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Abstract: Interest in research analyzing and predicting energy loads and consumption in the early
stages of building design using meta-models has constantly increased in recent years. Generally, it
requires many simulated or measured results to build meta-models, which significantly affects their
accuracy. In this study, Latin Hypercube Sampling (LHS) is proposed as an alternative to Fractional
Factor Design (FFD), since it can improve the accuracy while including the nonlinear effect of
design parameters with a smaller size of data. Building energy loads of an office floor with ten design
parameters were selected as the meta-models’ objectives, and were developed using the two sampling
methods. The accuracy of predicting the heating/cooling loads of the meta-models for alternative
floor designs was compared. For the considered ranges of design parameters, window insulation
(WDI) and Solar Heat Gain Coefficient (SHGC) were found to have nonlinear characteristics on
cooling and heating loads. LHS showed better prediction accuracy compared to FFD, since LHS
considers the nonlinear impacts for a given number of treatments. It is always a good idea to use
LHS over FFD for a given number of treatments, since the existence of nonlinearity in the relation is
not pre-existing information.

Keywords: latin hypercube sampling; factorial design; nonlinear effect; design of experiment (DOE);
building heating and cooling load prediction

1. Introduction

The abrupt increase in global energy use is a significant factor that augments global
warming. As urbanization continues, the total energy used in the building sector has
increased to approximately 40% of the global energy use and contributes to as much as
30% of the global CO2 emission [1]. In Korea, energy use in the building sector constitutes
approximately 18% of the total energy consumption. This number increases to 55% in Seoul,
the largest cosmopolitan city in South Korea [2]. Many researchers have conducted studies
on topics focused on the reduction of the global energy consumption and CO2 emission.
Such investigations have expanded to the building sector and are focused primarily on: (1)
reducing the heating and cooling loads of buildings, (2) decreasing energy consumption by
optimally controlling highly efficient installations, and (3) using as much renewable energy
as possible.

A building’s heating and cooling load, and hence its energy consumption, can be
reduced by designing or renovating the building in a way that minimizes these loads. In
many cases, a dynamic building energy simulation is used to estimate building cooling and
heating loads since no actual building exists during the building design phase [3–12]. By
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analyzing the simulation results, it is possible to evaluate the impact and sensitivity of the
design factors on the loads. Once sufficient data is available, meta-models representing the
functional relationship between the design factors and heating and cooling loads can be
derived. In addition to building design factors, this study has been expanded to predicting
the heating and cooling load when constructing a given shape of a building at an arbitrary
site by developing a meta-model that considers varying climate factors [12]. With the
recent developments in machine learning and artificial intelligence-related research, along
with the availability of building-information databases, the use of meta-models in building
energy management is advancing [13–17].

To understand the functional relationship between building design factors and heating
and cooling loads, building energy simulation is required for several design conditions
consisting of a combination of building design factors. These design conditions are called
“treatments”. Depending on how these treatments are prepared, they are classified into
various experimental design methods such as one factor at a time (OFAT), factorial, and
Latin hypercube sampling (LHS) methods [18]. OFAT is the most classic design of experi-
ment (DOE) for investigating changes in responses (in this study, the heating and cooling
loads), and varies one factor at a time. OFAT is an excellent method for understanding
the functional relationship between the design factors and responses if there is no inter-
action between the design factors. However, it has been reported that interactions of the
building envelope design factors affect the loads significantly [5,9,19]. Factorial design
is an experimental design that considers the interactions between the design factors. A
factorial design can be either a full or fractional factorial design [20]. When the number
of design factors is large, as it is in cases where the design factors affect building heating
and cooling loads, only two levels are considered for each factor in order to reduce the
number of treatments for dynamic building simulations. Considering ten design factors,
as in Xu et al. [9], the full factorial design method, shown in Figure 1a, requires that the
response of 210 = 1024 treatments be obtained from experiments or simulations. In cases
where higher-order interactions are neglected, fractional factorial design (FFD) can obtain
the functional relationships using half, a quarter, or one eighth subsets of the full factorial
design treatments. These two-level factorial designs consider each treatment condition
only at both endpoints of the factor range (Figure 1a) and assume that the response changes
linearly with the factor level.

These factorial designs are the most frequently used experimental designs, since they
enable an experimenter to study the joint effect of the factors (or process/design param-
eters) on a response [20,21]. There have been many studies investigating the functional
relationship between heating and cooling loads and building envelope design factors
using the fractional factorial design method [4,9,12,19,22]. The regression analysis of the
collected experimental and simulation results makes a sensitivity and influence analysis of
the design factors during the design phase of a low-energy building feasible.

Delgarm et al. [23] observed a nonlinear relationship between building design factors
and heating and cooling loads. To incorporate nonlinear functional relationships, three or
more levels of each factor must be considered. For ten factors at three levels, a total number
of treatments of 59,049 (310 = 59,049) should be estimated for heating and cooling loads,
which is impractical. Instead, the response surface design (RSM) can be used to consider
nonlinearity for a few (3–5) design factors. However, this requires prior information on
which factors have nonlinear relationships to the response values in order to consider them
as nonlinear terms. Otherwise, 3n treatments are necessary in order to consider all possible
nonlinearity, as shown in Figure 1b.

