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Abstract: Microgrid has flexible composition, a complex operation mechanism, and a large amount
of data while operating. However, optimization methods of microgrid scheduling do not effectively
accumulate and utilize the scheduling knowledge at present. This paper puts forward a microgrid
optimal scheduling method based on Deep Deterministic Policy Gradient (DDPG) and Transfer
Learning (TL). This method uses Reinforcement Learning (RL) to learn the scheduling strategy and
accumulates the corresponding scheduling knowledge. Meanwhile, the DDPG model is introduced
to extend the microgrid scheduling strategy action from the discrete action space to the continuous
action space. On this basis, this paper holds that a microgrid optimal scheduling TL algorithm on
the strength of the actual supply and demand similarity is proposed with a purpose of making use
of the existing scheduling knowledge effectively. The simulation results indicate that this paper
can provide optimal scheduling strategy for microgrid with complex operation mechanism flexibly
and efficiently through the effective accumulation of scheduling knowledge and the utilization of
scheduling knowledge through TL.

Keywords: microgrid; optimal scheduling; reinforcement learning; transfer learning

1. Introduction

Microgrid is a small-scale power grid, composed of distributed power generation, load,
energy storage devices, and energy conversion devices, which can effectively improve the
stability and power quality of a large number of distributed power sources connected to the
main grid, and realize the flexible application of distributed power generation [1]. However,
the intermittence and instability of distributed generation make energy management more
difficult. How to manage the energy of microgrid efficiently is a challenge for microgrid
operation and scheduling.

Classical mathematical methods and heuristic algorithms are frequently used to
solve the optimal scheduling problem of microgrid. The classical mathematical method
has advantages in solving speed and convergence [2], but it is easy to fall into local
optimization or even fail when dealing with complex nonlinear, discontinuous objective
functions and constraints [3,4]. In contrast, the heuristic algorithm is less dependent on the
mathematical model and is easier to deal with nonlinear problems, so it has been widely
used in different optimization problems of power systems [5], but the parameter setting of
the heuristic algorithm is more random and the result is greatly affected by it. Microgrid
has flexible composition, a complex operation mechanism, and a large amount of data
while operating, however, the above methods do not effectively accumulate and utilize the
scheduling knowledge.

Transfer Learning, as an effective means to reuse knowledge, has shown excellent
performance in image recognition, text classification, emotion classification, and so forth [6].
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However, its application in the field of power systems is still in the exploratory stage. At
present, scholars have made achievements in power system supply and demand interac-
tive real-time scheduling [7], power system decentralized carbon energy composite flow
optimization [8], economic risk scheduling [9], and so forth. In the above research, TL is
frequently combined with Reinforcement Learning (RL) to achieve the purpose of knowl-
edge accumulation and knowledge updating. With deep reused knowledge of TL, RL has
been provided strong support. As an important theoretical branch in machine learning,
RL has strong abilities of self-learning and memory, in which its agent can interact with
the environment to obtain the feedback to guide the action selection, then learn the best
strategy and accumulate experience and knowledge. At present, it has been studied in
power system security and stability control [10], automatic generation control [11], voltage
and reactive-power control optimization [12], optimal power flow control [13], interaction
of supply and demand [14], power market [15], power information network [16], and so
on. In the microgrid scheduling problem, Liu et al. [17] studied the application of RL in
the cooperation of wind power and energy storage. This study shows that RL has good
adaptability to the uncertainty and complex constraints of the problem. However, the state
and action space are discretized in the study, which leads to errors in the optimization
results. Wang et al. [18] and Zhang et al. [19] proposed an economic scheduling model
based on RL for the main grid-connected operation and island operation of microgrid,
respectively. They used the deep neural network to approximately express the continuous
state space, so the error caused by the discretization of the state space and the “Curse of
Dimensionality” caused by the excessive state space was improved, but the action space
was still discrete, so the best optimal scheduling strategy could not be obtained.

