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Abstract: In this paper, the applicability of the space-fractional non-local formulation (sFCM) to
design 1D material bodies with a specific dynamic eigenvalue spectrum is discussed. Such a for-
mulated problem is based on the proper spatial distribution of material length scale, which maps
the information about the underlying microstructure (it is important that the material length scale
is one of two additional material parameters of sFCM compared to the classical local continuum
mechanics—the second one, the order of fractional continua—is treated herein as a scaling parameter
only). Technically, the design process for finding adequate length scale distribution is not trivial
and requires the use of an inverse optimization procedure. In the analysis, the objective function
considers a subset of eigenvalues reduced to a single value based on Kreisselmeier–Steinhauser
formula. It is crucial that the total number of eigenvalues considered must be smaller than the limit
which comes from the ratio of the sFCM length scale to the length of the material body.

Keywords: discrete model; continuum non-local model; fractional calculus; fractional mechanics

1. Introduction

It is now well understood that behaviour of solid bodies strongly depends on the
ratio of its size to underlying microstructure [1–3] and it can be superior (in the sense of
mechanical, chemical and electronic properties) when bodies dimensions become com-
parable to characteristic dimensions of microstructure [4]. This attribute of each body,
known as scale effect (SE), and the designers are taking advantage of this phenomena
when developing new devices, e.g., sensors and actuators for nanotechnological applica-
tions [5–7], micro-thruster of nano-satellites [8], torsional accelerometers [9], nano-motors,
micro/nano-resonators [10] and many others cf. the review paper [11]. One should note
that the abovementioned elaboration of new designing concepts is mainly due to utilising
mathematical modelling; thus, it must include SE mapping also.

There are a variety of available mechanical models which allow to include SE, i.e., pari-
dynamics [12,13], integral-type concepts [14], general non-local theories [15,16], strain-
gradient theories [17–20], micropolar theories [21–23], theories of material surfaces/surface
elasticity theory [24], cf. the review paper [25]. However, in this paper, we follow the
space-fractional non-local formulation (sFCM) proposed in [26], where SE is introduced
through the application of fractional calculus (FC) [27–29]. Herein, it is important, because
the designing procedure to obtain the specific dynamic properties of the analysed material
body is the crux of presented considerations, that the applicability of sFCM was proved
based on validation with rigorous experiments [30,31]. Furthermore, as presented in [32]
the answer to the question: Is there a discrete structure that is homogenized by sFCM?
This is positive and moreover, such an answer is true in terms of the static and dynamic
answer—in the last case, both in terms of eigenvalues and eigenvectors; such results have
been never presented before for competitive theories.
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This paper extends the results presented in [32] to show the applicability of sFCM to
design 1D material bodies with a specific dynamic eigenvalue spectrum. Such a formulated
problem is based on the proper spatial distribution of material length scale which maps the
information about the underlying microstructure (it is important that the material length
scale is one of two additional material parameters of sFCM compared to the classical local
continuum mechanics—the second one, the order of fractional continua—is treated herein
as a scaling parameter only). Technically, the design process for finding adequate length
scale distribution is not trivial and requires the use of an inverse optimization procedure.
The objective function considers a subset of eigenvalues reduced to a single value based
on the Kreisselmeier–Steinhauser formula [33]. It is also crucial that, as in [32], the total
number of eigenvalues considered must be smaller than the limit which comes from the
ratio of the sFCM length scale to the length of the material body.

The paper is structured as follows: Section 2 deals with the fundamentals of sFCM
theory. Section 3 defines the inverse optimization procedure for finding length scale
distribution to control the dynamic eigenvalue spectrum. Section 4 describes the selected
optimisation results. Finally, Section 5 concludes the paper.

2. Dynamic Equilibrium for 1d Sfcm Body Including Spatially Variable Length Scale

The foundations for dynamic equilibrium for 1D sFCM body were formulated for
a constant length scale in [34,35]. Subsequently, after introducing variable length scale
concept to sFCM in [36], an extension of [34,35] was proposed in [32]. Herein, the governing
equations obtained in [32] are summarised shortly for a clear interpretation of results
presented in the next sections.