According to the design selection guideline presented in the handbook from NIST [18],
the central composite design and Box-Behnken design are adequate for cases comprising
two to four design factors. The guideline also recommended to perform screening to
reduce the number of design factors if the cases consider four or more factors prior to
using the aforementioned methods. Therefore, they might not be suitable for building
envelope optimization problems where the number of factors presumably exceeds ten. The
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D-optimal design, on the other hand, could decrease the number of trials or simulations;
however, pre-existing or expected information of functional relation should be given to
generate the design of test conditions such that the number of design cases will vary
according to the provided functional relation. In stark contrast to this study, pre-existing
knowledge of the relationship between the design factors and the building and heating
cooling loads (BHCL) is not required.

In essence, if the experimental design only involves a small number of factors (<5),
conventional design methods such as factorial design, composite central design (CCD) and
Box-Behnken design can be adopted. If the cost of experiments and simulations is regarded
as crucial, the screening process of these designs can sieve less significant factors and direct
the focus toward the more critical ones in order to save financial and time investment. If
the experimental design consists of a large number of factors (≥10), the space filling design,
such as LHS, should be employed. LHS is the representative method and the surrogate
models are derived from the experimental results to analyze and represent the functional
relationship between the response and design factors [24]. LHS is discussed more in the
next paragraph.

Recent advances in computing power and simulation methodologies have introduced
the space-filling Latin hypercube sampling (LHS) method for generating meta-models
using experimental design and statistical analysis. These meta-models can be used as
surrogate models to find optimal values instead of directly finding optimal values for
optimization problems. Figure 1c shows the treatments projected onto a plane of two
factors. LHS is a “random” sampling method for selecting treatments evenly over the
entire sampling space and investigate the functional relationships between the considered
parameters and the responses when the relations are highly nonlinear. LHS has been widely
used in building performance analysis. In particular, LHS is often used for uncertainty and
sensitivity analysis [25–33].

This study compares the accuracy and efficiency of meta-models developed using
LHS and FFD and provides guidelines for the selection of experimental designs for re-
searchers developing meta-models using dynamic building simulations. To the best of the
authors’ knowledge, there has been no explicit comparative study on the effectiveness,
efficiency, and accuracy of the Latin hypercube sampling and factorial design methods for
the optimization of building envelope design. The improvement in the model accuracy
due to the ability of LHS to consider nonlinearity is investigated quantitatively in order to
provide guidelines for researchers on the selection of an appropriate experimental design.

Figure 1. Comparison of data sampling methods: (a) two level full/fractional factorial design; (b) three level full factorial
design; and (c) Latin hypercube sampling design.

2. Methods
2.1. Baseline Model Selection and Main Assumptions

Simulation conditions such as weather conditions, building load, internal gains and
operation schedules are briefly illustrated in Table 1, while the thickness and thermophysi-
cal properties of the wall are described in Table 2. More details on the baseline building
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were described in Xu et al. [9]. They performed a parametric study of the impacts of
the building envelope design factors on the building heating and cooling loads using the
automated TRNSYS building energy simulation data [34]. For brevity, the details and the
floor area schematics are not presented in this study.

Since our objective is to compare the factorial design and Latin hypercube sampling
design methods for optimal building envelope design, the climate condition was fixed at
one building location (Seoul, Korea) to focus on the comparison of the two design methods.
Refer to Yong et al. [19] for further information on the climate condition effect on BHCL.

Table 3 lists the design factors considered and their ranges. Heat transfer rate through
building envelope depends on the indoor and outdoor temperature difference, effective
area of heat transfer, and internal and external heat gain. The indoor temperature, which
is the target temperature for the sake of residence comfort, is assumed to be constant for
building heating and cooling load estimation, while the outdoor temperature varies in
time along with the weather condition where the building is located. The same amount
of energy as the heat transfer rate should be supplied to, or removed from, the building
to keep the indoor temperature consistent at the target value of thermal comfort. This
translates to the required building heating and cooling load (BHCL). Hence, the building
heating load increases under colder climate conditions while the cooling load decreases and
vice versa under hotter climate conditions. The effective heat transfer area and building
thermal capacity are functions of the building envelope design factors such as floor area
(FA), ceiling height (CH), plenum height (PH), and aspect ratio (AR). BHCL increases
with the effective heat transfer area, while it decreases with the building thermal capacity.
Therefore, the influence of the factor changes might not be explicit due to the competition of
the impacts on both the effective heat transfer area and the thermal capacity. Improvement
of wall insulation (WI) and window insulation (WDI) increases the heat transfer resistance.
The window-to-wall ratio (WWR) is another factor that affects the effective heat transfer
resistance of the building envelope, since WI is generally better than WDI. The increase
in WWR could increase BHCL when it is desirable to reduce the heat transfer rate, while
it could reduce BHCL for cases where it is beneficial to expedite the heat transfer. Solar
heat gain coefficient (SHGC) and infiltration air change rate (ACR) control other forms of
heat exchange from the sun and outdoor air, which could either increase or decrease BHCL
depending on the time of day and weather conditions.

