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Abstract: Selection of the most suitable drill bit type is an important task for drillers when planning
for new oil and gas wells. With the advancement of intelligent predictive models, the automated
selection of drill bit type is possible using earlier drilled offset wells” data. However, real-field well
data samples naturally involve an unequal distribution of data points that results in the formation
of a complex imbalance multi-class classification problem during drill bit selection. In this analysis,
Ensemble methods, namely Adaboost and Random Forest, have been combined with the data re-
sampling techniques to provide a new approach for handling the complex drill bit selection process.
Additionally, four popular machine learning techniques namely, K-nearest neighbors, naive Bayes,
multilayer perceptron, and support vector machine, are also evaluated to understand the performance
degrading effects of imbalanced drilling data obtained from Norwegian wells. The comparison of
results shows that the random forest with bootstrap class weighting technique has given the most
impressive performance for bit type selection with testing accuracy ranges from 92% to 99%, and
G-mean (0.84-0.97) in critical to normal experimental scenarios. This study provides an approach to
automate the drill bit selection process over any field, which will minimize human error, time, and
drilling cost.

Keywords: drill bits selection; imbalanced data; ensemble methods; petroleum data analytics

1. Introduction

Oil and gas wells are drilled from the surface of the Earth to underlying hydrocarbon
reservoirs. The whole drilling operation is carried out through a mechanical drill string
which contains a drill bit installed at its lower tip for crushing the rock layers. These drill
bits are normally worn out due to wear and tear over time as they move forward inside the
formation. Drill bits are changed regularly through tripping operations in the oil and gas
industry. These drill bits are costly in nature and needed to be properly selected as they
may represent up to 10-40% of the dryhole cost of the wellbore [1]. The average cost of
drilling a well varies from 4.9 million to 650 million U.S. dollars depending upon the type of
wells. However, overall expenditures for drilling an oil well are needed to be minimized for
achieving cost-effective drilling operations. The cost of drilling operation for a hydrocarbon
well is mainly dependent on various factors namely, the operating cost of the drill rig, the
time required for drilling target formations, the number of tripping operations, life of the
drill bit, and drill bit cost [1]. Still, drilling costs can be significantly minimized through
the selection of appropriate drill bit designs which in turn reduces the operating time of
the rig with less tripping events and more life expectancy of the drill bit. Moreover, the
selection of suitable drill bit types for drilling geological formations is a problematic task
due to complex interactions between reservoir properties, drill string hardware design,
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and various operational parameters [2]. Thus, the selection of appropriate drill bit type is
an important task for drilling engineers while planning for new oil and gas wells.

With the advancement of sensor-based measurements, a large amount of well data
are being generated during field operations such as measurement-while-drilling, logging-
while-drilling, etc. [3]. However, the automated selection of drill bit type is possible
using earlier drilled offset wells” data. These data are highly complex with the problem
of nonlinearity, high dimensionality, noise, and imbalance in nature [3,4]. Therefore, the
interpretation of wells data has become difficult for conventional techniques that are
unable to process the bulk amount of data and make fast decisions for drill bit type
selection. Various researchers have proposed empirical and data-driven models to correlate
complex drilling variables for drill bit selection as described briefly in the next section. The
remaining paper is organized as follows: Section 2, presents a literature review. Section 3,
briefly describes the various data-driven models utilized in this work. Section 4, explains
the research methodology adopted in the paper, whereas Section 5, contains results and
discussion. Finally, the Section 6, concludes the major findings of the research work along
with future scope.

