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Abstract: Buildings account for a significant portion of our overall energy usage and associated
greenhouse gas emissions. With the increasing concerns regarding climate change, there are growing
needs for energy reduction and increasing our energy efficiency. Forecasting energy use plays a
fundamental role in building energy planning, management and optimization. The most common
approaches for building energy forecasting include physics and data-driven models. Among the data-
driven models, deep learning techniques have begun to emerge in recent years due to their: improved
abilities in handling large amounts of data, feature extraction characteristics, and improved abilities
in modelling nonlinear phenomena. This paper provides an extensive review of deep learning-
based techniques applied to forecasting the energy use in buildings to explore its effectiveness and
application potential. First, we present a summary of published literature reviews followed by an
overview of deep learning-based definitions and techniques. Next, we present a breakdown of
current trends identified in published research along with a discussion of how deep learning-based
models have been applied for feature extraction and forecasting. Finally, the review concludes with
current challenges faced and some potential future research directions.

Keywords: forecasting; deep learning; energy; building; district; component

1. Introduction
1.1. Motivation

Buildings and the building construction sector accounted for approximately one-third
of the global energy consumption and nearly 40% of the global CO2 emissions in 2018 [1].
Moreover, these percentages are expected to increase in coming years. Therefore, reducing
energy usage and increasing energy efficiency in buildings is paramount to helping achieve
our overall sustainability. Forecasting and prediction of energy loads in buildings under-
pins many different approaches and strategies for energy planning, management, and
optimization. Such applications are not limited to but include model predictive controls,
fault detection and diagnosis, energy demand side management, demand response, and
optimization. Medium and long-term forecasts can be applied for scheduled maintenance
and renovations and urban planning.

Common approaches for building energy models can be classified into physics-based
and data-driven models [2]. Furthermore, data-driven models can be categorized into
(i) black-box based models, or (ii) grey-box models. Physics models, often referred to as
white-box or forward models are based on comprehensive sets of physics-based equations.
Currently, there are many softwares which apply such models including TRNSYS, eQuest,
EnergyPlus, DeST etc. The principle advantage of physics-based models is their detailed
formulation of the system and components, thus allowing insight into the dynamics of the
system. The main disadvantage of such models is that they require numerous measured
parameters for development and calibration. In many instances, obtaining the necessary
parameters is onerous. Furthermore, the heating, ventilation and air conditioning system
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(HVAC) parts and components degrade over time, thus stressing the requirement for
on-site measurement.

In contrast, data-driven models apply mathematical models extracted from measure-
ment data. As a result, such models do not require an extensive set of parameters or
detailed knowledge regarding the internal components of the system or building. Fur-
thermore, such data is becoming more easily accessible as many buildings have deployed
monitoring systems through their smart meters or building automation systems (BAS).
Therefore, such readily available data can be leveraged for developing forecasting building
energy-based models.

1.2. A Summary of Review Papers on Data-Driven Building Energy Models

As data-driven models have begun to increase in popularity in recent years due to
their advantages, a variety of different literature review papers have been published. Each
review has focused on a different aspect of building energy models. This section is meant
to provide a summary of the literature reviews published from 2012 to 2020 and highlight
the focus of each paper. This range is selected based on recent advancements in the field
of artificial intelligence, particularly deep learning (DL)-based techniques which began to
increase in popularity around 2015–2016 [3].

In 2012, Zhao and Magoules reviewed the prediction of energy consumption of
buildings and compared physics, statistical, and artificial intelligence (AI)-based models [4].
Future research directions proposed within this paper included: the development of higher
accuracy models, integration of such models to building energy management systems, and
the establishment of a collection of building data for future researchers. Kumar et al. [5]
in 2013 reviewed the capabilities of artificial neural networks (ANNs) for building energy
modelling and prediction. Ahmad et al. (2014) reviewed ANN, support vector machines
(SVM), and hybrid models for electrical forecasting of building energy use [6]. Ahmad
et al. noted that each of the model types have their own merits and it is difficult to decide
which in fact may be better; however, combining models may improve forecasting accuracy.
Li et al. (2014) reviewed energy models and their integration with building controls and
operations [7]. Li et al. concluded that there is still a long way to go in order to make the
methods applicable, and future work should focus on reducing the computational costs
and memory while maintaining accuracy before on-line practical applications.

Wang and Srinivasan in 2017 investigated AI-based prediction of building energy
use focusing on single point and ensemble-based models (multiple forecasting models
integrated into a single overall model) [8]. Daut et al. (2017) reviewed conventional
and AI-based approaches for forecasting electrical energy in buildings [9]. Deb et al.
(2017) reviewed time series-based forecasting techniques for building energy consumption
highlighting prominent algorithms and hybrid techniques [10].

Amasyali and El-Gohary in 2018 provided a granular review for the application of
machine learning (ML) algorithms applied to building energy prediction [11]. Among their
conclusions about future research, the authors recommended that deep learning algorithms
require further research as they have not yet been sufficiently studied. Furthermore, in
2018, Wei et al. reviewed data-driven approaches applied to classification and prediction
purposes for building energy [12], focusing on: prediction, consumption profiling, mapping,
benchmarking, and retrofitting for building energy. Ahmad et al. in 2018 reviewed
forecasting, mapping, benchmarking and profiling of building energy models with a focus
on how such models have been applied for building and large-scale applications [13].

In 2019, Bourdeau et al. reviewed data-driven models for the forecasting of building
energy consumption [14]. Prevalent data-driven methods (time series, statistical, and ML)
for data processing and model applications were reviewed, along with a breakdown of
trends. Furthermore, in 2019 Mohandes et al. provided a comprehensive review of artificial
neural networks applied for building energy analysis, HVAC equipment applications and
indoor air temperature prediction within buildings [15]. Among their recommendations,
the authors noted that future work should include the exploration of deep learning-based
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techniques. Moreover, a review of ANN models was published in 2019 and focused on the
application of ANN models for forecasting building energy use [16]. The authors addi-
tionally noted that future work should focus on DL-based models. In 2020, Sun et al. [17]
presented a review for data-driven models applied to energy prediction with a focus on:
(i) feature engineering, (ii) data-driven algorithms (statistical and ML), and (iii) factors
considered for outputs (e.g., temporal granularity, scale, updating, etc.).

It should be noted that to the best of the authors’ knowledge, to date there have been
no literature review papers which have focused on DL models applied for forecasting
energy use in buildings. Despite this, a few of the review papers do recommend that future
work should focus on such techniques. Furthermore, it should be noted that in most papers
the authors did not specify a difference between forecasting and prediction; often, both
words were used as synonyms. However, we make a clear distinction between the two.
Within the context of this review, forecasting is defined as the estimation of future value(s)
of a target variable X(t + 1) to X(t + n) (where t is the time). In contrast, prediction is the
estimation of current values for a target variable X(t). The distinction between the two
is based on error. Typically, a prediction model estimating a value at a current time will
contain a lower error than a forecasting model, which estimates values at a future time step
(for example, one month in advance).

1.3. Purpose of the Literature Review

While previous literature reviews have been beneficial for reviewing and describing
the current state from a variety of different applications of building energy-based models
(data-driven, ML, electrical forecasting, ANN, etc.), there remain many gaps to date:

1. Firstly, as noted by the review paper [17]; there is a lack of review papers which focus
on novel techniques applied to forecasting energy use in buildings. Furthermore,
it is noted in review papers [11,14–17] that one of the most prominent emerging
techniques for data-driven energy models is deep learning. Therefore, this paper aims
to address set gap. To the best of the authors’ knowledge, there is currently no review
paper, which focuses directly on this topic.