2.1. Governing Equation

The dynamic equilibrium of 1D sFCM body can be expressed as follows [35]

Γ(2− α)

2Γ(2)
∂

∂x

[
E` f (x)α−1

(
C

x−` f
Dα

xU(x, t)−C
x Dα

x+` f
U(x, t)

)]
+ b(x, t) = ρÜ(x, t), (1)

where Γ is the Euler gamma function, α ∈ (0, 1] (where for α = 1 classical local solution is
recovered), x denotes the spatial variable, E is the Young modulus, ` f = ` f (x) is the length
scale (herein a known function), U is the axial displacement, b is the axial body force, ρ is
density, and ¨(·) denote the second time derivative. In the following sections, the spatial
distribution of the ` f parameter plays the fundamental role in controlling/designing of
course of dynamic eigenvalue spectrum [36–38]. Furthermore, in Equation (1), CDα denotes
the left- and right-sided Caputo derivatives:

C
a Dα

t f (t) =
1

Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α−n+1 dτ, for t > a, (2)

and

C
t Dα

b f (t) =
(−1)n

Γ(n− α)

∫ b

t

f (n)(τ)
(τ − t)α−n+1 dτ, for t < b, (3)

respectively. Finally, the configuration for both ends (i.e., x = x0 and x = xr) clamped is
considered, i.e.,

U(x0, t) = UL, U(xr, t) = UR, (4)

where x0 and xr denote points on the boundary.

2.2. Approximation

The trapezoidal rule for the Caputo operators, under the assumption of uniformly
distributed discretization points xi, is used [39].
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The left sided Caputo derivative is approximated according to the following rule:

C
x−` f

Dα
xU(x)|x=xi =

C
xi−m

Dα
xU(x)|x=xi

∼=
i

∑
k=i−m

U′kr(α)i,k , (5)

whereas for the right-sided Caputo derivative, we have

C
x Dα

x+` f
U(x)|x=xi =

C
x Dα

xi+m
U(x)|x=xi

∼=
i+m

∑
k=i

U′ks(α)i,k , (6)

where

r(α)i,k =
(∆x)1−α

Γ(3− α)


(m− 1)2−α + (2− α−m)m1−α for k = i−m,

(i− k + 1)2−α − 2(i− k)2−α + (i− k− 1)2−α for k = i−m + 1, . . . , i− 1,
1 for k = i,

(7)

and

s(α)i,k =
−(∆x)1−α

Γ(3− α)


(m− 1)2−α + (2− α−m)m1−α for k = i + m,

(k− i + 1)2−α − 2(k− i)2−α + (k− i− 1)2−α for k = i + 1, . . . , i + m− 1,
1 for k = i.

(8)

2.3. Eigenvalue Problem

As in [32], we assume in Equation (1) that b(x, t) = 0 and that the separation of the
variables holds

U(x, t) = U(x)eiωt. (9)

The assumption made in Equation (9), utilising approximations Equations (5) and (6),
together with boundary conditions Equation (4), allows us to rewrite Equation (1) to the
equivalent matrix form

(K + λ2
f I)U0 = 0, (10)

with the solution
det(K + λ2

f I) = 0, (11)

where K is the fractional stiffness matrix, λ2
f = ω2ρ and ω = ω(α, ` f ) denotes the natu-

ral frequency for the sFCM, and I denotes the identity matrix. Furthermore, boundary
conditions are included as presented in [36].

3. Eigenvalue Spectrum Shifting—Identification of Length Scale Distribution

The general goal of the presented inverse problem is to find length scale distribution
which modifies the dynamic response (Equation (11)) according to the cumulative value of
eigenvalues computed using Kreisselmeier–Steinhauser function.

3.1. Model

Aa mentioned 1D sFCM body fixed at both ends is analyzed (Figure 1). For the sake
of simplicity, the non-dimensional case is considered, so L = 1 and for the fractional model
E = 1, ρ = 1. Herein, as the maximum value of the length scale parameters in non-local
theories are usually not larger than 10–20% of the macroscopic characteristic dimension of
the structure; therefore, ` f ≤ 0.2.

