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Abstract: The article deals with the optimization of the azimuthal tracking mechanism for a pho-
tovoltaic (PV) platform, which uses linear actuators as actuation elements for both movements
(diurnal and elevation). In the case of diurnal movement, where the platform’s angular field of orien-
tation is large, a mechanism with a relatively simple structure is used for amplifying the actuator’s
stroke and avoiding the risk of the system locking itself (by limiting the values of the transmission
angle). The optimization study targets the mechanical device, the control device, and the bi-axial
tracking program (embodied by the laws of motion in time for the platform’s diurnal and eleva-
tion angles) with the purpose of obtaining a high input of solar radiation, with a minimal energy
consumption to achieve tracking. The study is carried out by using a virtual prototyping platform,
which includes Computer Aided Design (CAD), Multi-Body Systems (MBS), and Design for Control
(DFC) computer applications. The mechanical and control devices of the solar tracker are integrated
and tested in mechatronic concept. The simulations’ results, which were performed for a set of
representative days throughout the year, prove the effectiveness of the proposed design.

Keywords: PV platform; solar tracker; energetic efficiency; optimization; virtual prototype

1. Introduction

Solar energy is one of the most important sources of renewable energy. There are two
technologies that are used nowadays to produce electric power, Concentrated Solar Power
(CSP) and Photovoltaic (PV) [1–3], the latter being addressed in this paper. Besides the
amount of incoming solar radiation, the PV conversion’s efficiency depends on the type of
solar cells as well as their temperature [4–8]. The solar radiation’s degree of capture can
be maximized through the utilization of PV tracking systems (solar trackers), which can
generate an increase in the conversion system’s efficiency by 20–50%, relative to the fixed
(stationary) reference system, depending on the type of system (including its number
of degrees of freedom—DOF), the control strategy, the location, and climate conditions.
Just for the purpose of exemplifying, Table 1 shows a selection of data from literature,
where the energy gain corresponds to either some representative days or entire year.

Table 1. The energy gain brought by some PV tracking systems.

Solar Tracker Type Control Strategy Location Energy Gain Ref.

bi-axial open-loop 45.657974 N, 25.601198 E 41.45% [9]

mono-axial open-loop 25.037519 N, 121.563679 E 24.2% [10]

bi-axial closed-loop 12.824342 N, 101.216274 E 44.89% [11]

mono-axial/bi-axial closed-loop 13.072090 N, 80.201859 E 20%/40% [12]

mono-axial/bi-axial open-loop 45.957481 N, 15.494230 E 30.04%/39.96% [13]

bi-axial open-loop 3.023284 N, 101.715903 E 26.9% [14]

Depending on operating mode, solar trackers can be structured as follows: passive
systems [15,16], in which the tracking movement is obtained usually by the thermal
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expansion of a fluid (liquid or gas) due to its heat sensitivity in a tube that is mounted on
the PV module; active tracking systems [17–19], which are mechatronic systems based on
devices that usually are electrically-driven.

Regarding the control system, one of the frequently used solutions is that based on
photosensors (i.e., closed-loop control) [20–24], which, however, has the disadvantage that
it can induce sun detecting errors in variable atmospheric conditions. The other commonly
used solution is that based on predefined control algorithms (i.e., open-loop control),
which can be accurately established on the basis of Earth–Sun astronomical system [25–29].
Lastly, by combining closed-loop and open-loop strategies, so called hybrid control systems
are obtained [30–32].

Taking into account the number of degrees of freedom, two categories of tracking
systems can be defined: mono-axial and bi-axial systems. Mono-axial systems allow the
sun tracking on a single axis, which corresponds to either the diurnal movement or the
elevation movement (case-by-case scenario) [33–38]. Bi-axial tracking systems allow the
both movements, being able to ensure a high accuracy orientation throughout the year,
which makes them more efficient than mono-axial systems [39–44].

According to the relative placement of the rotation axes, most existing bi-axial systems
can fall into one of the following categories [25]: equatorial, pseudo-equatorial, azimuthal,
and pseudo-azimuthal systems. The equatorial systems have as fixed axis the one of
diurnal motion, which is parallel to the polar axis, while the elevation movement’s axis is
variable depending on the diurnal axis. The fixed axis of the pseudo-equatorial systems is
the elevation movement’s axis, which is placed horizontally, parallel to the East–West axis;
the solution is obtained through the reversal of the axes’ order of rotation relative to the
equatorial systems. The azimuthal systems have, as fixed axis, the diurnal movement’s
axis, which is placed vertically, while the elevation movement’s axis varies depending on
the diurnal axis. In pseudo-azimuthal systems, the fixed axis is also that of diurnal motion,
but in this case it’s placed horizontally (parallel to the South–North axis).

Depending on the number of PV modules and their arrangement, the following con-
figurations of tracking systems can be identified (Figure 1): tracking systems for separate
PV modules: (a)—the modules are individually arranged and operated by their own motor
sources; tracking systems for module strings: (b)—the modules are mounted individually,
but oriented simultaneously by the same motor source(s) using motion transmission mech-
anisms (md—for diurnal movement, me—for elevation) [45]; platform tracking systems:
(c)—the modules are mounted on the same support frame (platform type), and the motor
source(s) orient the entire platform [46]; tracking systems for string platforms: (d)—the
modules are mounted on individual strings, which are articulated to a common frame,
the diurnal motion being performed as in a platform case [47]. In the schemes shown in
Figure 1, each with two PV modules (noted PV 1 and PV 2), AA’/A1A1′/A2A2′ marks the
diurnal motion axis, while BB’/B1B1′/B2B2′ is for the elevation motion axis, as the case
may be.
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Between the configurations that were presented, for reasons of cost and complexity
of the kinematic scheme (reflected in the constructive solution), the most advantageous
solution for tracking a group of PV modules is the one in Figure 1c, namely PV platform
tracking system, which requires the minimum amount of motor sources to achieve bi-axial
tracking (the drive element, which also integrates the electronic control device, being the
most expensive component of a tracking system), without the usage of additional motion
transmission mechanisms. This solution also has the advantage that it does not involve the
risk of self-shading between modules, the modules’ layout thus being more compact than
in other configurations whose design must ensure a certain distance between modules so
that they do not overshadow each other. As a disadvantage, the mass load is higher than
the ones found in all the other configurations, which can lead to significant driving forces
(however, this deficiency can be limited by an adequate structure balancing).

By relating the configurations shown in Figure 1 to the basic types of bi-axial sys-
tems [25], the best suited solution for orienting a PV platform is the azimuthal system,
and this is because, at least when referring to the diurnal motion, the platform can be
arranged in such a way that the oriented structure’s center of mass is very close to the rota-
tion axis, so the structure is well balanced, without needing additional balancing elements.
This is reflected in low values of the actuators’ generated driving forces and, consequently,
low energy consumption to achieve the tracking, even if the platform is large. The balance
of the structure is still necessary in terms of elevation movement, otherwise high energy
consumptions can result to achieve the orientation around this axis.

The active tracking systems’ actuation can be done with rotary motors or with linear
actuators. If the motor source is of the rotating type (e.g., gear motor), a more compact
system is obtained, which is able to ensure large angular strokes with no risk of the
mechanism going into self-lock. However, the coupling embodiment solution is a little
more complicated and the cost of such a motor is higher. Actuating with a linear actuator
simplifies the constructive solution of the revolute joints (by which the orientation along the
two axes is performed), at a lower cost. In this case, the disadvantage is that for achieving
large angular amplitudes, a high linear stroke actuator is required, and there’s also the
risk of the mechanism going into self-lock. The issue can be solved by inserting a stroke
amplification mechanism between the linear actuator and the element to be oriented.
If chosen and placed judiciously, this can bring important benefits from a functioning point
of view, without significantly raising the tracking system cost.