2. Secondly, it was noted by review papers [11,15,16] that future research is required for
deep learning-based building energy applications. However, with no review papers
on this topic, researchers may miss the accomplished work by previous researchers.

3. Finally, it is noted in review paper [11] a future research direction should be the
establishment of a roadmap of ML-based building energy models. While, this work
focuses on achieving a roadmap for DL-based techniques; it contributes to the overall
future research direction proposed in [11].

The purpose of this paper is to provide a review of how deep learning-based tech-
niques are applied to forecast energy usage in buildings. This work addresses the previ-
ously stated gaps in research found over the various literature review papers published.

1.4. Objectives and Contributions of This Literature Review

Deep learning is widely applied to both regression and classification in buildings and
energy systems. To date, the applications of sfuch techniques is quite vast as they have
been applied to a variety of topics including (but not limited to): energy generation [18],
electric grid/smart grids (transmission, distribution, theft prevention) [19], electricity price
forecasting [20], etc. Furthermore, such models can be applied beyond the context of
energy-based forecasting to applications such as: air pollutants [21], bitcoin forecasting [22],
and many other fields such as business, finance and healthcare. Due to such a wide variety
of applications, this work is limited to a discussion of such techniques for forecasting
building energy usage. The electric-gas integrated energy systems and renewables, and
any other integration of systems such as fuel cells, absorption and adsorption systems, are
beyond the scope of this literature review.

This review is limited to papers from publishers such as Elsevier, Taylor and Francis,
MDPI, IEEE Xplore, and John Wiley and Sons, and from various conference proceedings



Energies 2021, 14, 608 4 of 26

such as American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE)
Transactions, and International Building Performance Simulation Association (IBPSA).

Expanding further, this paper aims to accomplish its purpose through a granular
review of publications applying DL techniques for building energy forecasting. Based on
this approach, fundamental questions related to the applications of deep learning-based
techniques are addressed including: (i) How and where have deep learning-based tech-
niques been applied for forecasting energy use in buildings? (ii) What are the prevailing DL
forecasting model types, which have been deployed? (iii) Has there been any performance
effects from applying the DL-based techniques compared with other ML or data-driven
models? and (iv) What are the challenges and limitations faced with implementing deep
learning-based models? Answers to set questions may help future researchers understand
the trends, gaps, and challenges faced. Compared with other existing studies on similar
topics, the main contributions of this paper are:

1. Firstly, we introduce a framework for fundamental definitions, summarize the basic
structures of deep learning, and classify their applications

2. Secondly, we summarize and review current trends of deep learning techniques
applied to building energy forecasting

3. Finally, we investigate future developments of DL for the building energy modeling
field

1.5. Research Methodology

The research and cataloging methodology applied in this work followed five steps.
First, a summary of previous literature review-based papers was completed. This was
accomplished in order to: (i) identify relevant trends throughout research over the past
decade highlighting research gaps, emerging trends and suggested future work related
to the application of DL techniques; and (ii) build a list of nomenclature, keywords and
phrases.

Secondly, a search was conducted over available publication sources. In conducting
the search, two approaches were applied to find potential papers: (i) conducting key-
word and key-phrase(s) based searches on relevant websites related to the scientific study
of buildings, energy, and data-science; and (ii) searching through the references lists of
literature review and case study papers obtained.

The third step involved the screening/filtering of collected papers. Each paper was
screened to ensure that they: (i) contained sufficient information to be cataloged, (ii) applied
at least one deep learning-based technique within the paper, (iii) one or more of the target
variables was a building energy load, and (iv) applied a forecasting model. Papers that did
not meet these criteria were then removed from the pool of overall papers and, therefore,
were not used in the analysis.

The fourth step aimed at reviewing each publication and cataloging parameters
within based on a standard set of criteria. The information recorded included: purpose
and applications, data characteristics of the case study, forecasting model properties (type,
targets, forecast horizon, hyperparameters tuning approach), and performance of the
models.

The fifth and final step of this methodology included the analysis to identify trends in
research and answer the objectives of this review. Based on this analysis, research gaps in
published research are identified, future research directions are postulated, and limitations
are discussed.

The paper is organized as follows. Section 2 provides a general introduction of deep
learning and their classifications. Section 3 presents a breakdown of current research trends.
Section 4 provides a review of published articles, which have applied deep learning-based
techniques for feature extraction. Section 5 presents a review of papers which have applied
deep learning-based forecasting models. Section 6 discusses the challenges and future
work. Section 7 concludes this review.
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2. Deep Learning Techniques

This section presents the basic definitions, classification and structures of deep learning
which have been applied in research. Generally, it was observed that the most popular
deep learning-based techniques applied through the review include: autoencoders (AE),
recurrent neural networks, and deep neural networks (DNN). Techniques such as deep
belief networks, restricted Boltzmann networks, and convolution neural networks have
been applied, however, in fewer applications. This section provides a summary of the main
deep learning-based techniques applied to date. An in-depth discussion for the techniques
and merits of such models is beyond the scope of this work.

2.1. General Overview, Background and Classifications

Deep learning-based techniques have grown in popularity over the past few years
and have begun to be applied throughout various research fields. This rise in popularity
is a result of: (i) their ability to handle large amounts of data, (ii) their improved feature
extraction abilities, and (iii) their improved model performances. In order to provide a
general overview of some of the techniques and approaches of deep learning, this paper
will begin with a fundamental definition.

Deep learning is a sub-category of machine learning and has been defined as “repre-
sentation-learning methods with multiple levels of representation, obtained by composing
simple but non-linear modules that each transform the representation at one level (starting
with the raw input) into a representation at a higher, slightly more abstract level” [3].
Shallow architectures refer to one to three levels of non-linear operations, whereas, deep
architectures contain four or more levels [23]. The use of deep learning offers some
potential advantages and disadvantages over methods that are more traditional. Firstly,
the convention has been for the practitioner to extract good features themselves. This
requires a bit of domain expertise and engineering skill. However, deep learning methods
can automatically learn using a general learning procedure and thus do not require such
domain expertise. This is a key advantage of deep learning, in that feature extraction can
becomes automatically learnt [3]. Secondly, deep-learning methods can easily incorporate
large amounts of data in order to make accurate predictions. Thus, as big data has become
a problem in recent years, deep learning offers a potential solution to overcoming set
problem. Thirdly, when compared to conventional ANNs, deep learning models can
hold and store more information within the neurons. This can allow learning distributed
representation (many-to-many relationships between types of representations) which
enable generalization to new combinations of values not explicitly shown in learning
data [3]. A disadvantage of deep learning methods is that they are typically difficult to
train and contained a large number of hyperparameters.

To the best of the author’s knowledge, there have been three main ways to date in
which deep learning-based models have been applied to building energy forecasting:

1. Increasing the number of hidden layers in a feed forward neural network/multi-layer
perceptron

2. Applying some recurrent neural networks (RNN, long-short term memory (LSTM),
gated recurrent units (GRU), etc.). Such recurrent neural network models may have
a single (or multiple hidden layers), however, they still may be considered a deep
learning approach due to their training approaches. Unfolded, which occurs in
training of the network, such models are consider networks with very deep structures
as information from previous states is passed to current states [24].

3. Sequentially coupling of different types of algorithms into an overall structure (for ex-
ample, coupling a autoencoder for feature extraction with a support vector regression
forecasting model)

2.2. Autoencoder

An autoencoder (AE) is a neural network consisting of multiple hidden layers. Each
autoencoder consists of an encoder (EN) and a decoder (DE) section. The aim of an
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autoencoder is to learn the representation for a data set through training in order to
reconstruct the output. The EN maps the input into a hidden representation, while the DE
maps the hidden representation to an output. Thus, given an input data set X, the encoder
maps the data to a representation of a hidden space, h = f(x), while the decoder, then
obtains the hidden representation to reconstruct the output g(h) = X′. Training attempts to
minimize the difference between the input and output such that X approximately equals
X′. Typically AE models are applied for dimensionality reduction/feature detection and
encoding features in large datasets. Figure 1 presents the structure of an autoencoder.