As mentioned above, any change on the building design factor could either increase or
decrease BHCL depending on the time, location, and magnitude, and the impact could alter
depending on the levels of other factors. Therefore, it is a very difficult and complicated task
to make decisions for optimal building design considering the main effects and interactions
of these design factors. There have been studies conducted to develop methodologies that
handle the tasks systematically [9,19,33]; these prepared the data in order to investigate the
functional relationship between BHCL and building envelope design factors and derived
the surrogate meta model by applying regression analysis and machine learning techniques.

Since the 2-level FFD considers the end point of each factors, there is no difficulty in
implementing the designed treatments. In contrast, LHS is relatively hard to implement
on every designed condition for every factor. It is especially difficult to consider many
types of windows with many levels of window insulation (WDI) and solar heat gain
coefficient (SHGC); hence, three levels for each factor (0.75, 1.7 and 2.84 W/m2K for WDI
and 20, 40, and 70% for SHGC) were considered, since it was challenging to prepare
the windows to consider more levels for the two design factors in TRNSYS due to the
interdependence between them. All the design factors other than WDI and SHGC were
regarded as continuously varying factors.
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Table 1. Simulation conditions.

Weather data Seoul.TMY2 (Climate zone 4)

Set temperature 26 ◦C in Cooling season and 20 ◦C in Heating season [35]

Internal heat gain
[36,37]

People: 0.1 people/m2

Lighting: 12 W/m2

Equipment: 16 W/m2

Schedule: Taken from [35,36]

Building load [36,37]
U-value of exterior wall: 0.365 W/m2 K

U-value of window: 2.84 W/m2 K
SHGC of window: 0.4

Infiltration [38] 0.3 ACH

Table 2. Thickness and thermophysical properties of the wall.

Thickness
(m)

Conductivity
(W/m K)

Capacity
(J/kg K)

Density
(kg/m3)

Inside gypsum plastering 0.025 0.209 840 800

Insulation material 0.07 0.047 1190 30

Outside wall panel 0.024–0.151 * 0.039 840 110
* varied to simulate the intended insulation performance.

Table 3. List of factors and their ranges.

Factor Abbreviation
Level

Low (0) High (1)

Floor area (m2) FA 1000 2000
Aspect ratio AR 1 2

Orientation (degrees) OR South (0) West (90)
Window-to-wall ratio (%) WWR 25 52

Ceiling height (m) CH 2.4 2.9
Plenum height (m) PH 0.8 1.2

Wall insulation (W/m2 K) WI 0.15 0.36
Window insulation (W/m2 K) WDI 0.75 2.84
Solar heat gain coefficient (%) SHGC 20 70

Air leakage (ACH) ACR 0.1 0.3

2.2. Design of Experiments

Xu et al. [9] and Yong et al. [12,19] used fractional factorial design (FFD) to prepare
treatments consisting of alternative building designs with varying design factors. They
considered the main effects and all two-factor interactions while neglecting the nonlinear
effects. Figure 1a shows the design points of the full factorial design projected on a surface
spanned by the composition of two design factors located at the endpoints. The full factorial
design consists of 1024 treatments for the ten design factors considered.

Figure 1c shows the sampling points for the Latin hypercube sampling. The design
points were widespread over the surface of two design factors generated by the Latin-
Hypercube function of the pyDOE package for Python [39]. LHS tends to equalize and
maximize the distance between design points to provide uniform random sampling. It
treats every design variable with equal importance and ensures uniformly distributed
sampling in a given design space. A total of 2048 treatments or sampling points were
generated, for which specific treatments were used to develop the meta-models for building
heating and cooling loads. Figure 2 illustrates the property of LHS by sampling sizes. Of
the full treatment set, 1024 treatments were randomly sampled from the main set and the
rest of the treatments were used as a validation set. Sub-sample sets have 128, 256 and
512 sample points that are extracted from the main set.



Energies 2021, 14, 512 6 of 23

Figure 2. Random sampling of Latin hypercube sampled design.

Figure 3 shows the schematics of the comparison process. The treatments or the design
points were generated according to the experimental designs, wherein each treatment
represented an alternative building envelope design. The heating and cooling loads for all
treatments were obtained by using the energy simulation automation process according to
Kang et al. [34]. The meta-models were derived using stepwise regression analysis for the
cases in Table 4, and their accuracy and validity were analyzed. Equation (1) shows the
general form of the meta-model.