In these terms, the main purpose of the present paper is to optimally design and test
an innovative azimuthal bi-axial tracking system for a PV platform, which is able to avoid
the deficiencies of some existing solutions (partly mentioned above, others following to be
indicated in the next section of the paper), and it assures a better efficiency and tracking ac-
curacy (as the results of the numerical simulations will demonstrate). The proposed bi-axial
solar tracker uses as driving elements two linear actuators identical in type-dimensions.
Solar tracker design started from the requirement that the system has to be able to ensure
the orientation and positioning of the platform in the maximum angular fields, both for the
diurnal and the elevation movement. Although there is a significant difference between
the two angular domains (double angular range during diurnal movement compared to
elevation), through the proposed system it is possible to use the same type of actuator for
both movements (namely a linear stroke actuator with relatively small dimensions) by
introducing a stroke amplification mechanism for diurnal motion, a mechanism that has
a simple kinematic scheme and structure, which does not raise problems related to the
angular capacity of the joints nor does it present a risk of self-locking at high strokes.

The proposed tracking system is optimized both in terms of the mechanical device
and the control device (including the bi-axial tracking program, embodied by the laws of
motion in time for the diurnal and elevation angles of the platform), so as to obtain a high
input of incident solar radiation (which translates into maximizing the amount of electricity
produced by the PV platform) with minimum energy consumption necessary to achieve
the bi-axial tracking of the platform. In this regard, the optimization process targets the



Energies 2021, 14, 535 4 of 30

following design objectives: minimization of driving forces generated by linear actuators
to achieve tracking, minimization of tracking errors (as differences between positioning
angles imposed on the platform by the bi-axial tracking program and the current angles
achieved by the mechatronic system), maximization of energy gain by designing a step-
by-step tracking program whose efficiency is very close to that of the ideal tracking case,
when the platform would be oriented with continuous movement throughout the day
(this is not used in practice due to issues that will be mentioned later). The algorithm for
optimizing the bi-axial tracking program is an original one, taking into account both the
energy produced by the PV system and the one consumed to achieve the orientation, all the
defining parameters of the diurnal and elevation motion laws being considered as design
variables. To the best of our knowledge, it is the first time that the tracking program design
is approached in such a comprehensive way.

A virtual prototyping platform, which includes CAD (Computer Aided Design)—
CATIA, MBS (Multi-Body Systems)—ADAMS and DFC (Design for Control)—EASY5
software solutions, was used to design and test the proposed tracking system, as will be
depicted in the following sections.

2. Designing the Tracking System’s Mechanical Device

As mentioned earlier, the main issue with azimuthal tracking systems that are driven
by linear actuators is the need to use relatively large stroke actuators (hence also dimen-
sions) to ensure the angular range of diurnal motion (180◦, from the position with the
platform facing East to the one facing West). At the same time, there’s a risk that the system
will self-lock due to the transmission angle between the actuator’s piston and the mobile
part of the support pillar. Another issue that must be avoided is that of the impact (strike)
between the piston and the pillar.

In designing the azimuthal tracking mechanism brought forward in this paper, it was
started from the premise of using actuators with identical specifications for both degrees of
freedom (even if it exists a large difference in the platform’s angular orientation on the two
rotation axes), namely an actuator that would not have a very large stroke (it would be more
suitable for the elevation movement). In order to ensure such a requirement, it’s necessary
to design a mechanism for amplifying the actuator’s stroke for diurnal motion, interposed
between the actuator’s piston and the mobile part of the support pillar; this mechanism
would make it possible to perform the azimuthal orientation range (theoretically, 180◦)
with a reasonable stroke of the actuator (not much higher than that of the actuator for
altitudinal motion, where the maximum range is practically half) and without generating
a risk of self-locking or impact between various parts of the system.

Mechanical systems for stroke amplification can be based on various mechanism
topologies, such as those presented in [46,48–50]. To simplify the constructive solution,
ensure motion continuity and safety in operation (even in the presence of non-stationary
external disturbances, e.g., wind) it’s preferable to avoid mechanisms that have profiled
elements (e.g., gears, belt, or chain), so the best suited solution is the one based on an
articulated bar mechanism (linkage). For example, the solution in Figure 2 uses a spatial
four-bar linkage (DEFG) to amplify the actuator’s stroke from the diurnal motion of an
azimuthal tracking system [46]. Such a mechanism includes two spherical joints at the ends
of the connecting rod (E, F), and it is likely that angular capacity issues of these joints will
pop up, which could generate wear, shocks or even functional locks [51,52]. At the same
time, a fairly large space is required for the mechanism to function.

The solar tracker proposed here includes in diurnal motion subsystem a planar slider—
rocker mechanism for amplifying the actuator’s stroke, whose piston acts on the slider
(push—pull), while the rocker is connected to the vertical support pillar’s mobile part.
The proposed mechanism does not present any risk related to the joints’ angular capacity
and the occupied space (volume) is quite small; there’s also the advantage that the mecha-
nism can be mounted at ground level. For the elevation (altitudinal) motion, where the
angular range of motion is smaller, it was opted for a classic solution, to which the pis-



Energies 2021, 14, 535 5 of 30

ton is connected on the platform’s frame, while the cylinder is articulated on the pillar’s
mobile part. The tracking system thus defined is schematically represented in Figure 3,
separated on the two kinematic contours corresponding to the azimuthal and altitudi-
nal motions (the representations are made in normal planes to the axes of the actuators’
rotational joints).
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The proposed solar tracker contains the following components: the mechanism’s base
(1), which includes the fixed part of the pillar or pole (1′); 8 mobile bodies: the cylinder
(2) and the piston (3) of the diurnal motion’s actuator, the slider (4), the connecting rod (5)
and the rocker (6) of the stroke amplification mechanism, where the rocker is common part
with the moving part of the pole (6′), the cylinder (7) and the piston (8) of the elevation
motion’s actuator, the platform (9), which includes the PV modules and the support frame;
3 revolute joints: A (connected bodies: 2–1), C (3–4), E (4–5), F (5–6), G (6–1′); H (7–6′),
J (8–9), K (9–6′), and 3 translational joints: B (2–3), D (4–1), I (7–8).

Based on the structural schemes in Figure 3, the tracking system’s CAD model was
designed using the specialized CATIA software. Subsequently, the solid body models were
exported for later import into ADAMS. The MBS model of the tracking systems presented
in Figure 4 is finalized through the usage of the general ADAMS/View preprocessing
module, with modeling both geometric (joints) and kinematic (drivers) constraints.
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Figure 4. MBS model of the proposed bi-axial solar tracker (ADAMS).

The actuators used to drive the two motions are of the ELERO ATON-2 type, from size
class “2” (compressed size—1275 mm, maximum stroke—600 mm), which ensures irre-
versibility of the motion in stationary positions (between drives). The 8 PV modules of
the Helios Energy Europe (HHE) type are placed on the platform, with an active area of
1.638 m2 (13.104 m2 for the entire platform) and an average conversion efficiency of 14%.

As mentioned, the azimuthal mechanism configuration requires rigorous balancing
in the elevation movement subsystem (otherwise, the power or energy consumption to
perform this motion can be quite significant). In this regard, a pair of two counterweights
that are connected to the platform frame was used in the proposed solution, counterweights
that are symmetrically arranged relative to the transverse—vertical (YZ) plane containing
the support pillar’s axis. The counterweights’ positioning and sizing was made in such
a way that the assembly’s center of mass is as close as possible to the rotation axis for the
elevation motion.

The actuators have been preliminary modeled through kinematic restrictions that
control the relative motions between the actuators’ components. In fact, it was started
from controlling the motions in the revolute joints G and K, thus imposing the platform’s
angular positions on the two axes of rotation. Subsequently, through the inverse kinematics,
the laws of motion in the translational joints of the actuators (B and I) are determined.
For example, the correlation between the platform’s angles and the actuator’s strokes is
shown in Figure 5 (the duration of the simulation is not relevant in this case; a one hour
interval was chosen), considering the maximum angular ranges of motion of the platform
(ψ*—the diurnal angle, in joint G; α*—the elevation angle, in joint K): ψ*∈ (90◦, −90◦),
α* ∈ (0◦, 90◦). For the diurnal motion, the limit values correspond to the positions in which
the platform faces East (ψ* = 90◦) and West (ψ* = −90◦), by relating the angle to the noon
reference position (when ψ* = 0◦). For the elevation motion, the angles’ limit values are
those in which the platform is vertical (α* = 0◦)—position that is recommended in strong
wind conditions, respectively, horizontal (α* = 90◦)—recommended position in cloudy sky
conditions, for maximum capture of the diffuse component of solar radiation.
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this representation is the East–West axis). In the two positions, the linear actuators (i.e., 
the drivers) are in the following states (La is the actuator’s length, |AC| or |HJ|, by case): 
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The two end (limit) positions of the tracking mechanism/platform, defined by the
angle pairs ψ* = 90◦ (platform facing East), α* = 0◦ (platform vertically) and ψ* = −90◦

(facing West), α* = 90◦ (horizontally), are represented in Figure 6 (the horizontal axis of
this representation is the East–West axis). In the two positions, the linear actuators (i.e.,
the drivers) are in the following states (La is the actuator’s length, |AC| or |HJ|, by case):
(a) diurnal motion actuator—fully compressed (La = 1275 mm), elevation motion actuator—
extended (La = 1645.78 mm); (b) diurnal motion actuator—extended (La = 1866.79 mm),
elevation motion actuator—fully compressed (La = 1275 mm).
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Both the diagrams in Figure 5 and the graphical simulation frames in Figure 6 show
that the chosen type of actuator provides the necessary strokes for the two motions. This is
the result of a complex optimization study that was carried out in ADAMS, as it will be
described below. The optimization aimed at establishing the optimal disposal of the two
actuating sources, and the positioning or sizing of the slider-rocker mechanism used to
amplify the stroke for the diurnal movement.