Energies 2021, 14, x FOR PEER REVIEW 6 of 27 
 

 

a single (or multiple hidden layers), however, they still may be considered a deep 
learning approach due to their training approaches. Unfolded, which occurs in 
training of the network, such models are consider networks with very deep 
structures as information from previous states is passed to current states [24]. 

3. Sequentially coupling of different types of algorithms into an overall structure (for 
example, coupling a autoencoder for feature extraction with a support vector 
regression forecasting model) 

2.2. Autoencoder 
An autoencoder (AE) is a neural network consisting of multiple hidden layers. Each 

autoencoder consists of an encoder (EN) and a decoder (DE) section. The aim of an 
autoencoder is to learn the representation for a data set through training in order to 
reconstruct the output. The EN maps the input into a hidden representation, while the DE 
maps the hidden representation to an output. Thus, given an input data set X, the encoder 
maps the data to a representation of a hidden space, h = f(x), while the decoder, then 
obtains the hidden representation to reconstruct the output g(h) = X’. Training attempts to 
minimize the difference between the input and output such that X approximately equals 
X’. Typically AE models are applied for dimensionality reduction/feature detection and 
encoding features in large datasets. Figure 1 presents the structure of an autoencoder. 

. 

Figure 1. Example structure for an under-complete autoencoder. 

2.3. Recurrent Neural Networks 
Recurrent neural networks (RNN) are a classification of neural networks specialized 

in sequence data. A RNN may be distinguishable from a feed forward neural network 
(FFNN) by the use of a feedback loop connected to their past calculations. The use of a 
feedback, allows the RNN to contain a ‘memory’ and utilize information from previous 
outputs over time. Therefore, values calculated for an RNN at time (t) are affected by 
values the models reached in prior steps (t-1). With time series data, RNN can learn and 
model the temporal behaviors exhibited within the time series data and use the feedback 
connections in order to recall calculations from previous steps. When applied to 
forecasting energy in buildings, the most prominent RNN networks that have been 
applied include: the simple recurrent neural network, gated recurrent unit (GRU), and 
long-short term memory (LSTM) neural networks. GRU and LSTM can be differentiated 
from the RNN by the use of gates. Gates are applied in order to control information flow 
and help mitigate short-term memory losses and overcome the vanishing gradient 
problem. Figure 2 illustrates the internal structure for each of the recurrent models (RNN, 
GRU, and LSTM). 
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2.3. Recurrent Neural Networks

Recurrent neural networks (RNN) are a classification of neural networks specialized in
sequence data. A RNN may be distinguishable from a feed forward neural network (FFNN)
by the use of a feedback loop connected to their past calculations. The use of a feedback,
allows the RNN to contain a ‘memory’ and utilize information from previous outputs over
time. Therefore, values calculated for an RNN at time (t) are affected by values the models
reached in prior steps (t− 1). With time series data, RNN can learn and model the temporal
behaviors exhibited within the time series data and use the feedback connections in order
to recall calculations from previous steps. When applied to forecasting energy in buildings,
the most prominent RNN networks that have been applied include: the simple recurrent
neural network, gated recurrent unit (GRU), and long-short term memory (LSTM) neural
networks. GRU and LSTM can be differentiated from the RNN by the use of gates. Gates
are applied in order to control information flow and help mitigate short-term memory
losses and overcome the vanishing gradient problem. Figure 2 illustrates the internal
structure for each of the recurrent models (RNN, GRU, and LSTM).
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Where t is the step (t, t − 1, . . . t − n), xt is the input vector, ht is the hidden layer
and/or output vector, tanh and σ are activation functions, and cc is the cell state. A detailed
overview of each models functionality, governing equations and merits is presented in
references [24–27].
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2.4. Convolutional Neural Networks

Convolutional neural networks (CNN) are a variation of ANN models built to handle
larger complexities of data. Specifically, CNN are specialized in processing input data with
grid shaped topologies, this has made them suitable for processing 2D images. However,
they have achieved promising results with 1D non-image data as well (time series). A CNN
model consists of four main parts: (i) the convolutional layer which creates feature maps
of the input data (ii) Pooling layers which are applied to reduce the dimensionality of the
convoluted feature, (iii) Flattening, which then adjusts the data into a column vector, and
(iv) a fully connected hidden layer which calculates the loss function. Figure 3 provides
an illustration of a CNN. A detailed overview for the governing equations and merits of a
CNN can be found in reference [24].
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2.5. Deep Belief Networks

Deep belief networks (DBN) are a type of DNN originally developed by Hilton et al. [28].
DBNs are a variety of algorithms that use probabilities and unsupervised learning ap-
proaches to produce outputs. A fundamental aspect of the DBN are the restricted Boltz-
mann machines (RBM). The RBM is a shallow two-layer neural network used to learn
probability distributions over its input data space so that its configuration can exhibit
desirable properties [29]. The first layer of the RBM is termed the visible layer, or input
layer, while the second is the hidden layer. Figure 4 presents an illustration of the RBM.
Applications for the RBM include: dimensionality reduction, regression, classification,
collaborative filtering, and feature learning.
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In contrast to a RBM, the DBN architecture consists of stacking together multiple
RBMs in order to learn more abstract features and information within the input data.
Figure 5 provides an illustration for a DBN. Stacking together multiple RBMs can create
models sufficiently large, however, the training of such large models may be cumbersome.
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More information regarding the governing equations and merits of RBMs and DBNs can
be seen in references [24,28,29].
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2.6. Other

One of the most prominent techniques applied for forecasting energy in buildings has
been the deep feed forward neural network (DFFNN). Such models are differentiated from
the standard feed forward neural network (FFNN) in that they contain multiple hidden
layers in comparison to the standard FFNN. Additional layers are added in order to learn
more information from the data. Many other deep learning-based structures have been
proposed and applied in research to date. A few additional DL techniques which have not
been covered include: stacked extreme learning machines, generative adversarial networks,
echo state networks, deconvolutional networks, etc.

3. Current Trends

We reviewed publications over the years 2000 to October 2020. A total number of 63 rep-
resentative publications were identified and are the basis for this analysis. Appendices A–C
provide the catalogued work. This section discusses the current trends observed over the
publication data to date.

3.1. Building Application Level

Data-driven models require validation of methods/algorithms on test beds in order
to explore and validate their effectiveness. We categorically breakdown these test beds
into four distinct levels: (i) the district level (the load of one or more overall building
energy loads aggregated together); (ii) the building level (an overall energy load for a single
building); (iii) the sub-meter level (an energy load within a building, less than an overall
energy load, that consists of a group of components aggregated together); and (iv) the
component level (a single energy load of an appliance/component within a building). The
building level may play an influence on the application of the forecasting model along with
the amount of data, time steps, and data available. Based on the analysis, the observed
breakdown of case studies was found to be: 37% at the district level, 53% for whole
buildings, 6% sub-meter, and 4% at the component level. This prevalence towards districts
and whole building case studies may be a result of leveraging available data from BAS
systems currently installed for district heating/cooling systems and large scale building.

3.2. Data Properties

Data size refers to the amount/length of data used for each case study. As DL-based
techniques are proposed to help face big data problems, it was expected that models would
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be built on years of available data in order to test their performance in handling large
volumes of data. The observed breakdown of published work found 17% of models used
under six months of data, 22% applied six-months to one-year of data, 58% of papers
applied greater than one year of data, and 3% did not specify their data size.