2. Literature Review

Several researchers have suggested various empirical correlations for the selection of
appropriate drill bit types. One of the most popular conventional methods for the selection
of drill bits is cost per foot (CPF) [5]. CPF can be calculated as given below:

_ Coir + Cric(Tor + Too + Ti)

CPF
Lp

)

where Cpjr is the cost of bit in dollars, Cgg is the cost of operating drill rig per hour, T}, is
run time of the drill bit, T, is the connection time, T; is tripping time in hours, and Lp is
the length of the drilled interval. The main drawback of CPF is that it does consider the
drilling variables and formation type which directly and indirectly affects drill bit life. This
method can’t be utilized for drilling the directional and horizontal wells [5]. The second
method for bit selection is based on the calculation of specific energy (Sg) which is required
to remove the unit volume of rock during drilling operations [6]. Sg can be determined as
given below.

RPM =« WOB
%= "ROP+BD @
where RPM is rounds per minute (rpm), BD is the diameter of bit (ft), WOB is the weight on
bit (Ib), and ROP is the penetration rate (ft/h). This Equation (2) has considered only three
important drilling parameters but ignored the rock mechanics and vibrational impacts
on the dullness grading of the drill bit. Further, the International Association of Drilling
Contractors (IADC, Houston, TX, USA) suggested the use of bit dullness for selecting the
roller cone as well as fixed cutter bits. Eight diverse parameters were utilized to describe the
dull bit conditions. Diverse conditions were assigned from one to eight codes symbolizing
the degree of dullness existing in a drill bit [7]. However, this technique has a major
drawback that requires human visual expertise for the evaluation of drill bit conditions.
Thus, the chances of human error are high in this dill bit selection technique.

In 1964, Hightower attempted to select drill bits based on the geological information
and drilling data obtained from previously drilled offset wells [8]. He utilized sonic logs
to define formation drillability to select suitable drill bit types for drilling new geological
formations [8]. However, he did not determine the rock strength directly but indirectly
estimated it through the theory of elasticity. Mason [9] utilized sonic logs, offset wells data,
and lithological information for the selection drill bit type. Perrin et al. [10] proposed a
drilling index to evaluate the performance drill bit that was also applicable for horizontal
and directional drilling operations. Mensa-Wilmot et al. [11] suggested a new formation
drillability parameter for drill bit evaluation and integrated several rock mechanics pa-
rameters in it. Xu et al. [12] modified the equation of CPF using mud logging data which
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was found to be more efficient than the conventional CPF equation for the selection of
drill bit [12]. Uboldi et al. [13] conducted micro indentation tests on the cuttings of sub-
surface rock layers to determine the mechanical characteristics of subsurface rock layers.
Further, they estimated the compressive index of rock formations along with lithological
data which were then utilized by a Drill Bit Optimization System to help the driller for
drill bit selection [13]. Sherbeny et al. [14] used wellbore images and mineralogy logs for
the selection and design of drill bits. Mardiana and Noviasta [15] combined rock strength
analysis and finite element modeling for the selection of drill bits. Cornel and Vazquez [16]
utilized bit dullness data for the selection of optimum drill bit types for different geological
formations. They also optimized the PDC bit design and drilling hydraulics to identify
optimum operational parameters.