The optimal design was carried out separately on the kinematic contours (subsystems)
corresponding to the two motions (ABCDEFG for diurnal motion and HIJK for elevation).
The optimization problem for each subsystem is of mono-objective type, which is achieved
by following the next steps: model parameterization, modeling of the design variables,



Energies 2021, 14, 535 8 of 30

modeling of the objective function to be optimized, modeling of the design constraints,
the actual optimization.

The parameterization of the model, which allows the automatic modification (reposi-
tioning, reorientation, and resizing, as appropriate) of the objects in the model (e.g., bodies,
joints, force-generating elements) by creating “master-slave” type relations, was done by
using the design points (the joints’ locations), by automatically generating expressions that
control the location and the orientation of the objects once they are modeled by reference
to the respective points. In addition, for the complete parameterization of the mecha-
nism, some manually created expressions were needed (by using the expression modeling
module in ADAMS—Expression Builder).

The design points’ coordinates are subsequently defined as independent design vari-
ables. Of the 33 coordinates of the 11 design points (7 points in the diurnal motion
subsystem and 4 points in the elevation subsystem), only some are considered design
variables, the others being established either exclusively on constructive considerations or
dependent on the coordinates of other design points or variables, as follows:

• global coordinates of points A and C, where the connections of the diurnal motion
actuator are located (A—cylinder joint at base, C—piston joint at slider), are defined
as design variables (DV):

XA→DV_1, YA→DV_2, ZA→DV_3; XC→DV_4, YC→DV_5, ZC→DV_6; (1)

• point B, representing the location of the translational coupling between the two parts
of the actuator (piston and cylinder), is modeled along axis defined by points A and C,
at half the distance between the points, using the expression:

LOC_ALONG_LINE (A, C, DM (A, C)/2), (2)

where LOC_ALONG_LINE (Object for Start Point, Object for Point on Line, Distance)
is a predefined function ADAMS that returns the location that is distance from frame
start point (A) toward point on line (C), while predefined function DM (Object 1,
Object 2) returns the magnitude of the distance between the two points;

• point E’s coordinates, representing the location of the revolute joint between slider and
rod of the stroke amplification mechanism, are established considering the requirement
that the slider be placed in the direction of the projection in the XY plane of the
actuator axis:

XE = XC + lp · cos θ, YE = YC − lp · sin θ, ZE = ZC, (3)

where length lp = |CE| is an imposed parameter, and θ= atan((YA − YC)/ (XC − XA))
is the actuator’s position angle in the XY plane (measured against the X axis);

• the location of point D, where the translational joint between slider and the base of the
mechanism is placed, is determined at half the distance between points C and E (as a
position in the XY plane), and at the base level (as a position on the vertical axis Z):

XD = XC +
lp
2
· cos θ, YD = YE +

lp
2
· sin θ, ZE = 0; (4)

• the location of point F, where the revolute joint between the connecting rod of the
stroke amplification mechanism and the mobile part of the pillar is placed, is estab-
lished as a vertical position at the same level as the E joint, while the coordinates on
the X and Y axes are considered design variables:

XF→DV_7, YF→DV_8, ZF = ZE; (5)
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• the coordinates of point G, representing the location of the revolute joint between the
pillar’s mobile and fixed parts (through which the diurnal orientation of the platform
is achieved), are established on constructive reasons;

• the locations of points H and J, where the actuator’s joints are placed for the elevation
motion to the adjacent elements (H—cylinder’s joint at the mobile part of the pillar,
J—piston’s joint at the platform), are established as position on the longitudinal axis
X at the same level with the joint or point G (the actuator will be arranged in the
transverse-vertical plane containing the axis of the pillar), while the coordinates on
the Y and Z axes are considered design variables:

XH = XG, YH→DV_9, ZH→DV_10; XJ = XG, YJ→DV_11, ZJ→DV_12; (6)

• point I, representing the location of the translational joint between the actuator’s
piston and cylinder, shall be modeled in the direction of the axis defined by points H
and J, at half the distance between the points, using the expression:

LOC_ALONG_LINE (H, J, DM (H, J)/2), (7)

with a similar significance to the one in expression (2);
• the coordinates of point K, representing the location of the revolute joint between the

platform and the mobile part of the pillar (through which the altitudinal orientation of
the platform is achieved), are established on constructive reasons.

The above presented design variables and expressions control the locations of the cou-
plings in the initial (modeling) configuration; during the mechanism working, they change
according to the kinematics of the tracking system. Therefore, in the optimization process
of the bi-axial mechanism, 12 independent design variables are used, 8 of which in the
diurnal motion contour, and 4 in the elevation motion contour. Each variable is defined
by its initial value, along with a domain expressed by boundaries (min, max) in which the
optimal value of the variable is looked for.

As an objective function, for each motion subsystem, the actuator driving force for
generating the angular movement field of the platform was considered (this is reflected in
the power or energy consumption required to achieve tracking); the purpose of optimiza-
tion consists from the minimization of the root mean square (RMS) of this variable force
over time.

The optimization process complexity is mainly given by the multiple design con-
straints that have been taken into account so that the achievement of the optimization
objective (minimizing the driving force) is accompanied by the functional and constructive
rationality of the obtained solution, still considering previously mentioned requirements:
usage of a certain type of actuator (defined by minimum length in compressed state and
the maximum stroke it can achieve); avoidance of the risk of the mechanism going into
self-lock by considering a safety margin regarding the value of the transmission angle
(marked for the two motion subsystems in Figure 7); avoidance of the impact between
the parts of the mechanism. Each constraint generates an inequality relation, keeping the
constraint value less than or equal to zero in the optimization process (in other words,
the positive value of the constraint would be equivalent to violating it, and such a design
is unacceptable).

In this regard, the following design constraints (DC) have been considered or modeled:

• respecting the actuator’s minimum length (in compressed state): DC_1 = 1275 mm − La,
where La is the actuator’s current length (La = |AC| or La = |HJ|);

• respecting the actuator’s maximum stroke (thus length): DC_2 = La − 1875 mm;
• avoiding the self-locking of the mechanism by keeping the transmission angle within

rational boundaries (although in theory self-lock occurs when τ = 0◦ and τ = 180◦,
in practice this can occur before those values have been achieved, especially because of
friction, which is why a safety limit of 15◦ was considered): DC_3 = 15◦ − τ, and DC_4
= τ − 165◦;
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• avoiding impact between bodies (penetrations and strikes between their geometri-
cal shapes), considering only the pairs of bodies that do present a risk of impact
(see the next paragraph): DC_5 = CONTACT(CONTACT_1, 0, 1, 0), DC_6 = CON-
TACT(CONTACT_2, 0, 1, 0), DC_7 = CONTACT(CONTACT_3, 0, 1, 0), DC_8 = CON-
TACT(CONTACT_4, 0, 1, 0).
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For modeling the last four constraints, the CONTACT (Contact Name, On Body, Com-
ponent, Axes) predefined function was used, which returns by the Component argument
(when Component = 1) the magnitude of the force applied by all incidents of contact (Con-
tact Name) between two bodies “i–j” (CONTACT_1: diurnal motion actuator piston—slider,
CONTACT_2: stroke amplifying mechanism rod—pillar, CONTACT_3: elevation motion
actuator cylinder—pillar, CONTACT_4: elevation motion actuator piston—platform), mea-
sured on body i/j (On_Body = 0/1) and expressed relative to the global coordinate system
(Axes = 0).