Furthermore, data types were analyzed within this review. Based on review pa-
pers [11,16] there are three different types of data typically applied in research: (i) syn-
thetic/simulated data from a building simulation software such as eQuest and EnergyPlus,
(ii) real/measurement data, and (iii) benchmark data (e.g., provided from energy prediction
competitions). From the analysis conducted it was found that the overwhelming majority,
95%, of case studies have been applied to real/measurement data; followed by 3% for
synthetic and 2% for benchmark data.

3.3. Target Variables

Target variable refers to the energy usage the DL-based model has been applied to
forecast. We classified the target variables into the following categories (Figure 6): (i) Whole
building electrical energy, (ii) Heating energy, (iii) Cooling energy, (iv) Lighting energy,
(v) Natural-gas energy, and (vi) Sub-meter/Components energy use within the building.
Sub-meter and components include target variables such as chiller electric demand, electric
demand of fans, pumps etc.
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3.4. Input Types

Input refers to the regressors or features which have been applied as inputs to the
forecasting model. Selecting appropriate input data is a crucial step for all energy-based
models. For data-driven models, selection of proper inputs is challenging as (i) relevant
features are required for accurate forecasts, and (ii) relevant lengths of time are required
for each input variable (e.g., t, t − 1, . . . , t − n). Improper selection of input variables
and their lengths may lead to unnecessary computational time, costs, and may result in
poor forecasting performance. From the analysis conducted, it was observed that the most
popular types of features applied are: (i) environmental data (e.g., outdoor air temperature)
and, (ii) historical data (e.g., previous energy usage). Such findings are similar to those
found in reference [17] for data driven models. The prevalence towards historical and
environmental data could be a result of leveraging available data from sensors and the high
correlations between weather conditions and thermal energy requirements for a building.
Currently, it is difficult to say which variable is most important as this may be highly
dependent on the case study conditions such as location, climate, building type, building
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purpose etc. Furthermore, common feature selection methods applied include expert
knowledge, statistical-based and machine learning techniques. An in-depth analysis of
feature selection may be useful, however, it is beyond the scope of this work which will
focus on DL-based techniques for feature extraction.

3.5. Temporal Granularity

There are two main types of temporal characteristics of forecasting models: resolution
and forecast horizon. Resolution refers to the time step of the data, while forecast horizon
refers to the length of time into the future that the forecasting is made. The two temporal
granularities can be applied within a variety of ways for forecasting models, e.g., hourly
time step data forecasting a horizon of 24 h in advance. The resolutions of the applied
models were found to be 1% yearly, 0% monthly, 3% weekly, 6% daily, 41% hourly, and
49% sub-hourly.

Forecast horizon can be classified as long term (greater than three years), medium (two
weeks to three years), and short-term (less than two weeks) shown in references [30–32].
However, it should be noted that there is no set standard and the boundaries of the
previously stated classifications may vary among published articles. Based on the length
of the forecast horizon, the application of the model can vary. Medium and long-term
forecasts find applications for government standards, scheduled maintenance, and energy
saving-based policies. In contrast, short-term forecasting finds more applications in the
day-to-day control strategies and energy saving techniques such as demand response,
demand side management, optimization and control, etc. Figure 7 provides a breakdown
for the forecast horizons of applied research and show the most popular horizons are one
hour and 24 h ahead.
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4. Deep Learning-Based Applications in Feature Extraction

Feature extraction refers to processes that reduce the dimensionality of the initial
raw data set to more manageable groups for processing [33]. Large data sets require a lot
of computational resources in order to process, therefore, selecting appropriate and/or
combining features can help reduce the computational requirements. For forecasting-based
models, this reduction can lead to: accuracy improvement, overfitting risk reductions, and
decreased computational resources. For building energy forecasting, the application of
DL-based feature extraction techniques are a relatively new approach that have only begun
to occur recently. The applications for this model have been growing in recent years due to
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their quicker computational time and ease of development. Varieties of cases have explored
their efficiencies compared with other data-driven models.

In 2017, Fan et al. provided a comparison of four different feature extraction techniques
coupled with forecasting models [34]. The feature extraction techniques explored within
this paper included: (i) engineering methods, which relied on engineering expertise to
select the model, (ii) statistical, which calculated summary statistics of a time series to be
used as features, (iii) structural, which transformed the time series to the frequency domain,
and (iv) a deep learning autoencoder (AE). Extracted features were coupled with a variety
of different algorithms in order to forecast the cooling load for a building with a horizon of
24 h ahead (using 30 min time steps). The authors concluded that features extracted with
the DL-based technique usually led to the best forecasting performance, however, further
studies are required for testing.

Additionally in 2017, Li et al. compared a DL-based model of combined stacked au-
toencoders coupled to an extreme learning machine with popular data-driven methods [35].
The forecasting models compared to the DL-based included: a FFNN, SVR, generalized
radial basis function neural network, and multiple linear regression. All such models were
applied to a case study of a retail building, in order to forecast the whole building energy
consumption over a horizon of 60 min ahead at 30 min time steps. The authors observed
that the AE coupled to the extreme learning machine provided the lowest forecasting error
over their testing data set.

In 2018, Son et al. compared features extracted through three different techniques:
original, principal component analysis and an autoencoder [36]. The performance of each
technique was then explored as it was coupled to a SVR, FFNN, and a random forest
algorithm (RF). The case study for this experiment consisted of clusters of university
buildings. The models were trained with 15 min data, had a one-step ahead horizon, and
targeted the future electric load of each building cluster. Their observations noted that in
2/3 of the clusters, the coupling of an AE reduced the forecasting error. However, in 1/3 of
the clustering the forecasting error was maintained or slightly increased.

In 2019, Liu et al. applied an AE coupled with a deep deterministic policy gradient
(DDPG) and compared the models with a SVM and a FFNN [37]. Their experiments were
applied to a case study of an office building, targeting the electric demand of a ground
source heat pump and forecasting 5 min ahead. The authors observed that the AE-DDPG
surpassed the DDPG algorithm and was the highest performer.

In 2020, Moon et al. compared data-driven based techniques in order to forecast the
electrical energy consumption of a commercial office building up to 24 h ahead [38]. Two
coupled DL models were applied: (i) the proposed model, which consisted of an ensemble
of DFFNN, coupled to a principal component regression model, and (ii) an AE–RF model
previously shown in reference [36]. The two models were compared to a variety of other
data-driven models including: FFNN, persistence, multiple linear regression (MLR), K-
nearest neighbors, decision tree, bagging, gradient boosting machine, SVR, and DFFNNs.
The experiments showed that the proposed coupled model obtained the best performance
in most cases; in the few instances, which it did not, the AE-RF algorithm bested it. Thus,
the best performing models in this work were both coupled DL models.

However, while the previous models applied FFNN-based AEs; other authors have
begun to apply different neural network structures in AE topologies in order to leverage
their characteristics.

In 2018, Rahman et al. applied a LSTM-based AE, the outputs of this were concatenated
with the original input, and sequentially passed to a multi-layer neural network [39]. This
proposed model was then compared with that of a standard FFNN. The data-driven models
were applied over two case studies for medium to long term forecasting. The first case
study applied was a public safety building, with a target variable of the overall electricity
consumption and a forecast horizon of one week. The second case study consisted of
forecasting the electricity consumption of aggregated residential houses over a time horizon



Energies 2021, 14, 608 12 of 26

of one year. The authors observed that the models performed differently when the data
was aggregated or when long-term forecasts were made.