Yk = f (X1, X2, X3, X4, · · · Xn) = c0k + ∑ cik·Xi + ∑ cijk·Xi·Xj + ε (1)

here, X and Y represent the design and response variables, respectively. The subscripts i, j,
and k are used to identify different variables and coefficients, c. The first summation term
in the right-hand side stands for the main effects of the design variable, and the second
summation term is the interaction terms. The residual of the regression is shown as ε.

Stepwise regression was performed to avoid overfitting when using the open-source
statistical software, R [40]. Then, for the last process, the accuracy of the generated models
is validated and compared. Therefore, the cases were classified according to the validation
test data, the design point sampling method, and the regression method used.
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Figure 3. Schematics of the design points sampling method comparison and validation.
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Table 4 shows the list of cases used to compare the accuracy of the meta-models. The
cases were mainly divided into two subgroups according to the “design” point sampling
method used. The design points, or treatments, were determined by using either FFD or
LHS. The cases were further divided based on the type of regression model (i.e., a linear
or a quadratic model) and illustrated as the meta-models. The sampling points of FFD
concentrate at the endpoints, whereas they are distributed over the design space for LHS.
This leads to the deviation of the model prediction accuracy for different validation sets.
The veracity of the meta-models was tested against the two different validation data sets,
FFD and LHS, and the cases were divided into cases 1 and 2 according to the “validation”
data sets from the regression analysis excluded in the derivation of the metal-models.
Each validation data set contained 512 and 1024 treatments for FFD and LHS, respectively.
Therefore, the prediction accuracy comparison of meta-models is performed not only for
the validation data of the same sampling method, but also for the ones from the other
sampling method as shown in Figure 3.

Table 4. List of cases considered to compare the accuracy of FFD and LHS.

Case

Meta-Model

Validation Data
Meta-Model Sampling Method Regression Method Sampling

Number

Case 1-1 Meta-model a-1
FFD

Linear
128/256/512

FFD
Case 1-2 Meta-model a-2 Square

Case 1-3 Meta-model b-1
LHS

Linear
128/256/512/1024

Case 1-4 Meta-model b-2 Square

Case 2-1 Meta-model a-1
FFD

Linear
128/256/512

LHS
Case 2-2 Meta-model a-2 Square

Case 2-3 Meta-model b-1
LHS

Linear
128/256/512/1024

Case 2-4 Meta-model b-2 Square

3. Results and Discussion
3.1. Development of the Meta-Models

The coefficients of the meta-models for building heating and cooling loads are listed
in Tables A1 and A2. Although the coefficients of the meta-models were determined for
all four meta-models of the eight cases in Table 4, only the cases of the sample number
512 were shown for brevity of the presentation. There is no second-order term for the
regression model of FFD, since the design points only have two levels at the endpoints
for all design factors. Therefore, Meta-model a-1 and Meta-model a-2 yielded the same
regression equation, and the same discussion applies for Meta-model a-1 and a-2 of the
second case. Meta-model b-1 was derived from the regression analysis considering only
the linear effects of design factors from the LHS sampling points. In contrast, it was found
that the second-order terms of SHGC and WDI were influential and not negligible in
meta-model b-2, while those of other design factors were removed during the stepwise
regression analysis. They have a significant positive effect on the accuracy of the BHCL
predictions. Plugging in the coefficients to Equation (1), the BHCL can be obtained for any
combination of design factors in the range considered in Table 1. The main effect factors are
the single factors listed in Tables A1 and A2 while the two-factor interactions are indicated
by two factors joined by a colon (e.g., AR: FA, FA: WI). If the coefficients for the main effects
are positive, the increases in the factors increase the heating and cooling loads, and vice
versa. For the interactions, the loads increase when the two factors change in the same
direction, i.e., when the levels of both factors increase or decrease simultaneously, for the
case of having positive coefficient.
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3.2. Comparison of the Accuracy of FFD and LHS

The heating and cooling loads of the validation sets were predicted by the developed
meta-models. Prediction accuracy of each case are compared using root mean square
errors (RMSEs) and adjusted coefficient of determination (R2) value. The fitting accuracy
of the meta-models are compared mainly on the basis of the R2 value. The RMSEs of the
predictions for all cases as defined in Equation (2) are compared in Figure 4a,b.

RMSE =
∑n

i=1

√
(yi − xi)

2

n
(2)

where yi, xi, and n represent the predicted loads, the TRNSYS estimated loads, and the
number of validation points, respectively.

Figure 4. (a) Comparison of meta-model accuracies for heating load (RMSE). (b) Comparison of
meta-model accuracies for cooling load (RMSE).
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RMSEs generally decreased with an increase in sampling number and so as its decrease
rate. The RMSEs of the cooling load were relatively lower than that of the heating load.
However, the difference is negligible for LHS cases considering nonlinearity (Case 2-4).
The more substantial errors of the linear models for heating loads are attributed to the
neglect of the higher nonlinearity effects for the heating loads. Regarding the meta-models’
prediction accuracy with the FFD validation data, the meta-models using the FFD design
points showed the best accuracy. The meta-models using the LHS design points showed
much better performance for the LHS validation data. Further details are discussed in the
following sections.