Therefore, in each of the two motion subsystems, 6 constraints were modeled, namely
DC_1–DC_6 in the diurnal motion subsystem, respectively DC_1–DC_4, DC_7, and DC_8
in the elevation subsystem. For each constraint, the maximum value is monitored during
the simulation, considering that if this value is kept negative, any other value during the
simulation can only be negative.

The actual optimization, which aims to minimize the design objective’s value while re-
specting the constraints, was carried out by using an algorithm provided with ADAMS/View
(namely, OPTDES-GRG). The study was performed considering the maximum platform
revolute domains, ψ* ∈ (90◦, −90◦) and α* ∈ (0◦, 90◦), the duration of the simulation for
each subsystem being one hour, with continuous motion (step-by-step tracking during
daylight will be addressed in Section 4). Following the optimization process, the variation
charts of the design constraints in the two subsystems of the mechanism (I—diurnal motion,
II—elevation motion) are shown in Figure 8. One can see that the constraints DC_1–DC_4
remain negative throughout the simulation, while DC_5–DC_8 are null (no impact between
bodies), so the requirements regarding the functioning of the mechanism and the rationality
of the constructive solution are met. Figure 8 also shows the variations of the driving forces
generated by the linear actuators, with reasonable or reduced values during the simulation
in both subsystems (in the elevation motions’ case, this is mainly the effect of the proposed
counterweight balancing system, otherwise the required driving force, and therefore energy
consumption, would have been much higher).
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3. Designing the Control System

Among the control variants summarized in the introductory section, for the proposed
bi-axial azimuthal tracking system, an open-loop control strategy was chosen, based on
a predefined tracking program (whose design will be detailed in the next section of the pa-
per). In order to design the control system, a specialized DFC computer application (namely,
EASY5) was used in conjunction with the MBS software (ADAMS), in co-simulation mode,
which is based on the input and output plants (outputs describe parameters submitted
to EASY5, while inputs describe returned parameters in ADAMS). The communication
between the MBS and DFC models is managed by using ADAMS/Controls, a plugin to
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ADAMS/View, which allows connecting mechanical models developed in ADAMS/View
with control system models from specific DFC applications.

Depending on the number of monitored or controlled parameters, various control
schemes can be designed, with one (usually for position), two (position and speed), or three
(position, speed and current) loops. Multi-loop systems define so-called cascade control
scheme (for example, two-loop systems use the main and external controller output to
control the secondary and internal controller input), thus ensuring higher performance
(stability, robustness).

For this work, it was selected a control scheme with two loops (for both the diurnal
and elevation motions), the controlled parameters being the platform’s angles and the
linear speeds in the actuators. Several control variants (single-loop, multi-loop) were tested,
the chosen solution being the one that ensures the best ratio between the complexity and
the performance of the system. For this control system configuration, the communication
diagram between the MBS (ADAMS) and DFC (EASY5) models is the one shown in
Figure 9, in which: OUT-1—the measured or current angle of the platform, OUT-2—linear
speed in the actuator, IN—driving force developed by the actuator. The tracking system
being of bi-axial type (with two linear actuators), the general control scheme will in fact
include two schemes like the one in Figure 9 (one for each motion of the platform).
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Input and output parameters were modeled in ADAMS using predefined functions.
The input variable (IN) receives the current value from the control system, so that it is
initially modeled in ADAMS with the value 0.0, being assigned to the driving force in the
actuator by the predefined function Variable Value (VARVAL). For the output variable, OUT-
1 (representing the diurnal or elevation angle, as appropriate), the corresponding function
provides the angular position of the platform, for the modeling of which the predefined
function AZ(From Marker, To Marker) was used. The coordinate system markers are placed
on the adjacent bodies in the revolute joints through which the orientation of the platform
around the two motion axes is performed.

For the output variable OUT-2 (representing the linear speed in the actuator), the
time function returns the relative displacement between the actuator’s piston and cylinder,
the modeling being performed with the predefined function VZ(From Marker, To Marker),
in which the coordinate systems are positioned in the translational joint between the
actuator’s elements.

The control system model conceived in EASY5 (Figure 10) contains the following types
of components: RF—input function generator, used to model the imposed angle (diurnal
or elevation); SJ—summation block, used to compare the input signals (e.g., the imposed
“+1” angle with the measured “−1” angle); LA—block for modeling the control element
(controller); MSC.ADAMS—interface block that establishes the connection with the MBS
model developed in ADAMS.
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The position and velocity controllers were modeled by using low pass filters. In EASY5,
this controller can be modeled through a First Order Lag (LA) block, which generates a
continuous transfer function in constant time format, as follows (EASY5 notations are used):

dS_Out
dt

=
(GAI · S_In − S_Out)

TC
, (8)

where: S_In—controller input, S_Out—controller output, GAI—amplification factor, TC–
response time constant.

Controllers’ tuning consists in establishing the optimal values of their amplification
factors. This was carried out by implementing a parametric optimization procedure in
ADAMS, such as the one presented in the previous chapter of the paper. In this regard,
the control system model was transferred from EASY5 to ADAMS as an External System
Library (ESL) file, and subsequently the amplification factors of the controllers were defined
in ADAMS as design variables.

The optimization goal consists in minimizing the tracking error (in terms of root
mean square), which defines the deviation between the imposed and measured values of
the platform’s angles (diurnal or elevation, by case). In the control system model shown
in Figure 10, the tracking error is materialized by the output from SJ1 and respectively
SJ3 block. By minimizing these errors, the conditions are ensured so that there are no
losses of incidental solar radiation due to possible errors in the positioning of the platform,
by reference to the imposed tracking program. As mentioned, the design variables for
optimizing the control system are represented by the amplification factors of the controllers
(GAIp—position controller, GAIs—speed controller), for each of the two motions of the
tracking system.

The optimization problem of the control device, which is one of mono-objective type,
was carried out by using the same algorithm as for the optimal design of the mechanical
model of the bi-axial solar tracker (OptDes-GRG). Numerical simulation is performed by
considering a motion or tracking step with the amplitude of 20◦, which is covered in 30 s,
for both movements. Following the optimization process, the following values of the am-
plification factors have been obtained: the controller for diurnal movement—GAIp = 2392,
GAIs = 2349; the controller for elevation movement—GAIp = 3648, GAIs = 3516. With these
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amplification factors, there result insignificant values of tracking errors (in terms of root
mean square—RMS), namely RMS = 8.151× 10−6 for diurnal motion, and RMS = 9.546× 10−6

for elevation, which ensures accurate tracking of the imposed motion laws (hence, the opti-
mal incidence of sunrays on the platform’s surface).

Next, the robustness of the designed control system is checked. Robustness is the
ability of the system to operate at or near imposed performance indices when one or
more parameters of the model change, or when external disturbances affect the system.
In this case, the robustness of the diurnal motion’s control system shall be checked at the
occurrence of a non-stationary external disturbance represented by the action of wind.
A gust of wind which acts during the tracking step (20◦ traveled in 30 s) and that generates
a loading torque of 60 Nm at the level of the revolute joint between the mobile and fixed
parts of the support pillar is considered. This load corresponds to the maximum value of
the wind speed registered in the Bras, ov area (namely, 15 m/s) during a 3-year monitoring
(climatic data recording) [53].

The profile of the wind gust is presented in Figure 11a, the sign of the generated torque
depending on the wind’s direction, front or rear relative to the platform (the torque is
therefore either “+” motor or resistant ”−”, related to the platform’s direction of movement).
The variation of the tracking error during the wind’s action is insignificant (the maximum
amplitude being about 3.5 × 10−5), and subsequently the system stabilizes accordingly,
as can be seen in Figure 11b. Similar results were obtained for the elevation motion as well,
thus confirming the ability of the proposed control system to compensate very well for the
effect of non-stationary external disturbances.
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4. Designing the Bi-Axial Tracking Program

In order to optimally design the bi-axial tracking program, a mathematical model
for determining the energy production of the PV platform had to be developed and
subsequently transposed or implemented in the tracking mechanism’s MBS model done in
ADAMS through the usage of the ADAMS/Function Builder module. Thus, it’s possible to
assess both the energy produced by the PV tracking system and the energy consumed to
achieve the orientation around the two axes.