In 2019, Kim and Cho explored the effectiveness of a CNN coupled to a LSTM model
in order to forecast the overall electricity consumption of a residential house up to 60 min
in advance [40]. The model was compared to DL forecasting models including: LSTM,
Bi-directional LSTM, Attention LSTM, and a GRU model. The authors observed that
the CNN-LSTM model obtained the highest performance among the DL-based models.
Additionally, the authors explored time resolution changes to the data, aggregating minute
data into hourly, daily and weekly data for comparison. The results remained consistent
and demonstrated that the CNN-LSTM model obtained the best performances over the
temporal changes.

Furthermore in 2019, Kim et al. compared a LSTM-CNN model with a MLP, LSTM,
and CNN [41]. Three case studies consisted of industrial districts. For each case study, the
target variable was the overall electricity load, used 30 min time step data, and a forecast
horizon of a day ahead (48 time steps). It was observed that the combined LSTM-CNN
model obtained the best performance across all the case studies and varied lengths of
training data; however, there was an exception in one scenario, which observed an LSTM
model obtaining the best performance.

In 2020, Wang et al. compared the performances of DL models applied to forecast
energy loads (electricity, heating, and cooling) for a university campus [42]. The models
compared included: a LSTM-FFNN, LSTM-FFNN-GBDT, and LSTM-FFNN-AE-GBDT. The
proposed LSTM-FFNN-AE-GBDT model was shown to outperform other advanced models.

Furthermore in 2020, Zhang et al. proposed coupling a deep belief network and
an Elman network (ELM) in order to predict the stochastic features of a building energy
load [43]. The outputted feature sets of the DBM-ELM model were applied as inputs (along
with cyclic features extracted by a spectrum analysis) to an additional ELM in order to
generate the overall output forecasts. The proposed DL-based model was then compared
to a SVR, ELM, and a DBN model over two different case studies. Both case studies used
30 min time step data to forecast one-step ahead. The experiments demonstrated that the
proposed model achieved the best average performance between both case studies.

The published research demonstrates that in most case studies, the inclusion of DL-
based feature extraction has led to an increase in forecasting performances when compared
to standard data-driven based models. However, few papers have offered comparisons of
different DL-based feature extraction techniques against each other.

Fan et al. (2019) compared feature extraction through: (i) principal component analy-
sis, (ii) statistical measures, (iii) an auto-encoder, (iv) a convolutional auto-encoder, and (v)
a generative adversarial network [44]. Each feature selection method was then coupled
to different forecasting models of: (i) multiple linear regression, (ii) SVR, (iii) FFNN, and
(iv) extreme gradient boosting. All combinations of the feature extraction and forecasting
models were applied to a case study of an educational building. The case study applied
30 min time step data to forecast one step ahead and 24 h ahead (48 steps ahead). They ob-
served that for a given forecasting model, e.g., SVR, the application of an AE demonstrated
improved forecasting performance compared to those of the other feature extraction tech-
niques for the same model. Furthermore, the generative adversarial network AE achieved
the highest performance among the AE-based models.

In 2020, Zhang et al. compared stacked DL models including: a LSTM-ANN, a coupled
input and forget gate with ANN (CIFG-ANN), and a GRU-ANN [45]. Each recurrent model
was applied to extract features from the raw data set, and then coupled to an ANN model
to forecast the future cooling demand for a commercial building. The stacked models
were compared with non-stacked DL models of a LSTM, CIFG, and a GRU. Furthermore,
prominent ML models were applied including an ANN, SVR, RF, and a gradient boosting
tree (GBT). Each standard ML model used inputs based on four different types of feature
extraction processes. Such processes included domain knowledge, statistical, principal
component analysis (PCA), and raw data inputs. Thus, 21 different model types were
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compared to the stacked DL models. It was observed in their study that the stacked
DL models were the top performing models applied and obtain less error than there
non-stacked counterpart (LSTM-ANN compared to LSTM) and the standard ML models.

While the results look promising for the inclusion of DL-based feature extraction, there
have been a couple instances in which the inclusion has not yielded the top performing al-
gorithm. Nevertheless, in most published cases reviewed in this study, the implementation
of DL for feature extraction and coupled to a forecasting algorithm has led to an overall
high-performing forecasting model. To date, the applications of DL feature extraction
techniques for forecasting building energy are still within their infancy and more research
is required in order to compare such models over a variety of different case studies and
applications.

5. Deep Learning in Forecasting Models

This section explores how DL-based techniques have been applied as forecasting
models over published research. In this discussion, we separate papers based on the
categorical breakdown of Section 3.1 (district, whole building, and sub-meter/component).

5.1. Summary of Applications at the District Level

The district level is characterized by multiple whole building energy loads aggregated
together. However, not all districts are the same. For this work, we break down the
district levels based on their scale and into the following categories: (i) the Sector level,
constituting whole sectors (residential, industrial, etc.), (ii) the City level, which contains
multiple building types aggregated together, (iii) the Complex level, similar to the city
level and containing multiple building types, however, on a smaller scale than a city (e.g.,
university campus, hospital, etc.), and (iv) the Commercial-Residential level, which group
together multiple residential and/or commercial buildings. Such models are differentiated
from the complex level in that they only contain residential and/or commercial buildings
within the district. In contrast, the complex level can contain a larger variety of building
and building types (laboratories, hospitals, libraries, industrial buildings, retail stores
etc.). For each level, the applications and DL-based forecasting models will be discussed,
highlighting which target variables and the DL models applied. Table A1 in Appendix A
provides a summary for the district level applications.

5.1.1. Sector Level

To date, few papers have focused the application of DL-based models at the sector
level. However, based on the search conducted, it was observed that one of the first
instances for the implementation of DL-based forecasting models was at this level. In 2008,
Azadeh et al. applied a DFFNN in order to forecast the annual electricity demand of the
industrial sector [46]. The DFFNN model was compared with that of a regression-based
model. The results of this experiment showed that the DNN obtained less forecasting error.
Since then, published studies have been applied to natural gas-based target variables. In
2019, Laib et al. explored the application of DFFNN and a LSTM models in order to forecast
the next day gas consumption for the residential and industrial sectors [47]. Clustering
was used to partition the data, after which and MLP would decide on which LSTM model
to best handle the forecast. This proposed model was compared to benchmark forecasting
models and showed improved accuracy. Furthermore, in 2019 Su et al. explored the
effectiveness of stacked LSTMs coupled with LSTM models in order to forecast up to 10 h
ahead [48]. Models were tested on two case studies; (i) a benchmark data set, and (ii) a
natural gas consumption data set of sectors provided by the US Department of Energy. The
experiments demonstrated high accuracy over the forecast horizon.

5.1.2. City Level

City level models have received a lot of attention from the research community. The
majority of the applications have been to heating-based target variables [49–54] and natural
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gas-based ([55,56]). Common DL-based models applied to date include the DFFNN and
the LSTM.

In 2018, Suryanarayana et al. compared a DFFNN to other popular data-driven
models [49]. Their work explored the performances of such models over two case studies
for day-ahead forecasting. Their experiments demonstrated that the DNN model obtained a
better performance in both case studies that the linear models. While a powerful algorithm,
adding additional hidden layers have demonstrated instances in which it was not the top
performing algorithm when applied to forecasting district systems. In 2019, Xue et al.
compared SVR, DNN, and XGB algorithms in order to forecast the future heating demand
of a district heating system up to 24 h ahead [50]. The experimental results showed that
while not the top performing model the DNN was a close second. Koschwitz et al. (2018)
applied a two-layer nonlinear autoregressive exogenous neural nework (NARx) in order to
forecast the heating and cooling loads of a non-residential district [51]. The two-layer model
was compared with that of an SVR model and a single layer NARx model. The results
demonstrated that NARx models obtained a lower forecasting error, and that the single
layer NARx was the top performing model followed closely by the two layer NARx model.

