µ-synthesis, a priori
knowledge on parametric or structured uncertainties, instead of uncertainties only in a
broad range in frequency domain, can be incorporated into the controller design process
and the resulting controller has the capability to cope with the specified uncertainties
and yields better performance. Another robust control algorithm, given in [2], focuses
on the coupling terms present in the plant dynamics and by simultaneously estimating
and eliminating these aforementioned terms, the resulting design process complexity is
decreased, and a desired performance is reached without much performance degradation.

The parameter estimation problem is inherently related to the state estimation problem.
By considering the parameters to be estimated as additional states, one can pose the
problem of parameter estimation as a classical state estimation problem. However, even
if the original system model is linear, by transforming the problem results in a nonlinear
state estimation problem. The first discussion to be made is the study of the observability
of this system. The observability of the linear systems and how they are determined are
established topics. However, the same discussion is not valid when it comes to the nonlinear
systems. There are certain observability conclusions that can be drawn by linearizing the
plant for a given operating point, or in more general cases for a given state trajectory, using
Lie derivate operators on the stated dynamics reported in the literature [3].

In industrial applications, where the continuous operation must be guaranteed, in
order to check the condition of the mechanical devices operating on critical processes or
monitoring the health of the overall system, there exist parameter or dynamical estimation-
based methods to analyze the internal signals of the dynamics. The internal signals can
be exemplified as a certain subset of the state vector or some parameters which are not
considered as state signals due to their non-fast varying behavior but nonetheless have the
ability to alter the underlying dynamics if they are to exceed specified thresholds. Since
most of the control problems in industrial applications are established on the plant having
a linear or nonlinear dynamic model for certain regimes, it is important to monitor whether
the plant in question operates in the stated regime where the control algorithm is designed
for. The scheduled control algorithms for example, require the regime to be monitored in
certain intervals or in real time due to the fact that depending on the regime or the region
in state-space, different control algorithms may be used [4]. Generally, large portion of the
industrial applications are given in Partial Differential Equation (PDE) form and by dis-
cretizing the models, a more tractable Ordinary Differential Equation (ODE) representation
is obtained. However, these approximations may depend on the assumptions made for
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critical parameters of the system and the dynamical model approximations are only valid
for the known intervals of the terms [5–7].

In addition to the model approximations, the parameter estimation is also required to
determine the occurrence of a fault and whether a corresponding control algorithm is to be
used to maintain the operation or the operation is to be ended [8,9]. Often in fault detection
problems, anomalies are contingent on the parameter values or behaviors [10,11]. For
instance, when monitored parameters exceed corresponding thresholds, or they display
some behaviors that might be considered as problematic which may hint at some issues
associated with the plant in question, which at that point some other control action might
be needed. These types of schemes are implemented in Model Predictive Control (MPC)
algorithms [12].

Generally, for system identification problems, all of the states cannot be measured, and
only some subset of the state vector can be measured through a noisy environment. There
are methods to compute more accurate output signals using the assumed measurement
models and using various types of sensors with different noise variance specifications.
Using sensor fusion algorithms given in [13–15], it is possible to obtain measurements
with lower noise variances. Unfortunately, in many cases most of the state signals are not
available to measure and a dynamic and measurement models are used along with output
signals to estimate them. For real time state estimation applications, to only estimate the
states KF (Kalman Filter) is a prominent candidate where the system model is approximated
to be a linear model and there is a reason to believe that this model is valid in a large
operating range. For nonlinear dynamics however, Extended Kalman Filter (EKF) can be
used where the system is linearized, and the noise related terms are propagated through
this linearized system assuming the noise variance is small enough for the approximation
to be tolerable. For the heavy tailed noise characteristics however, this approximation
may not hold especially for the cases where there is a strong likelihood that the gaussian
noise propagated through a nonlinear function is not gaussian and an approximation close
to a gaussian whose central moments are computed using the linearized version of the
system dynamics may not be valid. To estimate the central moments of the noise terms
better an Unscented Kalman Filter (UKF) might be used, which for some cases estimates
the noise characteristics better than EKF, however, it still uses the assumption that the
acting noise can be accurately modeled using a normal distribution [16,17]. For the systems
where the gaussian noise assumptions fail to model the system, Particle Filter (PF) can be
used where the pdf (probability density function) of the posterior is estimated using a set
of points and iteratively interpolating them to have a better pdf in each time step. This
method is especially popular with the Simultaneous Localization and Mapping (SLAM)
implementations [18,19].

As for the batch estimation techniques, it is possible to estimate the terms with lower
corresponding variances assuming the fact that not only the signal values up to the current
time is used but also the future values of the signals can provide information to lower
the estimation error variance. EKF-smoother and its computationally efficient version
Rauch–Tung–Striebel (RTS) smoother is often preferred to construct the state trajectories
and parameter estimations [20,21]. Additionally, there are also Bayesian smoothers that
use different approaches where not only the value of the state vector at a given instant is
estimated but also the whole state trajectory is determined using dynamical programming
techniques [22].