As is well known, solar radiation is composed of three components: direct, diffuse,
and reflected. Solar radiation is influenced by the geographical location, the relief configu-
ration, season, time of day, climatic conditions (clouds, rain, air clarity), and the level of
pollution in the area. To design and implement a PV plant, the amount of solar radiation
is estimated, either using meteorological databases (such as Meteonorm) or by empirical
models based on measurements.
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The literature presents various models for establishing the quantity of solar radiation
(global or component-based) [54–58]. For the present work, the empirical model developed
by Meliss [59] (which is close to the climatic conditions in the Bras, ov area) is used for
modeling solar radiation. For simplicity’s sake, it’s considered only the direct radiation,
starting from the premise that the sky is clear (cloudless).

Sunray’s altitudinal angle (which is formed between the sunray and the area’s hori-
zontal plane) is given by the following equation:

α = asin(sin δ · sin ϕ + cos δ · cos ϕ · cosω), (9)

in which: φ—the latitude (45.65◦ for Bras, ov area),ω—the hour angle, δ—the declination
angle. The angles of the equatorial orientation (ω, δ) are modeled according to the equations
presented in [60], depending on the solar time and the day number (e.g., N = 172 for 21 June,
the summer solstice day).

Sunray’s diurnal angle for the azimuthal orientation (ψ) is expressed by the equation:

ψ = arccos
sin α · sin ϕ − sin δ

cos α · cos ϕ
· sgnω, (10)

where sgnω is the hour angle sign (negative before noon, positive in the afternoon).
The incident solar radiation can be established according to the amount of direct

radiation (GD) and the incidence angle (i),

GI = GD · cos i. (11)

In the azimuthal setup, the incidence angle is determined as follows:

i = arccos(cos α · cos α ∗ · cos(ψ − ψ∗) + sin α · sin α∗), (12)

where ψ* and α* are the angles of azimuthal orientation of the PV platform, as shown in
Figure 12. The platform’s diurnal angle is considered positive (ψ*+) in the morning and
negative in the afternoon, the reference (ψ* = 0◦) corresponding to the platform layout at
noon, when it faces South. The reference position for the elevation angle (α* = 0◦) is the
one in which the platform is vertical, the angle being positive (α*+) for clockwise rotation.
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There are two way to ensure the sun tracking, with continuous movement or step-by-
step. The ideal case is that of continuous orientation throughout the daylight, so that the
normal to the platform coincides at all times with the direction of the sunray. To ensure the
ideal incidence, the platform’s orientation angles must coincide with the sunray’s angles
(ψ* = ψ, α* = α). For example, Figure 13 shows the incident radiation (coinciding with that
of direct radiation) for continuous tracking (I) on the day of summer solstice, along with
the curve corresponding to the fixed or stationary system (II), at which the platform is
maintained throughout the entire day in the noon position (ψ* = 0◦), at an elevation angle
equal to that of the sunray at that time (α* = 67.8◦).
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However, continuous tracking generates quite some known issues, as follows: long
running time (corresponding to daylight duration), large transmission ratios (the speed
with which the sun tracking is made is really low), possible unstable behavior of the system
in case of being acted on by non-stationary disturbances (e.g., wind). Because of these
issues, step-by-step tracking is frequently used in practice, for both the diurnal motion
and the elevation one, even if it’s less efficient when it comes to capturing solar radiation.
However, through optimal design of the laws of motion in steps, it is possible to achieve
a high efficiency of stepping tracking, comparable to that of continuous movement tracking.
The optimization of the azimuthal tracking program aims to correlate the two movements
of the platform, expressed by the diurnal and elevation angles, so as to result in an optimal
incidence of sunrays on the platform surface.

The parameters that define the stepping movement law will be treated as variables
in the optimal design process of the tracking program, as follows: the angular movement
range (in which the platform is oriented), the tracking steps number and size, the operating
and running time (defined by time intervals in which the system is operated). There are
certain interdependencies between the mentioned variables, for example the sum of the
movement steps’ sizes equals the amplitude of the angular movement range. By optimally
correlating the data, a step-by-step law of motion can be obtained that’s close in efficiency
to the continuous movement.

The solar radiation curve is symmetrical, relative to the solar noon (see Figure 13),
which is also transposed on the tracking law. Thus, the process of optimally designing the
tracking law is simplified, by considering only half of law, from sunrise to noon, which is
subsequently adapted for the other half of the law, from noon to sunset (e.g., reversing the
diurnal angle sign).

The laws of motion for the azimuthal solar tracker (corresponding to the diurnal
and elevation angles), have been defined with the help of the ADAMS/Function Builder
module by summing STEP functions, as follows:

STEP(x, x0, f0, x1, f1) + . . . + STEP(x, xk−1, fk−1, xk, fk), (13)

in which: x—the independent parameter (i.e., time), x0/xk−1—independent parame-
ter’s value at the beginning of the function, f0/fk−1—function’s initial value, x1/xk—
independent parameter’s value at the end of the function, f1/fk—function’s final value.
It should be noted that starting with the second STEP function, the value of the current
function is expressed in relation to the previous one.

Thus, the half-law tracking functions have been expressed in the following way:

• diurnal motion (Figure 14):
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STEP(time, (tr + td1), ψ0, (tr + td1 + ∆t), ψ0 − ∆ψ1) + STEP(time, (tr + td1 + td2), 0, (tr + td1 + td2 + ∆t), − ∆ψ2) +
+ . . . + STEP(time, (tr + td1 + td2 + . . . + tdk), 0, (tr + td1 + td2 + . . . + tdk + ∆t), − ∆ψk)

(14)

where: tr—sunrise time, td1—beginning time for the first step, in relation to the sunset
time; td2—beginning time for the second step, in relation to the beginning of the first step;
tdk—beginning time for the last step, in relation to the beginning of the previous one;
∆t—motion steps duration (for simplicity, the same duration was considered for all the
steps); ψ0—initial value of diurnal angle; ∆ψ1—size of first motion step; ∆ψ2—size of the
second step; ∆ψk—size of the last step (before noon—tn);

• elevation motion (Figure 15):

STEP(time, (tr + te1), α0, (tr + te1 + ∆t), α0 + ∆α1) + STEP(time, (tr + te1 + te2), 0, (tr + te1 + te2 + ∆t), ∆α2) +
+ . . . + STEP(time, (tr + te1 + te2 + . . . + tek), 0, (tr + te1 + te2 + . . . + tek + ∆t), ∆αk)

(15)

where the significances of the parameters correspond to those of diurnal movement, con-
sidering that the motion steps’ duration is the same with the one from diurnal movement.
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As mentioned, the purpose of the process of optimizing the laws of motion consists of
maximizing the PV system efficiency, that is expressed through the following function:

F = ET − (EF + EC), (16)

in which: ET—energy production of the PV platform with bi-axial tracking, EF—energy
production of the equivalent stationary platform, EC—energy consumption to achieve the
bi-axial orientation.

The energy production of the PV platform (with bi-axial tracking or fixed) is deter-
mined according to the platform’s surface, the PV modules’ yield, and the area of the
region delimited by the incident radiation graph, while the energy consumed for tracking
depends on the driving forces and the linear speeds in the actuators [25].

In the optimization process of the bi-axial tracking program, two design constraints
have been defined, which refer to the fact that the final or last steps in the half of laws
for the diurnal and elevation movements have to be completed before noon, according to
the models shown in Figures 14 and 15. The two design constraints (C1—for the diurnal
movement law, and, respectively, C2—for the elevation movement law) create inequality
relations, the optimization process keeping the negative values, null at limit (otherwise,
for positive values, the constraints are considered to be violated), as follows:

C1 = (tr + td1 + td2 + . . . + tdk + ∆t) − tn ≤ 0, C2 =
(
tr + te1 + te2 + . . . + tej + ∆t

)
− tn ≤ 0. (17)

Thus, the optimization of the optimization program aims to determine the design
variables’ values (ψ0, k, ∆ψ1, ∆ψ2, ..., ∆ψk, td1, td2, ..., tdk; α0, j, ∆α1, ∆α2, ..., ∆αj, te1,
te2, ..., tej) that ensure maximizing the objective function (F) while respecting the design
constraints (C1, C2). It should be mentioned that the duration of the motion and tracking
steps was not considered a design variable for the optimization process, it being an imposed
parameter (same value for both motions, ∆t = 0.5 min).