There are six control (“knot”) points, k (cf. Figure 1), defining the length scale (` f )
distribution along the axis x, namely

k = ki i = 1, 2, ..., 6. (12)
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For further analysis, we assume that vector kv denotes vector k with components of
value v. Next, the values between the knot points k are interpolated using cubic Hermite
interpolator. Denoting the interpolator as Ω, the length scale at point x can be expressed
as follows:

` f ,k(x) =

{
Ω(k, x) x ≤ L/2,
Ω(k, L− x) x > L/2.

(13)

Figure 1. General scheme and length scale parameterization: (top) 1D space-fractional non-local
formulation (sFCM) body of length L fixed at both ends; (bottom) spatial length scale distribution
` f (x) through 1D sFCM body.

According to the results obtained in [36], near to the ends of the structure, the length
scale is linearly reduced from `max

f to 2∆x. As a consequence, in the framework of the
applied approximation, no information on displacements outside the body is required.

In the optimization procedure, the reduction of ` f is carried out by application of the
non-dimensional correction functional Ψ in a form

Ψ(g) =


max(x, 2∆x) g(x) > x,
max(L− x, 2∆x) g(x) > (L− x),
g(x) otherwise,

(14)

where g(x) is any function of class C0. As a result, the final function describing the length
scale distribution can be defined in the following form

¯̀ f ,k = Ψ(` f ,k). (15)

The graphical representation of function ¯̀ f ,k for the extreme case, i.e., ki = `max
f is

presented in Figure 2.
It is important, that model discretization depends on maximal length scale, namely

for `max
f = 0.05→ ∆x = 0.005 and for `max

f = 0.025→ ∆x = 0.0025.
To solve the formulated optimization problem a dedicated procedure was devel-

oped in Python to build the global system of equations (Equation (11)). Due to the
varied length scale, the governing equation for the particular points was built dynami-
cally (cf. github.com/szajek) and the system of equations was solved using the LU decom-
position [40] with partial pivoting and row interchanges.
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Figure 2. Limit spatial length scale distributions through 1D sFCM body (L = 1) for two anal-
ysed variants.

3.2. Dynamic Response Evaluation

The dynamic response of the presented 1-D sFCM body is measured as a weighted
sum of eigenvalues using Kreisselmeier–Steinhauser formula [33] in the form (the value of
KS(`max

f , α, k) increases along with eigenvalues)

KS(`max
f , α, k) =

1
ρKS
· loge

n f (`
max
f )

∑
i

eρKS f (α,k,i)

 (16)

where ρKS = 0.1 and

f (α, k, i) =
ωi( ¯̀ f ,k)

ω1( ¯̀ f ,k)
. (17)

The complexity of mode shape is limited by the size of underlying microstructure
described by ` f in the model. Moreover, as mentioned in the introduction, the wavelength
limit is estimated by analogy to the spring-mass (discrete) structure [32]. Additionally,
taking into account the inaccuracy due to the boundary condition application, the number
of eigenvalues considered is limited based on the maximal length scale as follows:

n f (`
max
f ) =

{
16 `max

f = 0.05,

32 `max
f = 0.025.

(18)

The reference values of cumulative eigenvalues can be computed according to the equation

KSre f (v, α) = KS(v, α, kv). (19)

It should be noted that the values for a classical (local) model (when α → 1) equal
KSre f (0.05, 1) = 405.4 and KSre f (0.025, 1) = 1098.5.
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3.3. Optimization Problem

The following optimization problem was formulated for each configuration of `max
f

and α:
min

k
O(`max

f , α, sKS) =
∣∣∣KS(`max

f , α, k)− sKS · KSre f (`
max
f , α)

∣∣∣,
subject to:

∆x(`max
f ) ≤ ki ≤ `max

f .