LSTM models have begun to be applied in order to forecast heating demands for
district systems and shown promising results in references [52–54]. In 2020, Xue et al.
compared a variety of different algorithms in order to forecast the heating demand of a
district system [54]. Their experiments showed that the LSTM models were among the
highest-performing algorithms applied.

When applied to natural gas forecasting of districts, RNN models have shown encour-
aging results. Wei et al. (2019) explored the application of LSTM for forecasting natural gas
consumption of four cities [55]. The LSTM forecasting models were compared with those
of MLR, FFNN, and a SVR algorithms. The authors’ experiments demonstrated that the
LSTM models obtained higher accuracy than the other data-driven models. Furthermore,
in 2019 Hribar et al. compared RNN models to a variety of data-driven based models in
order to forecast the natural gas of a city with a one-hour and 24 h ahead horizon [56]. The
authors’ experiments observed that the RNN was the most accurate model and that the
accuracy of the models were improved with the inclusion of past weather data as an input.

5.1.3. Complex Level

Within the complex level, university campuses/educational districts constitute the
majority of the case studies. For such cases, the target variables have ranged from the
overall/electric loads (shown in references [36,57]), and multiple energy loads within the
district (e.g., electricity, heating, and cooling) [42]. Other notable applications for complex
level models have included case studies such as an industrial complex [41], hospital
complex [58], and a small eco-district [59]. Due to the small sample pool and lack of
comparison-based papers, it is currently still unknown if the applications of DL-based
models at this level would lead to any performance improvements. Therefore, it is wise that
future research focus on addressing set gaps and exploring the effectiveness of different
DL-based models on district complexes.

5.1.4. Commercial-Residential Level

The commercial-residential level is characterized by the grouping of commercial
and/or residential buildings together into a single district. To date, there have been two
main applications based on the target variables of the applied models: (i) heating ([60,61])
(ii) and the electric demand (shown in references [62–64]). The majority of the applied
models in research to date have been DFFNN-based. For instance, Yuce et al. (2017)
applied deep feed forward neural networks in order to forecast a district of residential
buildings [62]. The model proposed in this work used six parallel performing DFFNNs
each applied to forecast a specific building, after which the total building cluster would
be forecasted. The authors found: (i) the aggregated electricity demand forecast obtained
a lower error than the individual buildings, (ii) it was harder to forecast buildings with
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children under the age of 15 living inside, and (iii) the autumn season contained the
largest forecasting errors. LSTM models have shown promising results when applied to
commercial and residential level districts. For instance, Kong et al. compared such models
in order to forecast the electric loads of residential houses and the aggregation of such
loads for the substation level [64]. The LSTM model was compared with other prominent
data-driven models and their experimental results demonstrated that the LSTM model
obtained the lowest forecasting error.

5.2. Summary of Applications at the Building Level

Building level applications consist of forecasting models applied to estimate the future
values of a whole building energy load. In discussing the published research applied
at this level; we use the following categorizations: (i) institutional, (ii) commercial, (iii)
residential, and (iv) multiple. Here multiple refers to the publications, which applied their
experiments across multiple case studies of different building types (e.g., a residential and
a commercial building). Table A2 in Appendix B provides a further description for building
level applications.

5.2.1. Institutional

This section discusses papers, which applied a DL-based model to a case study of an
institutional building. Based on the search methodology, educational buildings accounted
for all the papers in this sub-section. Additional case studies, applied to institutional
buildings, were observed; however, they are discussed in Section 5.2.4 as there were
multiple case studies within such papers.

It was observed for educational buildings that cooling and electricity usage constituted
the majority of target variables of applied research to date. Therefore, there are gaps
related to exploring DL forecasting models targeting heating, natural gas, and lighting
for institutional and educational-based building applications. A possible explanation for
this gap could be the difficulty in obtaining data for some loads (e.g., lighting and/or
natural gas [11]). However, heating and lighting loads may constitute a large share of
a commercial/institutional buildings overall energy loads (25% for heating and 10% for
lighting [65]); therefore, future work may benefit from exploring such avenues.

DL-based forecasting models targeting cooling loads were explored in reference pa-
pers [34,44,66,67]. It was observed that the application of a AEs for feature extraction
improved the forecasting performance targeting the cooling loads in papers [34,44]. Ref-
erence [66] explored the accuracy of RNN, GRU and LSTM-based models for forecasting
building cooling loads through direct and recursive approaches. The author’s experi-
ments demonstrated that the direct approach achieved higher accuracy for the RNNs.
Reference [67] compared 12 different forecasting approaches for building cooling load
applications. Their experiments demonstrated that LSTM and extreme gradient boosting
were the most accurate models. Reference [68] applied RNN models to forecast the heating
load for various buildings within a university campus. Their experiments observed that
the RNN model typically performed better than an MLP-based model for medium to
long-term forecasts. With respect to RNNs applied to forecast building thermal energy
loads of institutional buildings, they appear to provide improved performances. However,
further research is required in order to validate the previously accomplished work over a
variety of different case studies.

The application of GRU-based models for forecasting energy use in buildings can be
seen in [69]. The authors explored various techniques to impute missing data, after which
GRU forecasting models were tested. References [70,71] explored LSTM models targeting
electricity load estimations of educational buildings. For instance, in reference paper [70]
the authors demonstrated the effectiveness of different LSTM-based models compared
with SVR, DBN, and ARIMA-based models.
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5.2.2. Commercial

Commercial case studies were found applied to offices [72–78], retail [35], hotels [79],
and non-specified (show in references [38,43,45,80]). Focusing on office buildings, it was
observed that thermal loads accounted for approximately half of the case studies applied
with a predominance of cooling load applications. DFFNNs have shown promising perfor-
mance results for forecasting building thermal energy loads. For instance, Bünning et al.
applied a DFFNN in order to forecast the heating demand of an office building [75]. The
model was compared with other prominent black-box and grey-box based models for a
forecast horizon of a day-ahead. The experiment results demonstrated that the DNN model
obtained the highest accuracy among the deployed models. However, a 10-layer DFFNN
model was applied in reference [72], which provided mixed results. RNN-based models
have begun to be applied to commercial-based forecasting and their preliminary applica-
tions look positive. For instance, it was observed that LSTM-based models outperformed
FFNN models in reference [79]. While such results appear encouraging, further research is
required to validate such findings.

5.2.3. Residential

Over published research to date, it was observed that DL models applied for forecast-
ing the energy loads of residential buildings, have strictly targeted electric loads. This lack
of applications for energy loads other than electrical may be a result of additional time
and costs needed for the data acquisition of thermal, lighting, and/or natural gas loads.
Furthermore, forecasting energy loads at such a granular level may be more challenging
due to the uncertainty and volatility of the energy loads [81]. The types of DL-based papers
applied at the residential level include: CNN [82], LSTM ([83,84]), and comparison-based
papers shown in papers [40,85,86].

RNN- and LSTM-based models have achieved the majority of the implementations
to date and demonstrated promising results. For instance, Amarasignhe et al. (2017)
compared the deep learning techniques of CNN, LSTM, and factorized RBM (FRBM) to
conventional ML techniques (ANN, SVM) in order to forecast the electric demand of a
building. The forecast horizon was 60 h ahead and used 4 years of training data [85]. Their
experiments demonstrated that the DL-based forecasting models obtained less forecasting
error when compared with standard machine learning-based techniques; furthermore,
the LSTM obtained the smallest error. In addition, Hossen et al. (2018) in a preliminary
analysis compared the simple RNN, GRU and LSTM with other data-driven approaches
(ARIMA, GLM, RF, SVM, and FFNN) [86]. Their preliminary results demonstrated that all
the RNN-based models obtained better forecasting performance than the other data-driven
models.