The number of tracking steps for half-laws (k—diurnal movement, j—elevation move-
ment), actually determines the number of variable pairs ∆ψ1...k–td1...k/∆α1...j–te1...j of the
tracking program, in other words the number of STEP functions from Equations (14) and
(15). To make automatic updating possible in the process of optimizing the laws of motion
depending on the number of steps, a conditional function (the predefined IF function in
ADAMS/Function Builder) was used, with the following syntax:

IF (Expression: E1, E2, E3), (18)

in which: Expression—the expression that is evaluated, E1—the returned expression if the
value of the evaluated expression is negative, E2—the returned expression if the value of
the evaluated expression is zero, E3—the returned expression if the value of the evaluated
expression is positive.

For example, if it is considered that the range of variation of the variable representing
the number of steps for diurnal movement is k ∈ (1, 3), the corresponding tracking law will
take the following form:

IF(k− 2 : E1, E2, E3), (19)

in which:

E1 = STEP(t, (tr + td1), ψ0, (tr + td1 + ∆t), ψ0 − ∆ψ1),
E2 = STEP(t, (tr + td1), ψ0, (tr + td1 + ∆t), ψ0 − ∆ψ1) +STEP(t, (tr + td1 + td2), 0, (tr + td1 + td2 + ∆t), − ∆ψ2),
E3 = STEP(t, (tr + td1), ψ0, (tr + td1 + ∆t), ψ0 − ∆ψ1) +STEP(t, (tr + td1 + td2), 0, (tr + td1 + td2 + ∆t), − ∆ψ2)
+ STEP(t, (tr + td1 + td2 + td3), 0, (tr + td1 + td2 + td3 + ∆t), − ∆ψ3).

(20)

If for the same variable it is considered that k ∈ (1, 2), Equation (19) becomes:

IF(k− 2 : E1, E2, 0), (21)
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the evaluated expression cannot return a positive value in this case (so the “0” value is
used to make up for the lack of expression E3), while for k ∈ (1, 4) a cascade configuration
of IF functions is required, as follows:

IF(k− 2 : E1, E2, (IF(k− 3): 0, E3, E4)) (22)

in which

E4 = STEP(t, (tr + td1), ψ0, (tr + td1 + ∆t), ψ0 − ∆ψ1) +STEP(t, (tr + td1 + td2), 0, (tr + td1 + td2 + ∆t), − ∆ψ2) +
+ STEP(t, (tr + td1 + td2 + td3), 0, (tr + td1 + td2 + td3 + ∆t), − ∆ψ3) + STEP(t, (tr + td1 + td2 + td3 + td4), 0 ,
(tr + td1 + td2 + td3 + td4 + ∆t), − ∆ψ4),

(23)

expressions E1, E2, and E3 having the forms according to Equation (20).
The actual optimization is performed with the same algorithm used in the previous

sections of the work for the mechanical and control models, namely OPTDES-GRG with
the Forward differentiation method.

After determining the optimal values of the design variables for half a law (from sun-
rise to noon), the transposition is made for the interval from noon to sunset, symmetri-
cal with respect to the noon position, thus obtaining the tracking law for the entire daylight
(from sunrise to sunset). With regards to the energy consumed to achieve the bi-axial
orientation of the platform, the return diurnal movement to the initial setting (defined by
the diurnal angle ψ0), after sunset, is also taken into account. This is performed in the
opposite direction of the active (East–West) travel, with continuous movement for 3 min.
The results obtained by implementing the tracking program’s optimization algorithm will
be presented in the next chapter of the work (where the energetic efficiency of the bi-axial
solar tracker is evaluated).

5. Assessing the Energetic Efficiency of the PV Solar Tracker

The energy input brought through the bi-axial tracking with the proposed system
was evaluated by considering the Bras, ov area, in which the maximum sunray’s altitudi-
nal angle (α) varies during the year between 10◦ and 68◦, the corresponding platform’s
elevation angle (α*) being able to approximate this domain quite well by 14 annual steps,
involving the division of the year into 14 periods or intervals, namely: N ∈ (27–52), (53–72),
(73–87), (88–103), (104–120), (121–140), (141–202), (203–222), (223–239), (240–254), (255–270),
(271–290), (291–315), (316–26), where N is the day number.

In the case of each of the 14 intervals, a representative day has been determined,
the one when the energy production of the PV platform is close to the average of the
energies produced on all days in that interval. In what follows, these are referred to as
tracking programs (noted “1”–“14”), as follows: “1”—February 9 (N = 40), “2”—March
3 (N = 63), “3”—March 21 (N = 81), “4”—April 5 (N = 96), “5”—April 21 (N = 112),
“6”—May 10 (N = 131), “7”—June 20 (N = 172), “8”—July 31 (N = 213), “9”—August 18
(N = 231), “10”—September 3 (N = 247), “11”—September 23 (N = 267), “12”—October
7 (N = 281), “13”—October 29 (N = 303), “14”—December 21 (N = 356). For the physical
implementation, the PV platform will be oriented on all days within an interval based on
the tracking program established for the representative day of that interval.

By applying the optimization algorithm depicted in the 4th chapter of the work, the
data defining the 14 tracking programs were obtained, as shown in Tables 2–9. It should be
noted that, given the distribution of intervals (representative days) throughout the year,
there are several tracking programs that are identical in pairs of two, namely: “1”/“13”,
“2”/“12”, “3”/“11”, “4”/“10”, “5”/“9” and “6”/“8”. The actuation times (when the
tracking steps are initiated) are related to the local time in the Bras, ov area; the conversion
from solar time is made by using an online calculator, with the corresponding formula
in [60]. In the diurnal motion law, the last tracking step corresponds to the return of the
system to the initial (starting) position.

The time-history variations of the diurnal and elevation angles obtained in this way
are used as input data in the control system model depicted in the previous section of the
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work, representing the input values in the ramp function generator blocks RF1 and RF2
from Figure 10.

Based on these tracking programs, the parameters for the evaluation of the energy
efficiency of the PV system were determined. For instant, the results obtained for the
tracking program “7” applied on the day of the summer solstice (21 June, N = 172) are
presented in Figure 16 (I—diurnal motion, II—elevation motion, T—PV system with bi-axial
tracking, F—fixed PV system).

The systematization of the data on the energy efficiency of the proposed solar tracker
for the 14 tracking programs (representative days) that were considered is presented in
Table 10 and Figure 17. Energy gains (ξ) in the range of, approximately, 32 to 55% can
be observed, with a yearlong average value of 38.74%. The gain is related to the fixed
reference PV system (platform) through the relation:

ζ =
ET − (EF + EC)

EF
· 100, (24)

Table 2. Tracking program “1”/“13”.

Movement Diurnal Elevation

Angular Range ψ* ∈ [57, −57]◦ α* ∈ [11, 30]◦

Actuation Time|Step Size t [h] ∆ψ* [◦] t [h] ∆α* [◦]

Tracking step
number

1 9.12 18 9.77 19

2 10.45 18 14.77 −19

3 11.68 21

4 12.85 21

5 14.10 18

6 15.42 18

7 21.30 −114

Table 3. Tracking program “2”/“12”.

Movement Diurnal Elevation

Angular Range ψ* ∈ [67, −67]◦ α* ∈ [10, 38]◦

Actuation Time|Step Size t [h] ∆ψ* [◦] t [h] ∆α* [◦]

Tracking step
number

1 8.85 21 8.58 17

2 10.35 22 10.58 11

3 11.67 24 13.98 −11

4 12.92 24 15.98 −17

5 14.23 22

6 15.73 21

7 21.30 −134
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Table 4. Tracking program “3”/“11”.

Movement Diurnal Elevation

Angular Range ψ* ∈ [76, −76]◦ α* ∈ [15, 44]◦

Actuation Time|Step Size t [h] ∆ψ* [◦] t [h] ∆α* [◦]

Tracking step
number

1 8.60 23 8.30 13

2 10.27 25 10.05 16

3 11.67 28 14.55 −16

4 12.93 28 16.30 −13

5 14.33 25

6 16.00 23

7 21.30 −152

Table 5. Tracking program “4”/“10”.