(20)

where sKS denotes the scaling parameter ≥ 1. The set of scale factors (sKS) for each
configuration of (`max

f , α) was chosen from 1 to sKS,max computed as follows:

sKS,max(`
max
f , α) =

KSre f (∆x(`max
f ), α)

KSre f (`
max
f , α)

. (21)

3.4. Algorithm

The problem described by Equation (20) was solved by coupling the computational
model with an optimizer. The general overview of the procedure is presented in Figure 3.
For a given `max

f and α, the reference value of the weighted sum of eigenvalues is computed
according to the Kreisselmeier–Steinhauser formula, KSre f (`

max
f , α). Next, the optimizer

starts and iteratively propose vectors of values in control points, k, which are a basis for
model rebuilding—setting a length scale value for particular points along the body. The
exact value of the length scale at point is calculated using Equations (13)–(15). Next, the
eigenproblem is solved and the obtained eigenvalues are used to compute KS(`max

f , α, k) for
the current length scale distribution. The difference between expected dynamic response
(considering sKS) and the obtained one is computed according the objective function in
Equation (20). For each configuration of `max

f and α, the problem is solved five times and
the solution characterized by the smallest value of the objective function is chosen.

Figure 3. General workflow of the optimization procedure.

The hybrid algorithm joining two optimization strategies was used, namely, a local
search algorithm and an evolutionary algorithm. As a local search optimizer, the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm [41,42] implemented in the SciPy
package was chosen. The evolutionary algorithm started with the initial population of
70 propositions (individuals—random values of ∆x(`max

f ) ≤ ki ≤ `max
f ) and improved

them by application of genetic operators. After seven iterations (generations) the best
solution was set as a starting point for a local search procedure. The evolutionary strategy
configuration was as follows: two-point crossover with a probability of 0.5, tournament
selection with a group of three individuals, the Gaussian mutation of mean 0.0 with a
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standard deviation of 1.0 and probability 0.02. The mutation was applied for each parameter
independently. The most important settings for local procedure are minimal relative
change of an objective function—taken as 2.22× 10−9(default value in the SciPy package),
maximum number of iterations—taken as 15,000 and the step size for the numerical
approximation of the Jacobian—taken as 10−3.

4. Results

The reference value of KSre f was computed according to Equation (19) for four values
of `max

f ∈ {0.0025, 0.005, 0.025, 0.05} and three values of α ∈ {0.6, 0.8, 0.9}. The results
are collected in Table 1. The lowest values of `max

f are an effect of used discretization,
namely, ∆x = 0.005 and for ∆x = 0.0025 for `max

f = 0.05 and `max
f = 0.025, respectively (cf.

Section 3.1). Based on KSre f maximal values of scale factor was established according to
Equation (21).

Table 1. Reference value of KSre f and sKS,max for various combination of maximal length scale `max
f

and material order α.

KSre f
`max

f sKS,max
`max

f

0.05 0.025 0.005 0.0025 0.05 0.025

α

0.9 390.5 994.6 405.1 1096.2
α

0.9 1.04 1.10

0.8 378.2 907.3 404.8 1094.3 0.8 1.07 1.21

0.6 358.9 772.1 404.4 1091.4 0.6 1.13 1.41

The optimization problem formulated in Equation (20) was solved for two values
of `max

f ∈ {0.025, 0.05}, three values of α ∈ {0.6, 0.8, 0.9} and set of a scale factor sKS ∈
(1, sKS,max). The optimization problem for each configuration of (`max

f , α , sKS) was solved
five times and the solution with the lowest objective function value was chosen. The
best solutions—an objective value and parameters—are presented in Tables 2 and 3. All
obtained solutions are characterized by O < 0.02, which means that the expected dynamic
behaviour was obtained with a high accuracy; the maximal error of 0.00385% was for
`max

f = 0.05, α = 0.8 and sKS = 1.06. The total number of solved optimization problems
equal ca. 200 with more than 130,000 single analyses (the calculations took several days—
Intel Core i7-67000HQ, 16GB RAM). The results—eigenvalues spectra—are presented in
Figures 4 and 5.

Analysing the values KSre f and sKS,max from Table 1, a few important observations can
be made. First and foremost, the potential for modifying dynamic response by changing
a length scale, measured as sKS,max, depends on both: material order α and the maximal
permitted value of the length scale, `max

f . However, the role of `max
f due to a different

number of considered eigenvalues n f is difficult to evaluate. Secondly, the value of sKS,max,
as it should be, tends to zero for the classical continuum model as α → 1. Finally, for
all cases, as `max

f → 0 (dimensions of the body become considerably larger than the
characteristic length scale), the solutions for a classical model are obtained independently
on material order α.