With the advancement of sensor-based measurements, a large amount of wells data
are being generated during field operations such as measurement-while-drilling, logging-
while-drilling, etc. The interpretation of wells data has become difficult for conventional
techniques that are unable to process the bulk amount of wells data and make fast decisions
for drill bit type selection. Thus, smart computational models are applied for the processing
of big wells data to select suitable drill bit types. Several researchers have suggested
the utilization of machine learning models as an alternative approach for the automatic
selection of drill bit types based on previously drilled offset wells data. In 2000, Bilgesu
et al. [1] applied artificial neural networks (ANN) for the selection of drill bit types to drill
various formations but they failed to include the reservoir properties in their training data.
Further, Yilmaz et al. [17] employed the ANN model for the selection of drill bit type. They
selected bit type based on the desired values of the rate of penetration (ROP) and other
drilling variables. They also showed that ANN based models were good only for providing
initial suggestions regarding the drill bit type when tested for diverse field conditions [17].
Edalatkhah, Rasoul, and Hashemi [18] applied ANN and Genetic algorithm (GA) for the
choice of bit types based on desired and optimum values of drilling ROP. Hou, Chien,
and Yuan, [19] applied ANN for the screening of polycrystalline diamond compact (PDC)
drill bits trained on offset wells data, drillability and lithofacies information. Nabilou [20]
studied the impact of drill bit selection parameters especially geo-mechanical factors in
a case study of an oil and gas reservoir existing in the southwest part of Iran. Efendiyev
et al. [21] selected run speed and cost of the drill bit as significant criteria for the selection
drill bits. Momeni et al. [22] applied ANN for the prediction of drill bit types based on the
offset wells drilling data and predicted ROP values by adding predicted drill bit types in
the training dataset. Abbas et al. [23] selected drill bit types based on the optimum values of
ROP using ANN and GA. Manuel et al. [24] selected drill bits types for different geological
depths using image processing techniques, principal component analysis (PCA), and ANN.
Most of the abovementioned research works are trained on the balanced datasets with less
number of drill bit types. The successful applications of ANN have shown that data-driven
models have the potential for the automation of the bit selection process. However, none
of them have considered the problem of imbalanced data that will naturally occur due to
the varying thickness of subsurface lithofacies. The actual field data contain the uneven
distribution of data samples that result in a complex imbalance multiclass classification
problem during drill bit selection. This uneven distribution of training data samples affects
the generalization capability of supervised machine models for unseen data and also make
them unreliable. Here, the generalization of machine learning models means that the
trained models provide their best possible performance results for unseen testing data also.
Therefore, proper investigation of machine learning models is required to evaluate their
effectiveness for the screening of drill bit types with complex offset wells data to provide
more pragmatic solutions.

Here, the drill bit selection process has been formulated as a multiclass classification
problem where diverse drill bit types have acted as class labels. In this paper, two ensemble
methods namely, AdaBoost and random forest (RF) have been investigated for handling the
complex multiclass imbalanced data problem associated with intelligent drill bit selection.
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These ensemble paradigms contain boosting techniques in its internal architecture which
has been reported useful for solving the imbalanced data issues. They also reduce the bias
and variance error associated with training data that provide a better generalization to the
prediction results. These ensemble methods are combined with data resampling techniques
to enhance their capability of dealing with imbalanced data. Additionally, the behavior of
four popular classifiers namely, K-nearest neighbors classifier (KNC), naive Bayes classifier
(NBC), multilayer perceptron (MLP), and support vector classifier (SVC), have also been
studied to select diverse bit types for drilling critically unstable geological formations. The
abovementioned popular classifiers have also been tested to study the impact of imbalance
and establish the supremacy of the proposed approach. The primary motivation of this
research work is to explore popular machine learning algorithms in quest of higher drill
bit selection accuracy and better generalization. The primary objectives of this study are
given below:

(1) The applicability of intelligent models for drill bit selection has been reviewed.

(2) Ensemble models are investigated in quest of higher bit selection accuracy.

(3) A comparative study of popular machine learning models has been performed for
drill bit selection.

(4) The problem of imbalanced data is addressed in this work that adversely affects the
performance of machine learning models for the selection of the drill bit.

(5) The impact of softer and unstable geological formations that produce critical training
data for machine learning models have been discussed to select diverse drill bit types.

(6) The behavior of machine learning models has also been studied for drill bit selection
in critical formations.

(7)  The future implications of this work are elaborated for automatic drill bit selection.

The comparison of results has been performed to identify the best performing classifier
among all the above-mentioned models. All the applied machine learning models have
been trained and tested using Norwegian oil and gas field data. The data related challenges
associated with the drill bit selection process have also been discussed. This paper discusses
issues related to intelligent classifiers and imbalanced petroleum data such as applicability
issues, performance difficulties, performance evaluation parameters, and possible data-
driven solutions. Overall, a comprehensive study of machine learning models has been
performed to assess the challenges associated with the automatic drill bit selection process
with practical field datasets.