In this paper, we study the microgrid optimal scheduling method based on deep
deterministic policy gradient and transfer learning. The optimized scheduling model is
proposed, which takes the minimum microgrid operating cost as the objective function. The
study includes three parts: (1) the framework and learning process of deep deterministic
policy gradient, (2) knowledge transfer rules in transfer learning, and (3) the combination
of deep deterministic policy gradient and Transfer Learning. Finally, the feasibility and
correctness of methodology was verified in line with simulation, in which Deep Deter-
ministic Policy Gradient (DDPG) extends the traditional RL from discrete action space
to the continuous action space. This method can effectively reduce the error caused by
discretization of traditional RL, while the actual supply and demand similarity-based TL
utilizes the scheduling knowledge effectively.

2. Microgrid System Model and Optimization Model
2.1. Component Model

(1) Solar Power Generation
The solar photovoltaic panel output is given by this expression:

Ppv
t = ηPV AsRs(t) (1)

where Ppv
t is the output from solar power generation at time step t; ηPV is the conversion

efficiency of the solar photovoltaic panel; As is the solar photovoltaic panel array area;
Rs(t) is the radiation intensity of solar photovoltaic panel at time step t.
(2) Wind Power Generation

The wind power generation output can be approximately expressed by this expres-
sion [20]:

Pwt
t =


Pr

Vs −Vci
Vr −Vci

Vci ≤ Vs ≤ Vr

Pr Vr ≤ Vs ≤ Vco
0 otherwise

(2)
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where Vs is the wind speed through the wind turbines at time step t; Vci is the start-up wind
speed; Vr is the rated wind speed; Vco is the cut-out wind speed; Pr is the rated output of
wind power generation.
(3) Diesel Generator

As a controllable component, diesel generator can provide electricity when the power
supply of uncontrollable components is insufficient, and reduce the dependence of mi-
crogrid on the electricity of main grid. The fuel cost model of diesel generator can be
approximately expressed by this expression:

F(Pdie
t ) = a(Pdie

t )2 + bPdie
t + c (3)

where Pdie
t is the diesel generator output at time step t; a, b and c are the cost factors of

diesel generator.
(4) Battery

SOC of battery at each time is determined by the previous moment SOC and exchange
power of battery, it can be expressed by this expression:

SOCt =


SOCt−1 +

ηPess
t−1∆t
Sess

Pess
t−1> 0

SOCt−1 +
Pess

t−1∆t
ξ · Sess

Pess
t−1 < 0

SOCt−1 Pess
t−1 = 0

(4)

where SOCt is the SOC of battery at time step t; SOCt−1 is the SOC of battery at time step
t−1; Pess

t−1 is the exchange power at time step t−1; Pess
t−1> 0 and Pess

t−1< 0 are means battery
charge and discharge respectively, Pess

t−1= 0 denotes battery does not act; η and ξ are the
charge and discharge efficiency of battery respectively; ∆t is the length of each time step
on battery act; Sess is the battery capacity.

In order to ensure the normal operation of the battery and extend its lifetime, the
exchange power and SOC are constrained:
(a) Exchange power constraint{

0 < Pess
t−1 < Pch.max Pess

t−1 > 0
0 <

∣∣Pess
t−1

∣∣ < Pdis.max Pess
t−1 < 0

(5)

where Pch.max and Pdis.max are maximum charge power and discharge power respectively.
(b) SOC constraint

According to the physical limitation on battery, If the battery is over charge or over
discharge, it will affect the lifetime of the battery, thus the SOC of the battery needs to be
controlled within its own limit. Set SOCmin and SOCmax as the minimum and maximum
limited SOC of the battery. The limits of SOC at time step t is given by:

SOCmin < SOCt < SOCmax (6)

(5) Load
Load refers to the sum of all kinds of electrical equipment electric power consumed at

a certain time, the changing trend of load curve relate to user behavior habits. At time step
t, The load can be expressed as Pload

t .

2.2. Objective Function

In this paper, the optimization goal is to minimize the microgrid operating cost. The
objective function is given by:

min(F1 + F2) (7)
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The F1 is the fuel cost of diesel generator, F2 is the transaction cost of the transaction
power between the microgrid and main grid.