Figures 4 and 5 confirms the previous observations in the context of the potential of
a dynamic response change. The biggest differences in eigenvalue spectra can be seen
for α = 0.6. For each case, however, the “design” of length scale leads to unique spectra
between the extreme ones.
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Table 2. Objective value and parameters for the best solutions: length scale `max
f = 0.025 and α ∈ {0.6, 0.8, 0.9}.

`max
f α sKS O Parameters k

0.025

0.6

1 5.95 × 10−10 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2

1.05 8.97 × 10−9 2.41 × 10−2 2.22 × 10−2 2.00 × 10−2 2.50 × 10−2 2.22 × 10−2 2.29 × 10−2

1.1 1.74 × 10−2 2.50 × 10−3 2.27 × 10−2 2.43 × 10−2 1.78 × 10−2 7.84 × 10−3 2.23 × 10−2

1.15 7.88 × 10−5 6.50 × 10−3 1.97 × 10−2 3.14 × 10−3 1.63 × 10−2 2.48 × 10−2 9.95 × 10−3

1.2 1.00 × 10−3 1.54 × 10−2 1.81 × 10−2 8.08 × 10−3 1.85 × 10−2 7.54 × 10−3 1.76 × 10−2

1.25 2.01 × 10−2 2.25 × 10−2 1.29 × 10−2 1.41 × 10−2 1.51 × 10−2 1.35 × 10−2 1.40 × 10−2

1.3 3.17 × 10−4 9.60 × 10−3 7.29 × 10−3 8.83 × 10−3 1.62 × 10−2 1.46 × 10−2 7.67 × 10−3

1.4 1.19 × 10−3 3.23 × 10−3 6.64 × 10−3 2.59 × 10−3 5.78 × 10−3 2.74 × 10−3 2.50 × 10−3

0.8

1 2.47 × 10−9 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2

1.05 2.01 × 10−5 1.41 × 10−2 2.35 × 10−2 1.23 × 10−2 1.87 × 10−2 2.29 × 10−2 2.36 × 10−2

1.1 1.28 × 10−3 4.76 × 10−3 1.01 × 10−2 1.03 × 10−2 1.93 × 10−2 2.26 × 10−2 1.86 × 10−2

1.15 1.95 × 10−4 2.37 × 10−2 6.52 × 10−3 2.50 × 10−3 8.64 × 10−3 1.87 × 10−2 1.30 × 10−2

1.2 3.14 × 10−4 2.50 × 10−3 3.04 × 10−3 4.77 × 10−3 4.80 × 10−3 6.29 × 10−3 4.14 × 10−3

0.9

1 3.23 × 10−9 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2

1.01 8.94 × 10−4 2.50 × 10−2 2.50 × 10−2 2.50 × 10−2 1.99 × 10−2 2.39 × 10−2 2.35 × 10−2

1.02 1.60 × 10−3 1.36 × 10−2 2.10 × 10−2 2.16 × 10−2 2.02 × 10−2 2.39 × 10−2 2.39 × 10−2

1.03 2.44 × 10−3 7.54 × 10−3 2.44 × 10−2 2.07 × 10−2 1.37 × 10−2 2.47 × 10−2 1.80 × 10−2

1.05 5.18 × 10−4 9.02 × 10−3 6.43 × 10−3 1.97 × 10−2 2.43 × 10−2 2.17 × 10−2 5.65 × 10−3

1.06 2.21 × 10−5 1.54 × 10−2 1.75 × 10−2 5.14 × 10−3 2.37 × 10−2 2.50 × 10−3 1.24 × 10−2

Table 3. Objective value and parameters for the best solutions: length scale `max
f = 0.05 and α ∈ {0.6, 0.8, 0.9}.