3.2.1. Comparison of the Meta-Model Accuracy for FFD Validation Set

Case 1-1 was chosen to develop the meta-model, with the design points at the two
endpoints for all design factors. It shows the lowest RMSE when the models are validated
with the FFD validation data sets.

Prior to the comparison of the prediction accuracy, the fitting accuracies of each
meta-models are compared in Table 5. In the case of the meta-model developed by FFD
(Meta-model a-1), the sampling accuracy with the minimum sampling number showed the
R2 value closest to 1. However, meta-model b-1 showed lower accuracy of less than 0.9,
but it gets better with the consideration of square term (meta-model b-2).

In Figure 5a,b, Case 1-1 shows a far smaller error than Case 1-4, which was implied
by the higher determination coefficients, R2, shown in Table 5. On closer inspection in
Figure 4a,b, if the RMSE is evaluated with the FFD validation data sets, Case 1-1 is the
best. Case 1-2 merges with Case 1-1, since the regression cannot consider the quadratic
terms due to the lack of intermediate levels for design factors with two-level factorial
designs. While FFD is not able to consider nonlinear responses (since it considers two
levels for each design factor), the LHS method is able to account for them, since it samples
the intermediate points between the limits. The inability to consider the nonlinear response
explains the meta-model similarity between the meta-models for Cases 1-1 and 1-2, as well
as for Cases 2-1 and 2-2. Case 1-3, the linear meta-model with the LHS design conditions,
has a large number of intermediate levels for all factors except for all the three levels of WDI
and SHGC. The meta-models for Case 1-3 (meta-model b-1) do not consider nonlinearity.
The RMSE on predicting the heating and cooling loads with the 128 points of sampling data
were 7.89 and 5.20, respectively, when validating the meta-models with the FFD validation
data sets. The RMSEs of Case 1-3 for larger sampling numbers stay at the highest level.
Case 1-4 is the case deriving the meta-models using the LHS design conditions while
considering nonlinearity. Although the accuracies according to the sampling numbers on
heating load and cooling load (1.42–2.38 and 0.94–1.56, respectively) were significantly
improved compared to that of Case 1-3, they were still worse than that of Case 1-1 for
the FFD validation data sets, and the difference is greater for the heating load than the
result from the cooling load. Hence, the R2 values for the cases were: 1-1, 1-4, and 1-3 (in
descending order) for the FFD validation data sets (Table 5).

Since all FFD design points were located at the endpoints with only two levels (at the
lowest and highest values for each design factor), the predictions that used the meta-models
developed from the FFD design conditions had good accuracy at the terminal points, i.e.,
FFD sampling points, as shown in Figure 5a,b. The predictions of the meta-models using
FFD design conditions were more accurate than the ones derived using LHS design points
with the nonlinear effect consideration. The predictions of FFD meta-models are distributed
closer to the line than those of the LHS meta-models.
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Table 5. Fitting and prediction accuracy for the FFD validation data (HL: Heating Load, CL: Cooling Load).

Sampling
Number

Fitting Accuracy Prediction Accuracy

Meta-Model a-1
(HL,CL)

Meta-Model b-1
(HL,CL)

Meta-Model b-2
(HL,CL)

Case 1-1
(HL,CL)

Case 1-3
(HL,CL)

Case 1-4
(HL,CL)

128 0.9966,
0.9959

0.8585,
0.9517

0.9951,
0.9968

0.9940,
0.9935

0.6731,
0.8918

0.9806,
0.9909

256 0.9971,
0.9963

0.8023,
0.9423

0.9929,
0.9966

0.9956,
0.9943

0.7943,
0.9382

0.9917,
0.9960

512 0.9968,
0.9960

0.8126,
0.9398

0.9926,
0.9966

0.9964,
0.9950

0.8224,
0.9443

0.9929,
0.9966

1024 0.8263,
0.9446

0.9926,
0.9968

0.8312,
0.9469

0.9935,
0.9970

Figure 5. (a) Comparison of building heating load prediction accuracy for the “FFD validation set”
using LHS and FFD (sampling number: 512). (b) Comparison of building cooling load prediction
accuracy for the “FFD validation” set using LHS and FFD (sampling number: 512).
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3.2.2. Comparison of the Meta-Model Accuracy for LHS Validation Set

The LHS meta-models with second-order terms showed the best accuracy with the
LHS validation data (Cases 2-1 to 2-4). The RMSE of the FFD meta-models increased
for the LHS validation data set, where the sampling points were spread widely over the
whole design space. The meta-models using the LHS design points showed better accuracy
for the LHS validation data set. This can be explained by the prediction accuracy (R2)
presented in Table 6 showing Case 2-4, which had the highest R2 value for heating and
cooling loads projection. Although the meta-models developed with LHS design sampling
conditions accounting for the second-order terms showed poorer accuracy for the FFD
validation points as observed with Case 1, the better accuracy for the design conditions
with intermediate factor levels lowered the average errors for LHS meta-models as shown
in Figure 6a,b. Since the prediction error is of interest for the application of the meta-model,
the fitting error information is omitted in Table 6 for brevity of the presentation.