F1 =
T

∑
t
(a(Pdie

t )2 + bPdie
t + c) (8)

F2 =
T

∑
t
(βα

buy
t λPgrid

t ∆t− (1− β)αsell
t λPgrid

t ∆t) (9)

where T is the scheduling cycle; α
buy
t is the price of purchasing one unit of power from

the main grid to microgrid at time step t; αsell
t is the price of selling one unit of power

from microgrid to the main grid at time step t; ∆t is the scheduling interval; Pgrid
t is the

transaction power between the microgrid and the main grid; Pgrid
t < 0 means microgrid

sells power to the main grid, β= 0; Pgrid
t > 0 means microgrid buys power from the main

grid, β= 1. As Equation (10), Pgrid
t can be calculated by Pload

t , Ppv
t , Pwt

t , Pdie
t and Pess

t .

Pgrid
t = Pload

t − Ppv
t − Pwt

t − Pdie
t + Pess

t (10)

The transaction power is calculated by the formula does not include the network
loss, which is cannot reflect the actual transaction power, thus this paper considers use the
conversion coefficient λ expression the network loss.

3. Optimal Scheduling Method Based on Deep Deterministic Policy Gradient and
Transfer Learning

The renewable energy output and load demand are affected by climate and user
behavior habits, respectively. Although they have strong uncertainty, the sudden change
probability of climate and user behavior habits in the same area or adjacent areas is
relatively small. Therefore, the actual supply and demand curve in microgrid on similar
days of same area or adjacent areas are very similar. Hence, this paper considers the
effective accumulation and utilization of scheduling knowledge through using similarity to
provide a priori knowledge for microgrid optimal scheduling. TL can establish knowledge
connections for scheduling task groups with similarity; at the same time, the RL strong
abilities of memory and self-learning can provide support for the learning, updating,
and accumulation of knowledge. When combining with TL, it can realize the effective
accumulation and utilization of scheduling knowledge. The method schematic is shown in
Figure 1.

Figure 1. Method schematic.
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3.1. DDPG

RL is an artificial intelligence algorithm. In RL, an agent (agent is our artificial
intelligence) based on state takes actions within a true or virtual environment, relying on
feedback from rewards to find out the foremost suitable policy to achieve its goal. Figure 2
shows the principle of RL.

However, the traditional RL cannot deal with the continuous action space, thus,
this paper introduces the DDPG of deep RL as a method to solve the microgrid optimal
scheduling problem and combines TL to realize the utilization of scheduling knowledge.

Figure 2. Schematic diagram of reinforcement learning.

DDPG is a policy learning method that integrates a deep learning neural network into
Deterministic Policy Gradient (DPG) [21]. DPG is an improved policy learning method
based on policy gradient in RL. The policy gradient describes the optimal policy of each
step state through the probability distribution function, and the action selection is based
on the probability distribution, while the DPG directly obtains the definite value of the
decision action at each moment through the policy function, that is,

a = µ(s) (11)

The DDPG network structure is shown in the Figure 3, It consists of two parts: the
actor network and critic network. DDPG uses the actor network µ(s|θA) and the critic
network Q(s, a|θC) to approximate the policy function µ(s) and state-action value function
Q(s, a) respectively. θA and θC are the network weights of the actor network and the critic
network respectively. The main idea is to generate the action under the guidance of the
actor network, and the critic network uses the state-action value function to evaluate the
action, then guides the update of its own network and actor network weights through the
evaluation.

Figure 3. Schematic diagram of Deep Deterministic Policy Gradient (DDPG).
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The critic network uses Temporal-Difference to learn the state-action value function,
so the loss function of the critic network can be defined as:

L(θC) = [Q(s, a|θC)− (r + γ(Q(s−, a−|θC))]
2

(12)

where Q(s, a|θC) is state-action value function obtained by the agent through the critic
network, represents the future cumulative reward of the agent after executing the action a
in its current state s. As the same, Q(s−, a−|θC) represents the future cumulative reward
of the agent after executing the action a− in the next state s−. All execution actions are
generated through the actor network. r is the immediate reward obtained when the agent
makes a transition from state s to state s− perform action a in current time. γ is the discount
factor of the cumulative reward value in the future.