Movement Diurnal Elevation

Angular Range ψ* ∈ [86, −86]◦ α* ∈ [10, 50]◦

Actuation Time|Step Size t [h] ∆ψ* [◦] t [h] ∆α* [◦]

Tracking step
number

1 7.90 18 7.80 20

2 9.27 17 9.80 20

3 10.50 23 14.80 −20

4 11.73 28 16.78 −20

5 12.88 28

6 14.10 23

7 15.35 17

8 16.72 18

9 21.30 −172

Table 6. Tracking program “5”/“9”.

Movement Diurnal Elevation

Angular Range ψ* ∈ [90, −90]◦ α* ∈ [12, 56]◦

Actuation Time|Step Size t [h] ∆ψ* [◦] t [h] ∆α* [◦]

Tracking step
number

1 7.82 15 7.82 22

2 9.03 15 9.82 22

3 10.08 18 14.82 −22

4 11.08 21 16.82 −22

5 11.93 21

6 12.68 21

7 13.53 21

8 14.53 18

9 15.58 15

10 16.80 15

11 21.30 −180
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Table 7. Tracking programs “6”/“8”.

Movement Diurnal Elevation

Angular Range ψ* ∈ [90, −90]◦ α* ∈ [10, 62]◦

Actuation Time|Step Size t [h] ∆ψ* [◦] t [h] ∆α* [◦]

Tracking step
number

1 8.08 12 6.92 20

2 9.12 13 8.82 16

3 10.08 17 10.32 16

4 11.07 24 14.32 −16

5 11.93 24 15.82 −16

6 12.68 24 17.72 −20

7 13.57 24

8 14.53 17

9 15.52 13

10 16.53 12

11 21.30 −180

Table 8. Tracking program “7”.

Movement Diurnal Elevation

Angular Range ψ* ∈ [90, −90]◦ α* ∈ [10, 67]◦

Actuation Time|Step Size t [h] ∆ψ* [◦] t [h] ∆α* [◦]

Tracking step
number

1 8.23 9 6.70 20

2 9.08 12 8.60 18

3 10.00 16 10.30 19

4 11.02 26 14.30 −19

5 11.92 27 16.00 −18

6 12.68 27 17.90 −20

7 13.58 26

8 14.60 16

9 15.52 12

10 16.37 9

11 21.30 −180

Table 9. Tracking program “14”.

Movement Diurnal Elevation

Angular Range ψ* ∈ [50, −50]◦ α* ∈ [10, 23]◦

Actuation Time|Step Size t [h] ∆ψ* [◦] t [h] ∆α* [◦]

Tracking step
number

1 9.12 17 9.77 13

2 10.45 16 14.77 −13

3 11.68 17

4 12.85 17

5 14.10 16

6 15.42 17

7 21.30 −100



Energies 2021, 14, 535 23 of 30
Energies 2021, 14, x FOR PEER REVIEW 23 of 30 
 

 

  
(a) (b) 

(c) (d) 

Figure 16. Numerical simulation results for tracking program “7”: (a) Platform’s angles; (b) Energy consumption for 
tracking; (c) Incident radiation; (d) Produced energy. 

The systematization of the data on the energy efficiency of the proposed solar 
tracker for the 14 tracking programs (representative days) that were considered is pre-
sented in Table 10 and Figure 17. Energy gains (ξ) in the range of, approximately, 32 to 
55% can be observed, with a yearlong average value of 38.74%. The gain is related to the 
fixed reference PV system (platform) through the relation: 

( )
100

EF
⋅

−  E + E E
 = ζ CFT , (24)

It is specified that for the fixed system the following values of the platform’s position 
angles were considered for all tracking programs (values that remain constant through-
out the year): ψ* = 0° (noon position), α* = 55° (optimal annual average value). 

Table 10 also shows the data corresponding to the stepping tracking efficiency (εT), 
by relating the amount of energy production (ET) corresponding to the above defined 
tracking programs to that of the ideal continuous movement orientation (ETmax), with a 
null angle of incidence during the whole daylight, 

,100
E

E

maxT

T
T ⋅=ε  (25)

the values obtained for all representative days proving the accuracy of the stepping 
tracking programs. 

All these justify the bi-axial tracking of the PV platform and prove the viability and 
usefulness of the proposed tracking system, hence of the algorithm on which the system 
was designed (optimized). 

Figure 16. Numerical simulation results for tracking program “7”: (a) Platform’s angles; (b) Energy consumption for
tracking; (c) Incident radiation; (d) Produced energy.

Table 10. The efficiency of the bi-axial solar tracker.

Tracking
Program

ET
[Wh/day]

EF
[Wh/day]

EC [Wh/day] ξ

[%]
ETmax

[Wh/day]
εT
[%]Diurnal Elevation Total

“1” 10,102.05 7520.97 14.18 27.40 41.58 33.77 10,201.77 99.02

“2” 11,943.88 8989.66 17.58 40.78 58.36 32.21 12,039.82 99.20

“3” 13,863.88 10,305.65 20.82 42.87 63.69 33.91 13,978.59 99.18

“4” 14,668.57 10,716.33 24.50 58.96 83.46 36.10 14,780.23 99.24

“5” 16,006.77 11,282.97 26.21 65.29 91.50 41.06 16,130.91 99.23

“6” 16,964.13 11,438.8 26.22 77.16 103.38 47.40 17,101.23 99.20

“7” 17,932.92 11,470.24 26.23 84.62 110.85 55.38 18,175.76 98.66

“8” 16,838.91 11,375.38 26.22 77.16 103.38 47.12 16,974.03 99.20

“9” 15,880.73 11,190.47 26.21 65.29 91.50 41.10 16,005.34 99.22

“10” 14,790.47 10,768.21 24.50 58.96 83.46 36.58 14,904.31 99.24

“11” 12,800.96 9610.99 20.82 42.88 63.70 32.53 12,926.05 99.03

“12” 11,982.89 8990.86 17.58 40.78 58.36 32.63 12,083.36 99.17

“13” 9692.3 7223.07 14.18 27.40 41.58 33.61 9779.61 99.11

“14” 7384.46 5289.51 11.97 18.49 30.46 39.03 7429.62 99.39
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system. To exemplify, tracking program “7” (N = 172) is considered, with the corre-
sponding theoretical (simulation) results in Figure 16. The direct radiation chart, meas-
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It is specified that for the fixed system the following values of the platform’s position
angles were considered for all tracking programs (values that remain constant throughout
the year): ψ* = 0◦ (noon position), α* = 55◦ (optimal annual average value).

Table 10 also shows the data corresponding to the stepping tracking efficiency (εT),
by relating the amount of energy production (ET) corresponding to the above defined
tracking programs to that of the ideal continuous movement orientation (ETmax), with a
null angle of incidence during the whole daylight,

εT =
ET

ETmax
· 100, (25)

the values obtained for all representative days proving the accuracy of the stepping track-
ing programs.

All these justify the bi-axial tracking of the PV platform and prove the viability and
usefulness of the proposed tracking system, hence of the algorithm on which the system
was designed (optimized).

For the validation of the numerical data (obtained by simulations in a virtual environ-
ment), experimental data was acquired with a DELTA-T weather station, which contains
sensors for solar radiation (direct, diffuse), and a data-logger for the data recording system.
To exemplify, tracking program “7” (N = 172) is considered, with the corresponding theoret-
ical (simulation) results in Figure 16. The direct radiation chart, measured with the weather
station, is shown in Figure 18a. Subsequently, by considering the angle of incidence varia-
tion shown in Figure 18b, the incident radiation curves shown in Figure 18c were obtained
for the platform oriented with the bi-axial program (T) and for the fixed reference platform
(F). With these, the energy production of the PV system is determined, the diagrams being
those shown in Figure 18d, as follows: ET = 17,172.51 Wh/day, and EF = 11,000.93 Wh/day.

These values were determined on the basis of the equation depicted in [25], depending
on the platform’s active surface, the conversion yield of the PV modules, and the area of the
region delimited by the incident radiation graph, the last one resulting from the amount of
direct radiation, which was determined experimentally (acquired from the weather station)
or theoretically, by case, and the angle of incidence generated by the selected tracking
program through the Equation (12).