3. A Brief Description of Applied Models

In this study, oversampling and undersampling approaches have been utilized to
generate the balanced datasets for the training and testing of ensemble methods. All the
data related techniques used in this research work are briefly explained below.

3.1. Data Resampling Techniques

Several real-world problems involve imbalanced data issues where the distribution of
samples varies from class to class. It is reported that the majority classes naturally dominate
the minority classes during the training of supervised classifiers, which makes them biased
and unreliable. However, machine learning models require balanced datasets for their best
possible performance [25]. To overcome this imbalanced data problem, two data sampling
techniques were applied for generating balanced datasets for the classifiers to compensate
for the ill effects of imbalanced data.

3.1.1. Oversampling

Oversampling technique increases the data samples in the minority class by dupli-
cating the prevailing samples or producing synthetics ones [26]. This approach is widely
applied for the generation of the balanced dataset for the training of supervised classi-
fiers. Various oversampling techniques are available in the literature such as random
over sampler, focus over sampler, synthetic minority over-sampling technique (SMOTE),
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etc. SMOTE is a widely applied technique for oversampling. Therefore, in this paper, the
SMOTE technique has been applied for balancing the number of data samples for each class.
This approach does not produce duplicate copies of existing data samples but synthesizes
new ones. It takes the feature space samples for each class and combines them with the
features of nearest neighbors [26,27].

3.1.2. Undersampling

In the undersampling technique, the samples from the majority class are removed to
decrease their data samples up to the number of minority class’s data samples. This seems
to be a straightforward approach for data sampling but is found suitable when the minority
class has a sufficient amount of data samples [28]. There are various techniques applied
for undersampling of the data samples such as Tomek links, edited nearest neighbors,
random under sampler, etc. [27,28]. The random under sampler technique has been used
for the generation of balanced dataset used in this study. It's a simple and fast method
for the generation of a balanced dataset through random sampling from original data.
Here, the number of samples in each class of balanced dataset is predefined by the user.
This technique selects bootstrap subsets from the original data for each class based on
the user-defined value of samples [27]. It considers each class independently in case of
multiclass imbalance problems which is useful for sampling heterogeneous data having
string values in samples [27,28]. Undersampling approach has been recommended only
in big data conditions and may result in loss of important information during removal of
data samples from the majority class [27,28]. Both over and under-sampling approaches
have limited benefits for handling imbalanced data at the data level, therefore, ensemble
methods, having boosting techniques in their internal architecture, are also investigated at
the algorithm level to compensate for the effects of imbalance.

3.2. Ensemble Methods

Ensemble methods are multiple-learner-systems that train and combine the outcomes
of several supervised learners to produce the outcomes for pattern recognition tasks [29].
The motivation for the integration of supervised machine learning models is to achieve
higher prediction accuracy and improve the generalization ability of ensemble models. The
ensemble approach has been reported to be efficient for reducing errors associated with the
bias and variance of training data [29]. These methods are also found suitable for handling
imbalanced data problems because they integrate boosting techniques within their internal
architectures [29,30]. In this study, two ensemble methods namely, AdaBoost and random
forest are mainly studied for handling complex imbalanced data for the drill bit selection
process. The two ensemble methods are briefly explained below.