The optimization goal of the critic network is given by:

minL(θC) (13)

network weights update mode:

θC ← θC + αC∇θC L(θC) (14)

The αC is a scalar step size, called the learning rate of critic network.
The action generated by the actor network is measured by the evaluation of the critic

network. The measure function is given by:

J(θA) = Q(s, a|θC)|a=µ(s|θA) (15)

The purpose of the actor network is to learn the optimal policy, that the action gener-
ated by the actor network can get the maximum cumulative reward value in the future.
Therefore, the optimization goal of the actor network is given by:

maxJ(θA) (16)

update weights using the chain rule of gradient:

θA ← θA + αA∇aQ(s, a|θC)|a=µ(s|θA)∇θA µ(s|θA) (17)

The αA is a scalar step size, called the learning rate of actor network.
In order to avoid the risk of overestimating, as shown in Figure 4, the DDPG net-

work framework constructed in this paper, adopts the same double network structure
as DDQN [22,23], that is, the actor network and critic network simultaneously construct
two networks with the same structure but different weights, namely Evaluate net and
Target net, The double network structure separates the generation of action a and a−; the
calculation of state-action value Q(s, a|θC) and r + γ(Q(s−, a−|θC). At the same time, the
updating mode of network weights was changed. Evaluate net is updated every time a
state transition is performed, and Target net is updated in Soft update [19] mode.

3.2. Knowledge Transfer
3.2.1. TL

TL makes use of the idea of draw inferences about other cases from one instance.
TL will effectively use the knowledge learned from the old tasks to similar but different
new tasks, so as to improve the utilization of knowledge and the efficiency of new task
learning. In TL, the old task is generally called the source domain, and the new task is
called the target domain. The knowledge learned in the source domain is affected by
the characteristics of the source domain. In the process of knowledge transfer and reuse,
the knowledge transfer rules are very important, especially considering the characteristic
relationship between the source domain and the target domain. When the knowledge



Energies 2021, 14, 584 7 of 15

selection is not appropriate, the knowledge transfer may cause some interference to the
target domain, resulting in negative transfer and reduction of learning efficiency in the
target domain.

Figure 4. DDPG network structure diagram.

3.2.2. Knowledge Transfer Rules

In the microgrid optimal scheduling, considering the similarity between tasks as the
basis for selecting knowledge transfer in the source domain, the rules are formulated as
follows:

(1) According to the characteristics of the source domain, an appropriate similarity
evaluation function is selected to evaluate the characteristic correlation between the
source domain and the target domain.

(2) For the target domain, according to the similarity evaluation function, the similarity
between the target domain and the number of N source domains is calculated. The
higher the value, the higher the similarity between the target domain and the source
domain, which means that source domain knowledge is more instructive to target
domain learning.

(3) Selecting the source domain with the highest similarity for knowledge transfer.

3.2.3. Similarity Evaluation Function

On the similarity evaluation function, this paper, we use the inverse number of Euclid
Distance as the evaluation similarity function to reflect the actual supply and demand
curves similarity between the target domain and source domain. Pm(t)(m = 1, · · · , N)
and Pobj(t) denotes the actual supply and demand in N source domains and target domain
at each time respectively. The similarity rm can be calculated by Pm(t)(m = 1, · · · , N) and
Pobj(t), as shown in the following Equation (18):

rm = −
√

∑
t∈T

[Pobj(t)− Pm(t)]2 (18)

3.3. State-Action Space and Reward Function
3.3.1. State-Action Space

The microgrid optimal scheduling based on DDPG can be formalized as a partially
observable Markov decision process, where the microgrid is considered as an agent that
interacts with its environment. In this paper, The state space S consists of Pwt, Ppv, Pload

and SOC of battery, it can be expressed by:

S =
{

Pwt, Ppv, Pload, SOC
}

(19)
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where Pwt, Ppv and Pload are affected by climate and user behavior habits respectively;
which are uncontrollable components and can be obtained by prediction. The battery is a
controllable component, SOC of battery is determined by its own dynamic characteristics,
as shown in the Equation (4).