`max
f α sKS O Parameters k

0.05

0.6

1 1.47 × 10−10 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2

1.0125 1.21 × 10−3 1.61 × 10−2 4.96 × 10−2 3.94 × 10−2 5.00 × 10−2 4.28 × 10−2 4.97 × 10−2

1.025 6.82 × 10−5 3.53 × 10−2 3.90 × 10−2 3.87 × 10−2 4.53 × 10−2 4.29 × 10−2 4.75 × 10−2

1.0375 1.39 × 10−7 4.46 × 10−2 3.70 × 10−2 4.28 × 10−2 4.84 × 10−2 1.55 × 10−2 3.85 × 10−2

1.05 4.99 × 10−3 3.06 × 10−2 4.21 × 10−2 6.63 × 10−3 4.35 × 10−2 3.99 × 10−2 1.40 × 10−2

1.075 1.67 × 10−4 1.71 × 10−2 3.42 × 10−2 1.97 × 10−2 3.59 × 10−2 2.25 × 10−2 2.52 × 10−2

1.0875 2.57 × 10−6 5.01 × 10−3 6.01 × 10−3 3.57 × 10−2 1.93 × 10−2 3.40 × 10−2 1.46 × 10−2

1.1 2.79 × 10−7 2.67 × 10−2 1.64 × 10−2 3.37 × 10−2 1.56 × 10−2 1.88 × 10−2 6.54 × 10−3

0.8

1 1.63 × 10−11 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2

1.01 1.99 × 10−3 2.87 × 10−2 4.76 × 10−2 5.00 × 10−2 3.14 × 10−2 4.91 × 10−2 4.98 × 10−2

1.02 2.63 × 10−7 1.92 × 10−2 4.25 × 10−2 2.56 × 10−2 3.91 × 10−2 4.81 × 10−2 4.27 × 10−2

1.03 2.34 × 10−10 2.66 × 10−2 3.94 × 10−2 3.67 × 10−2 7.17 × 10−3 3.02 × 10−2 4.95 × 10−2

1.04 1.58 × 10−3 5.00 × 10−2 3.17 × 10−2 2.62 × 10−2 3.91 × 10−2 3.32 × 10−2 1.00 × 10−2

1.05 2.38 × 10−4 5.00 × 10−2 1.78 × 10−2 3.94 × 10−2 1.48 × 10−2 3.20 × 10−2 5.00 × 10−3

1.06 1.46 × 10−2 2.33 × 10−2 1.70 × 10−2 2.57 × 10−2 1.05 × 10−2 1.98 × 10−2 1.35 × 10−2

0.9

1 1.08 × 10−10 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2 5.00 × 10−2

1.02 6.99 × 10−8 4.29 × 10−2 1.55 × 10−2 2.57 × 10−2 4.39 × 10−2 4.26 × 10−2 2.34 × 10−2

1.025 1.19 × 10−5 3.69 × 10−2 1.38 × 10−2 1.09 × 10−2 3.60 × 10−2 2.60 × 10−2 3.54 × 10−2

1.03 1.08 × 10−4 9.70 × 10−3 2.50 × 10−2 1.38 × 10−2 1.80 × 10−2 1.21 × 10−2 2.89 × 10−2
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Figure 4. Eigenvalues (left column) and corresponding length scale distributions (right column) for particular material
orders α ∈ {0.6, 0.8, 0.9} and ` f = 0.05.
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Figure 5. Eigenvalues (left column) and corresponding length scale distributions (right column) for particular material
orders α ∈ {0.6, 0.8, 0.9} and ` f = 0.025.

5. Conclusions

In this paper, the applicability of sFCM to design the material bodies with demanded
dynamic eigenvalue spectrum is presented. The considered subject is meaningful both
from the theoretical and practical points of view, especially when dealing with the de-
sign of sensors and actuators for nanotechnological applications, e.g., micro-thrusters
of nano-satellites, torsional accelerometers, nano-motors or micro/nano-resonators. The
problem is stated as a non-trivial inverse optimization task. As shown, different spectra are
produced from different underlying microstructure distributions, which is described by
the variable-length scale in the model. The obtained outcomes confirmed the correctness of
our methodology, the optimization procedure and its implementation.

This in-depth study allows us to formulate the following conclusions:
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• Designing the demanding dynamic response of a structure emphasising the scale
effect by modifying length scale in the space-Fractional Continuum Mechanical model
is possible;

• The potential for modifying dynamic response—measured as a weighted sum of
eigenvalues—by changing a length scale is the biggest when the order of material
continua α→ 0 and tends to zero for α→ 1 (the classical local model);

• The demanding dynamic response can be obtained by solving the inverse problem util-
ising hybridized optimization procedure joining the genetic and the limited-memory
BFGS algorithms.
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