In this paper, a GLSDC (Gaussian Least Square Differential Correction) based algo-
rithm is used to estimate the parameters of a given PMSM (Permanent Magnet Synchronous
Motor). GLSDC is a systematic method that is used to reconstruct the trajectories of the
states and estimate the parameters in cases where the input and output signal measure-
ments are available [23]. It utilizes the structure of the model when iteratively producing
the next estimates of the parameters unlike gradient based methods, where gradient and
hessian matrices are computed often through numerical means and does not make use of
the assumed dynamical model which is available [24,25]. In cases where the state transition
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matrix is easy to compute through analytical manipulations, that can shorten the simulation
time, but this is generally not the case considering that it is not tractable to analytically
derive that term. Instead, numerical computation is used in this paper to compute the state
transition matrix.

This paper is organized as follows, PMSM system dynamics are given in Section 2,
where the model and the parameters are presented. In Section 3, the parameter estimation
algorithm is detailed, and the required derivations are stated in detail. Finally, the numerical
simulation results are given in Section 4, where the effectiveness of the employed algorithm
is assessed for different scenarios. The simulation results are discussed in Section 5, and a
couple of different use cases are suggested for the stated parameter estimation algorithm
for the future works.

2. PMSM Dynamic Model

For the sake of brevity, a simplified version of the rotating reference frame model is
studied, although the parameter estimation algorithm can be applied to the problem in a
more general setting. The assumed PMSM dynamic model is given as,

.
x1 =

(
−p1

p2

)
x1 +

(
p3

p2

)
x3 sin(x4) +

(
1
p2

)
u1 (1)
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(
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(
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(
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)
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(
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)
x3 (3)

.
x4 = x3 (4)

where, the parameters p1, p2, p3, p4, p5 denote conductor resistance, winding inductance,
magnetic flux constant of the motor, moment of inertia of the rotor and the load, vis-
cous friction constant of the rotor, respectively. The states x1, x2, x3, x4 denote direct and
quadrature axis currents, angular velocity and angular position of the rotor, respectively.
As input signals, u1 and u2 denote direct and quadrature axis applied stator voltages,
respectively [26]. The measurement model is given as,

y1 = x1 + v1 (5)

y2 = x2 + v2 (6)

where, v1 and v2 represent Additive White Gaussian Noise (AWGN) terms for the mea-
surement model with v ∼ N (0, R), where R represents the noise covariance matrix. To
facilitate the derivations that are to be introduced in the following section, the listed
variables are defined,[

p1 p2 p3 p4 p5
]

:=
[ (

−p1
p2

) (
p3
p2

) (
1
p2

) (
−3p3
2p4

) (
−p5
p4

) ]
(7)

At this point, the system model can be given in implicitly as,

.
x = f (x, u,p, t), x0 = x(0) (8)

y = g(x) (9)

The term, p represent the parameters that are to be estimated. In addition to the
parameters, the initial condition of the state vector is also required to be estimated. To that
end, GLSDC algorithm to iteratively estimate these terms are employed and it is derived in
the following section.
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3. GLSDC Based Parameter Search Algorithm

The parameter estimation problem can be stated generally as the following optimiza-
tion problem as,

min.
p̂,x̂0

J(p̂, x̂0) =
∫ t f

to
‖ŷ(t)− y(t)‖2dt

s.t.

d
dt x̂(t) = f (x̂, u, p̂, t)

x̂0 = x̂(t0)
ŷ(t) = g(x̂(t))
pu ≥ p̂ ≥ pl

x0u ≥ x̂0 ≥ x0l

(10)

where, (pu,pl) and (x0u, x0l) terms denote the upper and lower boundaries of the esti-
mated parameters and initial condition estimates, respectively.

To solve the problem, state transition matrix is used, whose properties are listed as,

x(t) = Φ(t, to)x(t0) (11)

d
dt

Φ(t, to) =

[
d f
dx

]∣∣∣∣
t=to

Φ(t, to) (12)

Φ(to, to) = I (13)

State transition matrix analytically given as,

Φ(t, t0) =
∂x(t)
∂x0

(14)

Which represents how the state varies with respect to its initial value. State is also
dependent on the parameter set. The term that represents the dependence of the state
vector to the parameter is given as,

Ψ(t, t0) =
∂x(t)
∂p

(15)

Whose dynamics are derived as,

d
dt

Ψ(t, t0) =

[
∂ f
∂x

]∣∣∣∣
t=to

Ψ(t, t0) +

[
∂ f
∂p

]∣∣∣∣
t=to

(16)

Ψ(to, to) = 0 (17)

And the final term necessary to state the algorithm is the output matrix, which is
given as,

Hk =
[

∂g
∂x Φ(t, t0)

∂g
∂x Ψ(t, t0)

∂g
∂p

]
k
, k = 1, 2, . . . N (18)