3.2.1. Adaboost

Freund and Schapire [31] proposed an AdaBoost ensemble technique based on the
boosting paradigm. It trains the base classifiers using random bootstraps data samples
generated from original data and combines their decisions through a weighted majority
vote. Initially, it assigns equal weights to all the training data samples [30,31]. Further,
weight adjustments are performed based on the misclassifications obtained through the
initial base classifier. Weights of misclassified data samples are increased in the next
modified training dataset so that the chances of occurrence of misclassified samples will be
increased in the next training dataset [30]. AdaBoost is particularly found supportive in
handling imbalanced data problems [32]. The assignment of weights to bootstrap subsets
is equivalents to resampling data space while combining upper and downsampling [32].
It has accuracy oriented approach and focuses on the wrongly classified samples while
increases the weight until it gets correctly classified. It provides a solution for an imbalanced
data problem at the data level equivalent to the resampling technique utilized for imbalance
reduction. In this, under-sampling of majority classes is performed to produce the balanced
dataset and is termed as under-sampled AdaBoost (USA). Figure 1 depicts a generalized
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workflow of the AdaBoost algorithm. The standard AdaBoost ensemble can be applied as
given below in Algorithm 1 [31].

Training Dataset (Xm) Testing Dataset

(Random weighted samples with replacement)

WiXa I —E:X: I —.E;Xx I WXt I

-
g P
Base Classifier [=. || Base Classifier | || Base Classifier Base Classifier (Cxg)
(&) = (C2) L2, (©)

= =
£ z
] £
g 3

=

Modell Model2 s Model 3 ModelM
L 2
I Combination rule (Majority voting) l
I Final Prediction Results I

Figure 1. A generalized workflow of the AdaBoost algorithm.

Algorithm 1 [31]

. Produces bootstrap training subsets (X,, = Xi, Xp, ..., Xy) from original training data X
and is associated with initial equal weights (W,, = Wy, Wy, ..., Wx). (n = 1,2,3,...,N)
e  Base classifiers C,(x) are trained using weighted training subsets

N
(Wu Xy = W1 X1, W1 Xy, ..., WyXy) and determine error probability as Error, = % Y. WiB;
i=1

. — J1 otherwise . . s
where B; = {0 if sample correctly classified and change in weights is given as

Cy = llog<71_ErW")

Error,

e  Update weights as w?H = w} exp(CyB}) if the calculated error is between 0 to 0.5 (=1, 2,

N
3,...,N) and renormalizes samples” weights so that }_ Wl.”+1 = N otherwise initialize all
i=1
the subsets” weights as 1 and repeat the above-given steps.
e Integrate the decisions of all the classifiers C,, (x) by weighted majority voting rule as

specified below. o
e ¢(x) = argmax . Cybsgn(Cn(x)), Y, where 6; ; = {(1) z;; is known as the Kronecker symbol,

ye{-11} "
and Y is the class labels.

3.2.2. Random Forest (RF)

Breiman developed the RF algorithm by modifying the bagging ensemble [33]. RF can
be employed for resolving estimation, detection, and recognition related problems. RF has
certain peculiar merits over other classifiers such as computationally fast, few numbers
of model parameters for tuning, easier evaluation of generalization error, the capability
of handling high dimensionality, can be utilized for attribute selection, etc. [34]. RF is
the assembly of decision trees in single ensemble architecture where each decision tree is
generated from random training variables [34]. For the training of its decision trees, RF
generates random bootstrap data subsets from training data with the replacement of data
samples. The final estimation function is in the form of a loss function that is required
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to be minimized [34]. All the feature space is available to the root node of the decision
tree. Non-splitting nodes in the decision tree are called terminal nodes. The standard RF
algorithm can be utilized for imbalanced data classification by adjusting the weight of each
class while computing the impurity score for a selected split point [35,36]. The weights
will be adjusted according to the inverse relationship with class frequencies in the training
data [35,36]. This will shift the focus of RF on the minority class samples. This will result in
the formation of a weighted class RF technique (WCRF) for the classification of imbalanced
data [35]. The second approach that can be applied with RF is the bootstrap weighting
approach. Here, the weight adjustment of a class is performed based on its distribution in
every bootstrap sample in place of the whole training dataset [35,36]. Such a configuration
of RF is known as RF with bootstrap class weighting (WBCRF). In the third approach, the
majority of classes are randomly under-sampled in bootstrap samples to produce balance
datasets (USCRF). This adjustment will explicitly vary the class distribution inside the
random bootstrap samples. Figure 2 shows a generalized workflow of RF algorithm.