It can be seen a good correspondence between the experimental and theoretical data,
thus ensuring the validation of the analytical model for estimating the amount of available
direct radiation, which represents a key element of the algorithm for optimizing the bi-axial
tracking program. Similar comparative analyses were carried out during other days of the
year as well, and the obtained results were similar (especially in clear-sky conditions).
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6. Conclusions

Based on what is presented in this work, important conclusions can be drawn with
regards to the viability (utility) of the proposed bi-axial tracking system, which is the result
of a complex optimization process, with multiple design constraints, targeting all of the
system’s components (mechanical model, control system, tracking program). It should be
mentioned that optimization algorithm hereby proposed can be easily adapted for most
types of solar trackers (at least those systematized in the introductory section of the work).

By referring to existing solutions and studies, including in previous works of the
author, the impact of the new design can be rendered in the “better reliability, accu-
racy and efficiency” form. Firstly, by the structural solution for the bi-axial solar tracker,
mainly regarding the stroke amplification mechanism used in the diurnal motion sub-
system (which allows performing a large tracking angular domain of the platform with
a reduced stroke or size actuator) and the balancing system in the elevation subsystem
(which allows the reduction in energy consumption by minimizing the corresponding
driving or actuating force). Moreover, the proposed tracking mechanism does not raise
problems related to the angular capability of the joints or the risk of self-locking, which is ul-
timately reflected in high reliability features. Secondly, by the mode in which the two main
components of the tracking system (the mechanical and control devices) are integrated and
tested together in mechatronic concept at the level of the virtual prototype, thus minimizing
the risk that the control law (i.e., the tracking program) not to be performed accurately by
the mechanical device (there are obtained practically null tracking errors, including when
significant external disturbances, such as wind, act on the system). Last but not least,
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by the mode in which the optimization of the step-by-step bi-axial tracking program was
approached, by considering simultaneously the two quantities that determine the energetic
efficiency of the PV tracking system, namely the energy gain obtained by tracking and
the energy consumed for tracking. These are integrated into a single objective function,
in which all the defining parameters for the step-by-step bi-axial tracking are found as
design variables. Thus, the variation laws of the diurnal and elevation angles of the PV
platform are correlated in a manner that allows the obtaining of an optimal incidence of the
sunrays, very close to that of the ideal continuous tracking, with a relatively small number
of actuatings (tracking steps), and minimal energy consumption.

In support of the above, the proposed design is reported to the tracking system
that constituted the starting point for the new solution development, namely the bi-axial
azimuthal mechanism depicted in [46], which is rendered in Figure 2. Besides the issues
found in the previous solution (regarding the angular capacity of the spherical joints from
the stroke amplification mechanism, and the high energy consumption to achieve the
elevation movement, in the absence of a balancing system), in the process of optimizing the
tracking program, there were not considered as design variables all the defining parameters
of the step-by-step motion laws (as the approach in the present work was), some of them
being imposed (e.g., the number of tracking steps). All this has led to a lower energy
gain (33.79%), as average value throughout the year, compared to that provided by the
system proposed here (38.75%), and this at approximately equal estimated manufacturing
costs. Another point in which the proposed system proves its high performance is the
one related to the tracking efficiency of 99.15% (reported to the ideal case of continuous
tracking), which was possible by the way in which the step-by-step tracking program was
configured for the optimization process, considering as design variables all the defining
parameters. In previous works, some of these parameters (such as the range of angular
motion or the number of tracking steps) were imposed, which resulted in lower values of
tracking efficiency, such as 94.9% [45] and 95.7% [47].

To better express the high performance of the proposed bi-axial system, a comparative
analysis with the results provided by the mono-axial version (which would be a cheaper
solution) was also considered. In the mono-axial version, only the diurnal movement of the
platform is performed, while the elevation position is fixed in an optimal annual average
angle throughout the year. By using the optimization algorithm of the tracking program
depicted in the 4th section of the paper (obviously in a simplified form, by reducing the
number of parameters involved in optimization) it was found that the intake in energy
gain and tracking efficiency of the bi-axial system compared to the mono-axial version
justifies the orientation along the second axis, corresponding to the elevation movement,
as follows (in terms of average annual values): energy gain—38.75% (bi-axial), 25.49%
(mono-axial); tracking efficiency—99.15% (bi-axial), 89.24% (mono-axial). It should be
mentioned that (at least for the Bras, ov area) the mono-axial setup is really effective for
systems in which the axis of diurnal movement is parallel to the polar axis (i.e., equatorial
tracking systems), which is not the case for the azimuthal systems (where the primary axis
is vertically disposed).

The results based on weather data measured in clear sky conditions validate the
theoretical data of the numerical simulations in a virtual prototyping environment (in terms
of amount of direct solar radiation). In cloudy or rainy conditions, tracking is not justified,
and it is recommended that the PV platform be positioned horizontally to capture maximum
diffuse solar radiation (which is predominant in such weather conditions); the proposed
tracking mechanism allows the platform to be brought into such a position, as well as in the
position with the platform being vertical, which is recommended in high wind conditions.

The study of modeling, simulating and optimizing based on virtual prototyping tools
depicted in this work precedes the manufacturing of the physical (experimental) model of
the proposed bi-axial tracking system, which is being developed and it will be implemented
in the university’s solar park from the Research and Development Institute. The results to
be obtained by experimental testing (others and more than those used in this work, e.g.,
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the electric power generated by the PV platform or the energy consumed to achieve the
tracking) are going to be presented in a future paper, including for the purpose of a deeper
validation of the results provided by the virtual prototype of the tracking system depicted
in this work.

Experimentally measured weather data, such as those shown in Figure 18, can be
used to make meteorological predictions, which could be the basis for modeling adaptive
tracking systems that are able to make orienting decisions based on real weather conditions.
This can be achieved by integrating fuzzy rules into the orientation program. The platform’s
movement will follow the predefined bi-axial algorithm as long as the weather conditions
allow this (that is when direct radiation predominates and wind action is within normal
limits). When these conditions are no longer ensured (e.g., cloudy skies, when diffuse
radiation becomes predominant, or in strong wind conditions), the solar tracker will place
the PV platform in an appropriate position, horizontally or vertically, as will be the case
(it should be mentioned that the proposed tracking mechanism is designed so as to be able
to bring the platform into these limit positions, as shown in Figure 6), following that the
orientation based on the predefined algorithm is resumed once the external perturbations
attenuates. Such an approach is another major direction of further work.
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Abbreviations

i angle of incidence
lp slider’s length
md mechanism for diurnal motion transmitting
me mechanism for elevation motion transmitting
t time
td beginning time for diurnal motion step
te beginning time for elevation motion step
tn noon time
tr sunrise time
ts sunset time
AA’ diurnal motion axis
BB’ elevation motion axis
EC energy consumption for tracking
EF energy production of fixed PV system
ET energy production for step-by-step tracking
ETmax energy production for ideal continuous orientation
F objective function
GAI controller’s amplification factor
GD direct solar radiation
GI incident solar radiation
La actuator’s length
N day number
S_In controller’s input,
S_Out controller’s output,
TC response time constant
α sunray’s altitudinal angle
α* platform’s elevation angle
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α0 initial value of platform’s elevation angle
δ declination angle
εT step-by-step tracking efficiency
θ actuator’s position angle
ξ energy gain
τ transmission angle
φ latitude angle
ψ sunray’s diurnal angle
ψ* platform’s diurnal angle
ψ0 initial value of platform’s diurnal angle
ω hour angle
∆t motion step duration
∆α size of elevation motion step
∆ψ size of diurnal motion step
List of Abbreviations
AZ Angle about Z
CAD Computer Aided Design
CSP Concentrated Solar Power
DC Design Constraint
DFC Design for Control
DM Distance Magnitude
DOF Degrees of Freedom
DV Design Variable
ESL External System Library
GRG Generalized Reduced Gradient
HHE Helios Energy Europe
IN Input
LA First Order Lag
MBS Multi-Body Systems
OUT Output
PV Photovoltaic
RF Ramp Function
RMS Root Mean Square
SJ Summing Junction
VARVAL Variable Value
VZ Velocity along Z
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