Regression analysis was used to derive equations to estimate the heating and cooling
loads at arbitrary points within the design factor variation range shown in Table 1. It is
crucial to estimate the loads accurately for the points away from the endpoints in order to
locate the optimum points with precision. Therefore, the accuracy assessments for the LHS
validation sets are more important than those for FFD validation sets.

Comparing the two sampling methods for linear models, i.e., Cases 2-1 and 2-3 in
Figure 4a,b, LHS is the better sampling method, since the accuracy improved for the cases
in which the sampling number is greater than 128. The prediction accuracy improvement
resulting from the consideration of the nonlinearity in Case 2-4 is significant for almost
all sampling numbers. As shown in Figure 6a, the heating load prediction values using
the FFD meta-models made an island of treatments away from the exact line, whereas
those of the LHS meta-models stayed close to the exact line. Two strings of treatment
deviating away from the exact line appeared for the cooling load prediction case, as shown
in Figure 6b. Neglecting the nonlinear impact of SHGC and WDI on the building energy
loads is the cause of these errors.

Figure 6. Cont.
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Figure 6. (a) Comparison of building heating load prediction accuracy for the “LHS validation set”
using LHS and FFD (sampling number: 512). (b) Comparison of building cooling load prediction
accuracy for the LHS validation set using LHS and FFD (sampling number: 512).

Table 6. Prediction accuracy for the LHS validation data.

Sampling Number
Prediction Accuracy

Case 2-1
(HL,CL)

Case 2-3
(HL,CL)

Case 2-4
HL,CL)

128 0.6917,
0.9220

0.6497,
0.8733

0.9752,
0.9889

256 0.6959,
0.9235

0.7753,
0.9266

0.9911,
0.9955

512 0.6967,
0.9233

0.7940,
0.9340

0.9910,
0.9960

1024 0.8089,
0.9379

0.9911,
0.9964

The errors of the linear model with LHS are approximately 4.4 and 3.9 times greater
than those of the nonlinear model with LHS, which implies that it is always better to use
LHS over FFD and to consider the nonlinearity. Although the meta-model derived from
FFD showed good accuracy for the prediction of the sets at the endpoints, the prediction
accuracy for the design sets away from the endpoints is better with the meta models
using LHS.

Compared with the factorial design method, LHS was more accurate and efficient for
the cases when the loads varied nonlinearly with the design factor changes. Fractional fac-
torial design (FFD) could be a practical choice when there is no nonlinear effect. However,
it is a better idea to use LHS over FFD for a given number of treatments since the existence
of nonlinearity in the relation is not a pre-existing information. LHS could provide all the
necessary information including the linearity test result for the same number of treatments
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with FFD, consideration of all two-factor interactions and better accuracy for intermediate
factor level design points.

3.3. Analysis of Factor Influences

The impacts of the main effects and the interactions of the ten building envelope
design factors were analyzed using the F-values obtained from the regression results for
the meta-models. Equation (3) shows the definition of the F-value, which is the ratio of
building energy load variation due to the main effects and interactions considered in the
meta-model to the variation not explained by the meta-model.

F − value =
explained variation/(k − 1)

unexplained variation/(n − k)
(3)

where k and n are degree of freedom and the total number of data considered for the re-
gression, respectively. The comparison of F-values could represent the relative importance
of the main effect and interactions in building design.

Figures 7 and 8 compare the relative importance of each effect in different meta-models.
The relative importance was represented as the ratio of the load variation due to an effect
to the total variation. The figures show the first twenty effects in descending order of
importance. WDI, ACR, SHGC, CH, and WWR were the important design factors for the
heating load of the building shown in Figure 7, while the main effects and interactions of
SHGC, WDI, and WWR are the important design factors affecting the cooling load of the
building shown in Figure 8. The main difference is the appearance of the main effects and
interactions of the nonlinear terms in the LHS models, which improved the accuracy of the
meta-models. There were notable variations in the sequence of importance between the
FFD meta-models and the LHS models. The choice of proper experimental design method
can affect not only the accuracy of the model prediction, but also the relative importance of
the parameters considered.

Figure 7. Factor importance analysis for heating load of the meta-models using: (a) FFD; (b) LHS considering nonlinearity.
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Figure 8. Factor importance analysis for cooling load of the meta-models using: (a) FFD; (b) LHS considering nonlinearity.

Figure 9a,b show the building heating and cooling load variation with a design factor
change and the other factors fixed at the middle levels. The hollow symbols in the figures
imply that the levels are not explicitly considered in the experimental design and that
they are estimated purely from the meta-models. The solid symbols represent the levels
considered for the design points. The loads changed nonlinearly with the change in WDI
and SHGC.