As the controlled components of the microgrid, the operating power of the battery
and diesel generator directly affects the scheduling strategy of the microgrid, so the action
space is composed of the action power space of the battery and diesel generator. Action
space A can be expressed by:

A = [[−Pdis.max, Pch.max], [0, Pdie.max]] (20)

3.3.2. Reward Function

The effective setting of the reward function can provide correct guidance for the action
selection of the agent, in order to obtain the desired goal. The reward function in this paper
corresponds to the instantaneous reward at time t, which is obtained by the addition of
the operating cost of the microgrid r1t(at) and the penalty r2t(at) caused by the battery
violating the constraint.

r1t(at) =

{
−α

buy
t λPgrid

t ∆t− a(Pdie(t))
2 + bPdie(t) + c Pgrid

t > 0
αsell

t λPgrid
t ∆t− a(Pdie(t))

2 + bPdie(t) + c Pgrid
t < 0

(21)

r2t(at) =


−k · Sess(SOCmin − SOCt) SOCt ≤ SOCmin
−k · Sess(SOCt − SOCmax) SOCt ≥ SOCmax

0 otherwise
(22)

The k is the penalty coefficient for violating the constraint.
The instantaneous reward rt(at) is given by:

rt(at) = r1t(at) + r2t(at) (23)

3.4. Algorithm Flow

The algorithm flow of the microgrid optimal scheduling method proposed in this
paper is shown in Figure 5. The whole process consists of two parts: source domain
learning and target domain learning, in which source domain learning adopts the DDPG
to accumulate microgrid scheduling knowledge, while target domain learning adopts the
TL and DDPG to utilize microgrid scheduling knowledge.
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Figure 5. Flow chart of algorithm.

4. Simulation Verification and Analysis
4.1. Simulation

In this paper, solar power generation, wind power generation, diesel generator, battery,
load, and energy conversion device are included in the microgrid model, which has an
example for simulation. The experimental data of the solar photovoltaic panel output
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and load are based on the radiation intensity data and user consumption of GitHub
Project [24]. The wind power generation output is based on the wind speed data of Wind
Energy Database Project. The capacity of the battery is 175 kWh, the charge and discharge
efficiency are 0.9, the maximum exchange power is 30 kW, the minimum SOC of battery is
0.2, the maximum SOC of battery is 0.9, and the initial SOC of battery in this simulation
is 0.4. In the DDPG, the actor network has two hidden layers, and they have 50 neurons
and 20 neurons, respectively. The activation function is the Rectified Linear Unit (RELU)
function. The hidden layer structure of the critic network is the same actor network, in
which the variable learning rate and the variable discount coefficient are adopted in the
training, and the initial learning rate of the actor network and critic network are set to 0.005.
The initial value of discount coefficient factor is 0.9.

The simulation sets up two experiments: source domain learning and target domain
learning, which verify the effectiveness of DDPG in continuous action space, and the
effective accumulation and utilization of scheduling knowledge based on DDPG and TL,
respectively.

Based on the consideration of the actual operation, the electricity price adopts the
time-sharing unitary electricity price model [18], is shown as Table 1.

Table 1. Electricity price.

Electricity Buys Price (RMB/kWh) Electricity Sells Price (RMB/kWh)

1.1 0.85

The neural network input is the microgrid observation information extracted from
the experimental data set: the solar photovoltaic panel output, the wind power generation
output, load, and the SOC of battery complete the learning of source domain and target
domain according to the flow in Section 3.4.

In order to verify the effectiveness on reducing the discretization error, and obtaining
excellent scheduling strategy, the proposed method in this paper and the method in [19]
are used in the source domain learning experiment. By using the method based on RL
in [19], named DDQN, the battery action space and diesel generator action space are
discrete, which brings more error because the discrete action space cannot flexibly match
the unbalanced power between renewable energy output and load demand. However,
by using the proposed method in this paper, named DDPG, both battery action space
and diesel generator action space are continuous, which reduces the error because the
continuous action space can flexibly match the unbalanced power between renewable
energy output and load demand.