CNN models have shown promising results in their applications to residential energy
forecasting models. For instance, in 2020 Estebsari et al. compared CNN-based models
to ANN and SVM models for a residential house [82]. Their experiments showed that the
CNN-based models achieved a higher accuracy than the SVM and ANN models. Despite
their promising results to date, the applications of DL-based techniques for residential
energy load forecasting has a relatively small sample size of applications. Thus, further
analysis is required.

5.2.4. Multiple Case Studies

This categorical section applies to papers, which have used case studies of different
building types within their published work to validate their models; e.g., a residential and
an office building as shown in [39]. It is worth noting, that based on the search conducted,
it was observed that no paper primarily focused their experiments on a case study of an
industrial building. The publications, which did apply their models to industrial buildings,
also applied their models to multiple different building types. This can be observed
in: (i) reference [87] which applied LSTM-based models to forecast the electrical usage
of a residential building, city hall, a hospital building, and a factory; (ii) reference [88]
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which compared multiple RBM models and data-driven models to forecast the electrical
loads of 40 non-residential buildings, of which 15 buildings were manufacturers; and
(iii) reference [89] which compared LSTM and other data-driven models to forecast the
electrical load of an industrial and commercial building.

Focusing on the type of DL forecasting model, it was observed that LSTM models have
received the most applications and demonstrated promising but mixed results. For instance
in reference [89], the authors compared an LSTM model with ARIMA, RF, SVR, and ELM.
The authors applied their models over a dataset containing 48 different buildings and then
averaged their performance results. The experiments demonstrated that the LSTM model
had the best performance under each statistical indicator. However, the LSTM model
applied in the experiments of reference [90] demonstrated mixed performance results.

CNN-based models have demonstrated potential as well. For example, reference [91]
compared CNN- and GRU-based models with a SARIMAX model [91]. Both DL models
were compared in a recursive and a multistep ahead forecasting approach. The models
were applied to case studies of a grocery store and an academic building targeting the
electric demand up to 24 h ahead. The authors’ experiments found that the CNN 24 step
models demonstrated the most promising ability in handling the 24 h ahead forecasts.

DBN models have not received much applications, however, they have provided
interesting results when applied. For instance, reference [92] compared DBN to other data
driven models (FFNN, RBNN, ELM, and SVR) forecasting the energy consumption of a
retail store and an office building. The DBN was shown to outperform the other applied
algorithms over both case studies.

5.3. Summary of Applications at the Sub-Meter and Component Level

This category refers to publications, which have applied DL-based models to sub-
meter and/or components within the building. Typically, models applied at these levels
find it more challenging to achieve accurate forecasts due to: (i) a lack of available data, (ii)
a larger volatility and uncertainty in their profiles [81], and (iii) component and/or systems
may be more sensitive to changes in operation (e.g., HVAC [93] and [94]). Applications of
DL-based techniques include: (i) the electric demand of a ground source heat pump [37];
(ii) the electric demand of a ground source heat pump and the HVAC power demand for
non-residential buildings [95]; (iii) residential electrical loads and sub-meter loads within a
building [96]; (iv) the electric load of appliances and the overall residential building [97];
(v) the electric demand of an HVAC system in an office building [98]; and (vi) the energy
consumption forecasting of compressors in a refrigeration system [99]. Table A3 provides
the list of papers used for this section.

When applied to residential-based buildings and their internal loads, DL models have
shown robust results. For instance, conditioned and factorized RBM models were compared
to an RNN, ANN and SVM model in reference [96]. The authors applied the data-driven
models to forecast the electric demand of the house and sub-meters varying the forecast
horizon. Their experimental results demonstrated that the RBM models outperformed the
other data-driven models applied. The authors also observed that the RNN was fast in
terms of training, however, not stable in its performance.

However, RNN models have shown promising results in other applications. For
instance, reference [99] applied an LSTM model for one-step ahead forecasting of the
compressors energy consumption. The RNN model was compared with other popular fore-
casting models including: ARMA, ARIMA, and FFNN. Their experiments demonstrated
that the LSTM model obtained a higher performance than the other applied models.

Due to the small sample size of papers over different target variables, it is difficult to
generalize if DL models may help when applied at such levels. While the published work to
date looks promising, future studies are required in order to verify the performance of DL
models across different sub-meter loads and components within buildings. However, such
research is vital as sub-level components can contribute significant portions to a buildings
overall electric demand. For example, the HVAC system of a commercial building can
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contribute 19–76% of the buildings overall electrical demand (depending on the type of
commercial building) [65].

6. Discussion and Remarks

Deep learning techniques and approaches have been growing rapidly in recent years
due to their capabilities of handling large amounts of data and improved performance
results. To date, there is already quite a large amount of literature about their applications
in forecasting building energy. We have observed that to date, most DL-based models
have been applied to whole building and district energy case studies, target the overall
energy loads, with a short term forecast horizon (a day ahead and hour ahead the most
common horizons). The deep feed-forward neural network and the LSTM model appear to
consist of the majority of the DL techniques applied to date. Furthermore, when assessing
performance improvements from the application of DL-based techniques, it was observed
that the inclusion of a DL-based technique applied for feature extraction purposes typically
led to an increase in forecasting performance compared to other ML-based techniques.
However, it did not in a few instances. Moreover, when applied as forecasting models,
similar observations were observed. Despite the promising results observed, there are
significant challenges which need addressing.

6.1. Challenges

While the application of DL-based techniques for forecasting building energy loads are
still in their infancy, there are many exciting and new challenges to be faced. We breakdown
the largest observed challenges into two main categories: (i) challenges facing the research
community and, (ii) technical challenges facing DL-based techniques. Beginning with the
challenges facing the research community the following was observed:

1. The majority of papers have used proprietary non-published datasets. Similarly, this
observation was noticed in review paper [17] for data-driven models as a whole.
The overuse of proprietary data makes it challenging to reproduce results, to do
comparison-based studies, and/or to build upon the research of others.

2. With a growing amount of publishers and journals, there is no standard of forecasting
model information required within each journal article. This lack of a standard
results in:

3. (I). Missing descriptions of components/or techniques applied within their research.
For instance, it was observed that a few papers did not specify their forecast horizons,
hyperparameter tuning approach, etc.

4. (II). Varied use of performance metrics applied within each published work. For
instance, the mean absolute percent error is the most commonly applied performance
metric throughout research stated in references [11] and [14]. However, it is not always
applied within research and sometimes authors would deploy different metrics or
modified version of the metrics.

5. (III). The use of ambiguous terminology was often found in research further cloud-
ing issues.

Turning the attention towards DL-based models, there are a few big challenges noticed
over the published research to date. These include:

1. There is a lack of general guidelines for the development and testing of DL-based
models. The lack of guidelines makes it significantly more challenging in order to
develop, apply, and compare such models. For instance, it was observed that the
majority of papers tuned their hyperparameters through trial and error. Having
an automated procedure and/or guidelines would help with the reproducibility of
results and the construction of various models.

2. While the models have shown potential for improving forecasting performance at
a variety of levels, they come with a tradeoff of increased model complexity and
training times compared with standard ML approaches.
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3. Finally, it was observed there was a lack of practical applications/implementation of
the models and sensitivity analysis of the models applied.