The slopes in Figure 9a,b compare the significance of the design factors. ACR is the
most significant factor affecting the heating load while WDI shows comparable impact
on the heating load with nonlinear behavior both on heating and cooling load. With the
increase of WDI, which means the decrease of window performance on insulation, the
heating load increases while the cooling load decreases. Although the impact of SHGC
change on nonlinear behavior is relatively lowers than that of WDI, SHGC shows more
nonlinear significance on the building load.

To gain a deeper understanding on the nonlinear effect of WDI and SHGC on heating
and cooling load, three additional simulations were conducted. In the process of quanti-
fying heating and cooling loads in TRNSYS software, WDI and SHGC were re-calculated
based on the pane temperature for every time step. Re-calculated WDI and total heat
flux according to the intended SHGC of each time step are obtained as the output and
discussed as the mean values in Figure 10. All factors except SHGC were defined with the
mid-value of the designed ranges. With the increase of SHGC, total heat fluxes both from
inside and outside increases. Therefore, the inter-dependence between WDI and SHGC
and its consideration in TRNSYS software, WDI also increased with the increase of the
SHGC. In Figure 10, the total heat flux on the window increases with the increase in SHGC.
The WDI value also doubled even when the input WDI was fixed at 1.7. This can result in
the increase of the heating load presented in Figure 9a. The curve of WDI is similar to the
nonlinearity behavior of SHGC during the heating season. The tendency where the glazing
at 70% SHGC showed higher heating load than at 20% can be explained by the increase
of the total heat flux. In contrast, the cooling load increases with the increased heat flux
influenced by the decreased window performance (SHGC).

SHGC is the most significant design factor for cooling load and it shows severe
nonlinear impact. Contrary to the heating load, the cooling load is at the lower minimum
level of SHGC.
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Figure 9. Cont.
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Figure 9. (a) The influence of design factor variations on building heating load. (b) The influence of design factor variations on building cooling load.
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Figure 10. Comparison of mean calculated WDI and SHGC.

4. Conclusions

The Latin hypercube sampling (LHS) method was applied to investigate the effect
of a building’s envelope design factors on the heating and cooling loads of the building.
Compared with the factorial design method, LHS was more accurate and efficient for the
cases wherein the loads changed nonlinearly with the design factor changes. The fractional
factorial design (FFD) method could be a practical choice when it is certain that there is no
nonlinearity effect.

The prediction accuracy generally improved with the number of sampling points. The
accuracy improvement was significant when meta-models considered nonlinear relations
between the loads and the design factors. The heating and cooling loads showed a strong
nonlinearity with a change of WDI and SHGC. The FFD, while they showed good accuracy
for the endpoints, had measurable errors on predictions for the treatments with intermedi-
ate values of WDI and SHGC since FFD could not capture the nonlinear behavior. For any
given number of sampling points, the LHS meta-models accounting for the nonlinearity
predicted the design conditions with intermediate values of WDI and SHGC accurately.

The determination coefficient, R2, of regression analysis might not be the best index to
evaluate the performance of meta-models. Assessment of the meta-model performance
should be based on the prediction accuracy for the treatments with intermediate values
of design factors since the meta-models are developed to predict loads of a building with
arbitrary values within the range of design factors considered.

This study compared the accuracy on predicting the heating/cooling loads of an office
building with the meta-models, FFD and LHS, and also identified the impacts of nonlinear
characteristics on the building load. Although this study focused on the office building,
readers who are trying to analyze building load using meta-models for all types of loads
can refer to the methodology we have used. In addition, the methodology part can help
wider audience get a deeper understanding on the principle of nonlinear behavior on
building loads.

The ranges of design factor variation were relatively narrow, since the objective of
this study was to optimize the building envelope design for a zero-energy building. More
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design factors are expected to show nonlinear relationships with the load in cases with
more comprehensive range of design factors, where LHS is always the better choice over
the factorial design method.
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Nomenclature

ACR air leakage (ACH)
AR aspect ratio
BHCL building heating and cooling load
CCD central composite design
CH ceiling height (m)
c coefficient
FA floor area (m2)
FFD fractional factorial design
k total number of data
LHS Latin hypercube sampling
n degree of freedom, number of validation points
OR orientation (degrees)
PH plenum height (m)
RMSE root mean square errors
SHGC solar heat gain coefficients (%)
WDI window insulation (W/m2 K)
WI wall insulation (W/m2 K)
WWR window-to-wall ratio (%)
X design variables
x TRNSYS estimated loads (k Wh/m2 yr)
Y response variable
y predicted loads (k Wh/m2 yr)
ε residual of the regression
Subscripts
i, j, k integer counter
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Appendix A

Table A1. List of the main effect and interaction terms and coefficients of Equation (1) for the heating load of the building.