(1) DDQN, the power of the battery, and the diesel generator are discretized to 13 and 5
fixed actions respectively, so the action space is set as A = {a1, a2, · · · , a13×5}.

(2) DDPG, the action space is set as A = [[−30, 30], [0, 40]], action a ∈ A.

In order to further verify the superiority of transfer learning, we designed a compara-
tive experiment (using TL and without using TL). The best source domain can be obtained
according to the knowledge transfer rules in Section 3.2.3. Then, the scheduling knowledge
in the best source domain is used for knowledge transfer. In addition, two source domains
randomly selected for knowledge transfer are compared to analyze the TL performance in
different similarity source domains.

4.2. Source Domain Learning

In the source domain learning, one-year knowledge accumulation is carried out.
However, in order to analyze the performance of the scheduling method based on DDPG,
this paper takes a typical day as an example to analyze the performance of scheduling
strategy based on DDPG. Figure 6 shows the scheduling strategy of a typical day in different
methods.
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Figure 6. Typical daily scheduling strategies in different methods.

Figure 7 shows clearly the differences between DDQN and DDPG in battery action,
diesel generator action, transaction power. According to the Figures 6 and 7, it can be
concluded that during the whole scheduling cycle, the exchange power of the battery and
the output of the diesel generator in DDPG are more flexible, and the transaction power
between the microgrid and the main grid in DDPG is less than DDQN. Between 0:00–7:00
and 11:00–14:00, the actual supply of renewable energy in the microgrid exceeds the load
demand. At this time, neither DDQN nor DDPG have action on the diesel generator,
and both DDQN and DDPG have absorbed excess energy by battery charging. When the
battery capacity reaches the limit, the battery remains idle in two methods. Compared with
the discrete actions in DDQN, the choice of action in DDPG is more flexible, and DDPG
also has less trading power than DDQN. Between 7:00–10:00 and 14:00–0:00, the actual
supply of renewable energy in the microgrid is lower than the load demand. At this time,
both DDQN and DDPG use a battery and diesel generator to meet the energy shortfall. As
shown in Figure 7, compared with DDQN, the diesel generator output and the transaction
power between the microgrid and the main grid in DDPG are less. This is because the
continuous action space improves the flexibility of action selection, enhances the reliability
of the microgrid itself, reduces the dependence on the main grid, and further reduces the
operation cost of microgrid.

Figure 7. Comparison of typical daily microgrid scheduling strategies in different methods.

It can be seen from Table 2 that in two methods, DDPG obtains the lowest microgrid
operating cost: 142.75 RMB. Experiment verifies the effectiveness of the microgrid optimal
scheduling method based on the DDPG, and shows that the continuous action space setting
can improve the flexibility of action selection, thus reducing the operating cost of the
microgrid.



Energies 2021, 14, 584 12 of 15

Table 2. Operation income and electricity purchase of microgrid in each method.

Index DDQN DDPG

Operating cost of microgrid (RMB) 176.26 142.75
Diesel generator fuel cost (RMB) 118.77 95.50

Transaction cost (RMB) 57.49 47.25
The microgrid buys electricity from the main grid (kWh) 8.92 3.014

The microgrid sells electricity to the main grid (kWh) 68.84 51.06

4.3. Target Domain Learning

In this part, we set the adjacent area scheduling task as the target domain task,
and verify the superiority of transfer learning in utilization of scheduling knowledge.
The similarity between the target domain and the source domain are evaluated by Equation
(18). As shown in Figure 8, the target domain 330 has the highest similarity with the source
domain. The source domain 300 is selected for knowledge transfer. At the same time,
the other two source domains (source domain 155 and source domain 274) are randomly
selected to analyze the performance of TL.

Figure 8. Similarity between target domain and source domain.