The establishment of guidelines for DL models would help future researchers by
providing them with a standardized set of criteria to build upon and compare models. This
may in turn allow generalizations to be found in a timelier manner.

6.2. Potential Future Research Directions

The future directions of DL-based techniques with respect to their applications for
forecasting building energy include:

1. The enrichment of DL techniques across a variety of building types, with an emphasis
on comparison-based papers and studies.

2. Application of DL models to case studies which have not received much attention:
lightning, natural gas, medium to long-term forecast horizons, sub-meter/components
etc.

3. Application of DL grey-box models applied to various case studies.
4. Exploration of the sensitivity and uncertainty of the DL models
5. The establishment of guidelines for DL model development; including automation of

the hyperparameter selection
6. The establishment of scalable DL-based models which can be developed and tuned in

a timely manner for practical implementations across different buildings and systems
7. The development of robust models which can continue to provide accurate forecasts

in the event of changes of operation, sensor failure, etc.
8. Implementation of the novel DL-based techniques with real applications and control

systems e.g., model predictive controllers, or demand side management scheduling,
optimization etc.

7. Conclusions

The purpose of this work was to provide a review of deep learning-based techniques
applied to forecasting energy usage in buildings. First, fundamental definitions and classi-
fications for DL-based models are presented, which were then followed by an overview
of some of the most prominent techniques. Next, this paper provided a breakdown of
current trends observed over published research. After which, the feasibility of DL models
applied for feature extraction and as forecasting models was discussed. Finally, this paper
presented several challenges faced for such models and future directions of DL-based
research. Based on our review, it was observed that when applied to feature extraction,
DL-based techniques have shown to achieve a higher performance results compared with
other methods. Furthermore, similar results were observed when the DL-based techniques
were applied as forecasting models. It is difficult to assess which DL-based technique
achieved the most promising results, as there are a lack of comparison-based papers among
DL-based techniques. However, the results achieved to date look promising and future
work should expand on the current body of knowledge.

Despite the rapid expansion of papers and case studies over the past few years, there
remain many challenges and work to be accomplished. Such work can include: the appli-
cation of DL-based techniques on target variables and case studies not commonly applied,
comparison of DL-based techniques over a variety of case studies, and the implementation
of such models in practical applications. Forecasting models play a fundamental role in
many applications for energy improvements and management. Such applications can
include but are not limited to: demand side management, model predictive control, fault
detection and diagnosis, optimization, scheduled maintenance and planning. The discus-
sion and results of this article may help energy modelers, professionals, and researchers
to decide which DL-based tools to select and consequently assist in the development of
the field.
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Appendix A. District Level

Table A1. District-level DL papers.

District Level Year Application DNN Type
Applied Target Variable Reference

Number

Sector

2018 Industrial sector DFFNN/OA Electricity
consumption [46]

2019 Residential and Industrial sector LSTM/DFFNN
OA

Natural gas
consumption [47]

2019 Mackey-Glass
Sector LSTM Natural gas

consumption [48]

City

2018 Rottne district system
Karlshamn district DFNN/OA Heating load [49]

2019 District system DFFNN/OA Heating load [50]

2018 Non-residential district DNARX/OA Heating load
Cooling load [51]

2019 District system DFFNN/LSTM
RNN//OA Heating load [52]

2019 District system LSTM/OA Heating load [53]

2020 District system LSTM/OA Heating load [54]

2019 London, Karditsa,
Hong Kong, Melbourne systems LSTM/OA Natural gas [55]

2019 Ljubljana DRNN/OA Natural gas [56]

Complex

2018 University AE-RF/OA Electric [36]

2019 Industrial complex CNN/RNN/OA Electric [41]

2020 University LSTM-FFNN
Electric
Heating
Cooling

[42]

2019 University DFFNN Electric [57]

2020 Hospital complex GMDH Electric [58]

2019 District mixed buildings DFFNN Heating [59]

Commercial-
Residential

2016 District heating system for residential
and commercial buildings DFFNN/OA Heating [60]

2018 District heating system for residential
and commercial buildings DFFNN/OA Heating [61]
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Table A1. Cont.

District Level Year Application DNN Type
Applied Target Variable Reference

Number

2017 District residential DFFNN Electric [62]

2019 District residential (agg.)
Residential LSTM/OA Electric [63]

2019 District Residential (agg)
Residential LSTM/OA Electric [64]

OA: Other algorithms/comparison based papers.

Appendix B. Building Level

Table A2. Building-level DL papers.

Building Level Year Application DNN Type Applied Target
Variable

Reference
Number

Institutional

2017 Education AE-DNN/OA Cooling [34]

2019 Education CNN/AE-DNN/OA Cooling [44]

2019 Education RNN/GRU/LSTM Cooling [66]

2020 University LSTM/DFFNN/OA Cooling [67]

2018 University DRNN/OA Heating [68]

2019 University GRU Electric
Cooling [69]

2020 University LSTM/OA Electric [70]

2018 Education LSTM Electric [71]

Commercial

2016 Office DFFNN/OA Cooling [72]

2018 Office DBN Cooling [73]

2017 Office DFNN Hearing
Cooling [74]

2020 Complex DFFNN/OA Heating [75]

2020 N/s Public LSTM/CIFG/GRU/LSTM-ANN/CIFG-
ANN/GRU-ANN/OA Cooling [45]

2017 Retail Extreme-SAE/OA Overall [35]

2018 Hotel LSTM Electric [79]

2019 Commercial-N/s GRU/LSTM/RNN/DFFNN Electric [80]

2020 Commercial AE-RF/DFFNN/OA Electric [38]

2020 Office RNN-seq2seq/OA Electric [77]

2020 Office LSTM/CNN/LSTM-AE/LSTM-dense Electric [78]

2018 N/s Public 1
N/s Public 2 DBN/DBEN/OA Energy [43]

2020 Office DFFNN Energy [76]

Residential

2019 Residential CNN/RNN/RNN-CNN Electric [40]

2020 Residential CNN/OA Electric [82]

2016 Residential customer LSTM Electric [83]

2020 Residential LSTM/OA Electric [84]

2017 Residential customer CNN/LSTM/FRBM Electric [85]

2018 Residential LSTM/GRU/RNN/OA Electric [86]
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Table A2. Cont.

Building Level Year Application DNN Type Applied Target
Variable

Reference
Number

Multiple
Case studies

2019 Residential/City
Hall/Factory/Hospital LSTM/MIDAS-LSTM Electric [87]

2016

Public Administration/
Retail/R&D/Business/

Healthcare/
Car part/Electronic/
other manufactures
Aggregated loads

RBM/OA Electric [88]

2018 Industrial
Commercial LSTM/OA Electric [89]

2018
Public health
Residential

Aggregated residential
LSTMAE-ML/OA Electric [39]

2018 Public-N/s DBM/DEBM/OA Energy [43]

2018 Retail
Office DBM/OA Overall [92]

2019 Hotel
Office LSTM/GRU/OA Electric [90]

2019 Education
Commercial CNN/GRU/OA Electric [91]

OA: Other algorithms/comparison based papers.

Appendix C. Sub-Meter and Component Level

Table A3. Sub-meter and component-level DL papers.

Year Application DNN Type Applied Target Variable Reference
Number

2019 GSHP- Office AE-DDPG/OA Electric [37]

2014 GSHP
HVAC DFFNN/OA Electric [95]

2016 Whole building
Sub-meters CRBM/FCRBM/OA Electric [96]

2019 Whole building
Appliances LSTM/OA Electric [97]

2020 HVAC total DDPG/OA HVAC Electric [98]

2020 Refrigeration system LSTM/OA Compressor Electric [99]

OA: Other algorithms/comparison-based papers.
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