I Input Data I
1
]
Teaining Dataset (Xa) ()

I (Random samples with replacement)

R X2 4 X3 4 X Y
Random Forest Random Forest Random Forest Random Forest
Classifier (C1) Classifier(C2) Classifier (C3) Classifier (Cwm)

@-P Model 1 @ Model 2 Model 3 4'@ Model M 4-@

I I I I
¥

Combination rule (Majority voting)

¥

Final classification results

Figure 2. A generalized workflow of the Random Forest algorithm.

4. Methodology

In this paper, drill bit selection has been formulated as a classification problem where
diverse bit types have acted as class labels. The performance of four popular classifiers
namely, KNC [37], NBC [38,39], MLP [40], and SVC [41,42], have been tested to select
drill bits for the given values of operational field variables. AdaBoost and RF are also
applied with the resampling technique for screening of drill bit. All the machine learning
paradigms have been implemented through the open-source Scikit-Learn version 0.24 and
Python 3.8.0 package on the Anaconda 3 2020.11 platform. Python libraries have several
merits over other prevailing platforms such as the capability of handling real-field input
wells data, implementation of statistical tests to intelligent paradigms, visualization of
results, self-explanatory user guides, community, and forums, etc. This whole study was
carried on a 10th generation Intel Core i7-1065G7 processor with the hardware and software
configurations, namely 8 MB Cache, GHz, four cores, 16 GB RAM, 8 GB graphic cards and
the Windows 10 operating system.

4.1. A Brief Description of the Volve Field

This field is situated in the central part of the North Sea near the Norwegian Continen-
tal Shelf. It was discovered in 1993 and its production shut down in 2016 by its investors’
companies. The ocean depth near the Volve field is in a range of 85 to 95 m. This field
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contains Jurassic sandstone related to the Hugin formation reservoir. Figure 3 shows the
location of the Volve oil and gas field in the North Sea. The depositional environment of
this reservoir is analyzed as tidal to the shallow estuary [43]. The sandstones of the Hugin
reservoir contain high contents of quartz and a medium to low range of mica and clay
minerals. Various faults can also be found in Hugin formation due to salt and Jurassic
extensional tectonics [43]. Draupne formation acts as a worthy spring for oil production
due to its organic-rich claystone layer. Smectite contents and argillaceous clay are found
in large quantities in Hordaland shales which may be the cause for the higher formation
pore pressure and its instability. This formation is not recommended for drilling high
angle wellbore due to its easy collapse chances [43]. Balder formation comprises crumbly
tuff content which has been reported as the primary reason for mud losses and washouts.
The presence of crumbly tuff in Blader formation also decreases its fracture gradient that
leads to the instability of formation. Drilling operations in the Sola formation has also
suffered from several issues such as a tight hole, collapses, etc. The average properties
expected from this Hugin reservoir are as follows: porosity (0.2), permeability (910), water
saturation (0.23), and shale volume (0.17) [43]. Geosteering was particularly utilized to
increase the extent of the reservoir linking to various fault blocks. Table 1 contains the
geological prognosis of Well 15/9-F-12 considered under this study.

UK { NORWAY 1°40°

Slalonar
Vast

s | 1s/9
| 15/12

16/7
58°15°

5 km

Figure 3. Geological location of Volve oil and gas field (courtesy: Equinor website) [43].

Table 1. Geological prognosis of Well 15/9-F-12 under study (courtesy: Equinor company) [43].