Since the measurements are taken at each sampling interval Ts, and considering that
there are N measurements are taken. Output distribution matrix for the complete batch of
signals is given as,

H =
[

HT
1 HT

2 . . . HT
N

]T
(19)

Finally, the error between estimated output signals and the measured output signals
are given as,

ek = y(kTs)− ŷ(kTs), k = 1, 2, . . . N (20)

Using this term, the error signals are concatenated, and the following is defined,

=
[
eT

1 eT
2 . . . eT

N

]T
, k = 1, 2, . . . N (21)
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After analytically computing the entries of the matrices
[

∂ f
∂x

]
,
[

∂ f
∂p

]
,
[

∂g
∂x

]
,
[

∂g
∂p

]
, the

GLSDC based parameter estimation algorithm is illustrated in the flowchart diagram given
in Figure 1.
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Figure 1. The block diagram of the GLSDC based parameter estimation algorithm.

4. Simulation Results

To test the effectiveness of the parameter estimation algorithm derived in the previous
section, a series of simulations have been conducted. The values of the parameters to be
estimated are given in the Table 1 with their corresponding modified versions.
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Table 1. The numerical values of the parameters used in the simulation.

Parameter Value Modified Parameter Value

(p1, p1 l , p1u) (0.1, 0.01, 1) (p1,p1 l ,p1 l) (−1,−100,−0.01)

(p2, p2 l , p2u) (0.1, 0.01, 1) (p2,p2 l ,p2 l) (10, 0.01, 200)

(p3, p3 l , p3u) (1, 0.01, 2) (p3,p3 l ,p3 l) (10, 1, 100)

(p4, p4 l , p4u) (1, 0.01, 2) (p4,p4 l ,p4 l) (−1.5,−300,−0.007)

(p5, p5 l , p5u) (1, 0.01, 2) (p5,p5 l ,p5 l) (−1,−200,−0.005)

Using the model stated in (1) to (4), the correct output measurement values are
collected. The output measurements are assumed to have been corrupted by noise AWGN
whose covariance is 0.01I2. Using, Ts = 0.01 s sampling period, and 3 s simulation run
time, the collected measurements have been fed to the parameter estimation algorithm. As
a result of this, the true values of the parameters have been estimated within less than 5
percent accuracy. The convergence of the parameters is illustrated in the Figure 2. Where,
p represents the correct parameter vector, given as [p1,p2,p3,p4,p5]

T and the term. p̂
represents the estimated parameter vector. The subscript i indicates the iteration number
in the method.
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Figure 2. The convergence of the estimation errors.

Using those measurement values, the real system parameters are estimated, and the
system model is constructed. To assess the performance of the estimation, constructed
models’ state trajectories and the state trajectories of the real system are compared. For the
same input signal, the state signals of the real and the estimated system is recorded for 10 s,
and given in Figure 3.
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As it can be seen from the trajectories of the states of the real and the model systems,
the parameter estimation algorithm is effective in estimating the trajectories of the real
system. In addition to the parameters, initial values of the states estimated using the
algorithm. The convergence of the estimated terms is given in two separate 3D plots in
Figure 4 to illustrate the convergence of the terms.
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To illustrate the nonconvex nature of the problem, the cost function is plotted against
the estimated terms and respective plots are given in Figure 6, where cost with respect to
the parameters and initial state values can be analyzed.
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For a reasonable starting point, genetic algorithm based methods can be implemented.
However, due to the small nature of the problem a couple of initial starting points can be
tested in the parameter space and the fittest one can be used.

5. Conclusions

A GLSDC based parameter estimation algorithm is used to obtain a system model
for a given PMSM dynamics. GLSDC algorithm is especially useful in estimating the
embedded terms in the state space dynamics and an existing assumed dynamic structure
for the system. For the cases where there is a possibility to apply a desired signal to the
system such that inherent small nonlinearities are made apparent, the effectiveness of the
algorithm becomes more evident for the estimating the coefficients of the small nonlinear
terms. To prevent a possible numerical error,

(
HTH+ αI

)−1HT term can be used instead

of directly using the pseudoinverse term,
(
HTH

)−1HT , to update the estimated terms. In
addition to that, a moment-based update techniques also can increase the speed of the
convergence. The algorithm is tested in a given simulation and the results are given and
interpreted accordingly. There are several evolutionary based optimization algorithms
can be used to estimate the parameters and the initial state values, however, it has been
determined that in general, the number of simulation number that is required to estimate
the terms are higher compared with the algorithm that is stated. Additionally, this type
of estimation procedure can also be utilized to determine which parameter heavily affect
the state trajectory at a given time instant. For example, for some systems, first N data
points of the measurement can suffice to estimate a subset of the parameters and last N
data points can suffice to estimate the rest of the parameters. Therefore, which parameters
affect the state trajectory at the initial time of operation and later time of operation can be
analyzed by using that type of algorithm.
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