Figure 9 shows the scheduling strategy of target domain obtained by target domain
learning. During the scheduling cycle, when the output of renewable energy exceeds
the load demand, the battery is charged as much as possible within the constraint range;
when the output of renewable energy is lower than the load demand, battery discharge
cooperates with diesel generator to meet the energy shortfall. In addition, the main grid is
also mobilized to absorb the unbalanced power. The scheduling strategy is fully in line
with the actual operation, which proves that the microgrid optimal scheduling method
based on DDPG and TL proposed in this paper is feasible.

Figure 9. Target domain scheduling strategy.
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Figure 10 shows the learning performance of transfer learning for scheduling knowl-
edge in different similarity source domains. It can be observed that when knowledge
transfer is not used, learning converges to epoch = 505. When using knowledge transfer,
the agent can quickly lock the optimal strategy interval at the initial stage of training. After
fine-tuning training, an agent for target domain learning in the source domain 330 with
the highest similarity achieves convergence at epoch = 152, while for the agent that carried
out the knowledge transfer on the source domain 65 in which the similarity is middle, the
relative advantage of convergence rate is small. An agent for knowledge transfer to the
source domain 274 with less similarity, the convergence result has deviation; the strategy
obtained is inferior to the agent without using TL because the similarity between the target
domain and the source domain is low, so the knowledge validity of the source domain
cannot be guaranteed. It can be concluded that the similarity between the target domain
and the source domain is positively related to the effectiveness of knowledge. The higher
the similarity, the higher the effectiveness of knowledge and the better the target domain
reuses transfer knowledge.

Figure 10. The score curves.

5. Conclusions

Since the optimization methods of microgrid scheduling do not effectively make good
use of the scheduling knowledge effectively at present, aiming to solve this problem, this
paper proposes a method in which there is optimal scheduling of microgrid based on
DDPG and TL.

The findings are listed as follows.

(1) This paper provides an optimal scheduling strategy for microgrid with complex and
changeable operation mode flexibility and efficiency through the effective accumula-
tion of scheduling knowledge and the utilization of scheduling knowledge through
knowledge transfer.

(2) The DDPG model is introduced into RL, and the action space of traditional RL is
extended from discrete space to continuous space.

(3) A microgrid optimal scheduling TL algorithm based on the actual supply and demand
similarity is proposed and the effective utilization of scheduling knowledge achieved
the transfer of scheduling knowledge.

The scheduling model in this paper does not consider the system power flow con-
straints and verifies its practicability in large-scale systems; therefore, improving the
scheduling model and studying on the state space establishment of large-scale system are
the further works.
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Abbreviations

RL Reinforcement Learning
TL Transfer Learning
DPG Deterministic Policy Gradient
DDQN Double Deep Q Network
DDPG Deep Deterministic Policy Gradient
RELU Rectified Linear Unit
diesel Diesel Generator
t, T Time indices
pv, PV Photovoltaic (PV) indices
wt, WT Wind turbine (WT) indices
Parameters
N Number of source domains
ηPV Efficiency of PV
As Total area of PV
Pdie.max Maximum climbing power of diesel generator
Pwt

t Power generated by WT
Pr Total rated power of WT
Vci Cut-in speed of WT
Vr Rated speed of WT
Vco Cut-off speed of WT
Sess Capacity of battery
η Efficiency of battery in discharge state
ξ Efficiency of battery in charge state
Pch.max Maximum charge power of battery
Pdis.max Maximum discharge power of battery
SOCmin Minimum SOC of battery
SOCmax Maximum SOC of battery
αbuy Electricity buy price of microgrid from main grid
αsell Electricity sell price of microgrid to main grid
λ Network loss conversion coefficient
a, b, c Cost factors of diesel generator
Decision variables
Ppv Power generated by PV
Pload The load demand
Pgrid Transaction power between microgrid and main network
Pwt Power generated by WT
Pdie Power generated by diesel
Pess Change Power of battery
SOC The state of charge
β Univariate variable of Pgrid, β= 1, Pgrid > 0, β= 0, Pgrid < 0
Pobj Difference power between renewable energy output and load demand at each time in the target domain
Pm Difference power between renewable energy output and load demand at each time in m source domain,

m = 1, 2 · · · , N
rm The similarity between target domain and source domain
Vs Wind speed
Rs Solar radiation intensity
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