Group Formation Depth (m) Description
Nordland Utsira Top 892 Grey claystone, a stringer of sand and siltstone.
Utsira Base 1084 Well sorted sandstone, minor silt, and limestone stringers.
Hordaland Skade Top 1259 Claystone, minor limestone/dolomite stringers.
Skade Base 1347 Medium-grained sorted sandstone.
Grid Top 2179 Fine-grained sandstone.
Grid Base 2245 Fine-grained sandstone.
Rogaland Balder Top 2317 Colored claystone, partly tuffaceous, and limestone stringers.
Sele Top 2374 Claystone and limestone stringer.
Lista Top 2445 Non-calcareous claystone and minor limestone stringers.
Ty Top 2531 Fine to medium sandstone some interbedded claystone, siltstone, and limestone stringers.
Shetland Ekofisk Top 2698 Limestone with traces of claystone and sandstone.
Tor Top 2715 White limestone with traces of claystone.
Hod Top 2839 Limestone along with gluconate.
Blodoeks Top 2944 Marl, argillaceous laminations, and gluconates in parts.
Hidra Top 2972 Off-white firm limestone.
Cromer Knoll Roedby Top 2981 Marl along with argillaceous laminations
Aasgard Top 3001 Interbedded limestone and marl with minor claystone and siltstone.
Viking Draupne Top 3036 Organic-rich claystone, micaceous, carbonaceous with traces of pyrite.
Heather Top 3086 Claystone with limestone stringers.
Vestland Hugin Top 3094 Sandstone and rare claystone stringers.
Sleipner Top 3266 Sandstone, grey claystone, and layers of coal.
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4.2. Data Description

The dataset utilized for training and testing of machine learning models belonged to
Norwegian Volve oil and gas fields. These data are available online and can be downloaded
from the website of the Equinor oil and gas company. The field data of the fourteen Volve
oil and gas wells were made public for academic and research purposes in 2018 [43]. Eight
wells data were downloaded from the Equinor company website for the testing of machine
learning models considered in the study for drill bit selection namely, 15/9-F-4, 15/9-F-5,
15/9-F-7,15/9-F-9, 15/9-F-10, 15/9-F-11, 15/9-F-14, and 15/9-F-15 [43]. These wells were
planned to maximize the production of hydrocarbon from the Hugin formation. Generally,
the production wells in the Volve field were multilateral in nature, however, observation
and injection wells were in J-shape trajectory [43]. The total number of data points extracted
from the final drilling reports of eight wells are shown in Table 2.

Table 2. Details of data samples extracted from the Final drilling reports of Norwegian wells.

S. No. Well No Data Samples Classification
1 F-4 548 Injector well
2. F-5 721 Injection Well
3. E-7 187 Production well
4. F-9 180 Production well
5 F-10 718 Observation/Production well
6. F-12 631 Production well
7. F-14 711 Production well
8. F-15 616 Observation well
Total 4312

Oil and gas wells are drilled from the earth’s surface to the target depths of geological
rock formations through drilling rig assembly. Mechanical drill strings are installed at the
drill site containing drill bits at its bottom tip for crushing the subsurface rock layers. To
control and monitor the oil and gas field operations efficiently, various sensors are installed
on the drill rig and string to capture five types of variables namely seismic parameters,
operational parameters, mud logging parameters, well logging parameters, and formation
characteristics parameters [44]. Table 3 contains the statistical description of operational
and mud logging parameters utilized for the selection of drill bit types. Weight on bit
(WOB), rounds per minute (RPM), torque (TQ), rate of penetration (ROP), bit type (BT),
and bit size BS are drilling operational variables recorded from sensors installed on rotary
drill string assembly. WOB is the downward force applied on the drill bit for crushing
the rock layer through the weight of drill string assembly along with heavy drill collars.
RPM contains the rotational speed of the drill string along with the depth of the geological
lithology. TQ is the rotational force applied from the drill string on the rock formations.
ROP is the speed of the drill bit at which it moves inside the rock formation. BS and BT are
planned and recorded before the drilling operations for cutting the subsurface lithofacies.
Similarly, circulating drilling mud properties are also recorded during drilling operations
through mud logger equipment to understand the state of underlying rock formations and
drill bit. Here, standpipe pressure (SPP) is overall pressure loss in the mud circulating
system because of friction offered to the mudflow during the drilling operation. Mudflow
rate (FR) is the speed of circulating drilling mud. Mud weight (MW) is the density of mud
circulating as drilling fluid. Measured depth (MD) and true vertical depth (TVD) represent
the depth at which the drill bit is cutting the underlying rock surfaces.