Fractional Factorial Sampling (Meta-Model a-1, Sampling Number: 512) Latin Hypercube Sampling (Meta-Model b-2, Sampling Number: 512)

Factor Coefficient Factor Coefficient Factor Coefficient Factor Coefficient

(Intercept) −19.74 FA:SHGC 5.09E−05 (Intercept) −26.5 FA:WDI −0.00316
AR −0.4107 FA:WWR −5.8E−05 AR −1.009 FA:SHGC 0.000189
FA 0.004394 FA:WI −0.00482 FA 0.004271 FA:WWR −7.8E−05
CH 4.888 FA:ACR −0.00116 CH 6.91 FA:WI −0.00312
PH 2.921 CH:WDI 1.54 PH −1.152 FA:OR −5.8E−06

WDI −2.606 CH:SHGC −0.05731 WDI −0.215 FA:I(SHGCˆ2) −1.9E−06
SHGC 0.1946 CH:WWR 0.03245 SHGC 1.254 FA:I(WDIˆ2) 0.000439
WWR 0.0607 CH:WI 2.985 WWR 0.1274 CH:WDI 3.798

WI 11.65 CH:ACR 21.2 WI 1.113 CH:SHGC −0.1626
ACR −9.729 PH:WDI 1.462 ACR −18.79 CH:WWR 0.03005
OR −0.0115 PH:SHGC −0.0389 OR −0.05114 CH:WI 6.2

AR:FA −0.00023 PH:WWR 0.04828 I(SHGCˆ2) −0.01724 CH:ACR 20.66
AR:CH 0.2574 PH:WI 4.248 I(WDIˆ2) −1.113 CH:OR 0.01076

AR:WDI 0.3186 PH:ACR 7.721 AR:PH 1.001 CH:I(SHGCˆ2) 0.001321
AR:SHGC −0.0069 WDI:SHGC −0.02956 AR:WDI 1.258 CH:I(WDIˆ2) −0.4713
AR:WWR 0.01086 WDI:WWR 0.1064 AR:SHGC −0.05625 PH:WDI 0.9934

AR:OR 0.002964 WDI:WI 0.6382 AR:OR 0.007653 PH:SHGC −0.102
FA:CH −0.00068 WDI:ACR 1.479 AR:I(SHGCˆ2) 0.000671 PH:WWR 0.04976
FA:PH −0.00124 WDI:OR 0.001436 AR:I(WDIˆ2) −0.2225 PH:WI 7.536

FA:WDI −0.00171 SHGC:WWR −0.00271 FA:CH −0.00129 PH:ACR 10.43
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Table A2. List of the main effect and interaction terms and coefficients of Equation (1) for the cooling load of the building.

Fractional Factorial Sampling (Meta-Model a-1, Sampling Number: 512) Latin Hypercube Sampling (Meta-Model b-2, Sampling Number: 512)

Factor Coefficient Factor Coefficient Factor Coefficient Factor Coefficient

(Intercept) 64.26 FA:WI 0.002763 (Intercept) 56.58 FA:WDI 0.00051
AR −1.47 FA:ACR −0.00197 AR −2.57 FA:SHGC −0.00017
FA 0.007343 CH:SHGC 0.07293 FA 0.009083 FA:WWR −7.7E−05
CH −2.811 CH:WWR 0.07476 CH −1.513 FA:I(SHGCˆ2) 6.71E−07
PH −2.543 PH:WDI −0.5328 PH −1.738 CH:SHGC 0.06898

WDI −3.046 PH:SHGC 0.08419 WDI −0.2447 CH:WWR 0.07604
SHGC −0.1781 PH:WWR 0.05117 SHGC −0.01485 PH:SHGC 0.07062
WWR −0.2029 WDI:SHGC 0.05068 WWR −0.313 PH:WWR 0.04219

WI −11.52 WDI:WWR −0.03779 WI −9.937 PH:OR 0.01052
ACR −13.18 WDI:ACR 2.941 ACR −16.71 WDI:SHGC 0.2018
OR −0.02924 SHGC:WWR 0.008425 OR −0.04141 WDI:WWR −0.1112

AR:FA −0.0002 SHGC:WI −0.02208 I(SHGCˆ2) 0.000367 WDI:ACR 6.495
AR:WDI −0.1019 SHGC:ACR −0.09084 I(WDIˆ2) 0.1003 WDI:I(SHGCˆ2) −0.00488

AR:SHGC 0.02076 SHGC:OR −0.00013 AR:PH −0.7593 SHGC:WWR 0.01565
AR:WWR 0.01458 WWR:WI 0.06953 AR:SHGC 0.07467 SHGC:ACR −0.3382

AR:OR 0.02109 WI:ACR 5.886 AR:WWR 0.03442 SHGC:I(WDIˆ2) −0.09947
FA:CH −0.00092 AR:OR 0.02044 WWR:WI 0.1422

FA:WDI 0.000441 AR:I(SHGCˆ2) −0.00061 WWR:ACR 0.05938
FA:SHGC −0.00011 AR:I(WDIˆ2) −0.05166 WWR:I(SHGCˆ2) −9E−05
FA:WWR −8.7E−05 FA:CH −0.0015 WWR:I(WDIˆ2) 0.01679
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