The input data extracted from the final drilling reports of eight wells contained a
variety of sensor measured variables. The downloaded data are available in pdf format
that has been later converted to excel file format for ease of handling. This type of data
normally contains issues such as noise, redundant attributes, missing or garbage values, etc.
that are required to be cleaned before uploading into machine learning models, otherwise,
it will affect models’ performance. These input variables will act as predictor variables and
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unique IADC codes of drill bits will act as class labels. However, IADC bit numbers cannot
be directly utilized for class labels instead coded to newer class labels as shown in Table Al.
Loken et al. [45] calculated additional parameters that are based on the natural interactions
of conventional drilling variables such as Mechanical specific energy (MSE), depth of cut
(DC), drill bit aggressiveness (DBA), and D-exponent (D-EXP). These interaction drilling
variables have been extensively stated in several research works [46—48]. The additional
interaction drilling parameters have been calculated as given below:

WOB 120+ RPM *xTQ

E =
MS Areay;; + Areay;; x ROP ®)
ROP
PC= 5 v @
. 36xTQ
DBA = WOB % BD ©)

where WOB is the weight on bit in tons, RPM is round per minutes in rpm, TQ is torque in
kN/m, ROP is the penetration rate of a drill bit in m/h, Areay;; is the area of a drill bit in
inch square, and BD is drill bit diameter in inch.

Table 3. Statistical details of collected drilling data of eight wells used in this study.

S. No. Input Variables Range Units
1. Measured Depth (DT) 45-3785 m
2. True Vertical Depth (TVD) 150-3244.36 m
3. Rate of Penetration (ROP) 1.62-205.01 m/h
4. Weight on bit (WOB) —7.27-51.57 tons
5. Rounds per minutes (RPM) 6-311 rpm
6. Torque (TQ) —28.53-96.14 kNm
7. Standpipe pressure (SPP) 3-389.2 bar
8. Mud weight (MW) 0.99-1.47 S.g.
9. Flow Rate in (FR) 432-5345 L/min
10. Total Gas (TG) 0-10.6 Y%
11. Bit type (BT) 1-19 -
12. Bit Size (BS) 8.5-26 inch
13. D-exponent (DEXP) 0.26-1.55 -
14. Total flow Area (TFA) 0.663-1.51 inch?
15. Mechanical Specific Energy (MSE) 2213.0-85,127.7 psi
16. Depth of Cut (DC) 2.5-5.06 m/rev
17. Drill bit Aggressiveness (DBA) 2.07-6.13 -

4.3. Imbalanced Data Problem

The diverse input variables utilized for the training of machine learning models were
obtained from drilling the subsurface lithofacies. These lithofacies have naturally existing
subsurface rock layers that occur in a random pattern along with the depth of the geological
formations. The thickness of subsurface layers also unevenly varied at different depths of
geological reservoir. Different subsurface rock requires diverse drill bits for efficient drilling
operations. The thick rock layers generate a large amount of drilling data samples that
can be used for classifying associated bit types. However, drilling of thin layer intervals
produces a lesser amount of drilling data samples that are available for the training of
machine learning models. This results in uneven distribution of drilling data samples
which affects the performance of each supervised classifier. Figure 4 displays the number
of data samples associated with each bit type available in input drilling data. Imbalanced
data samples are difficult to classify and adversely affect the performance of the supervised
classifiers algorithm [49]. It can be seen in Figure 4 that BT 6 (34), BT 7 (13), BT 11(26), BT
13 (10), and BT 16 (13) contain an extremely lesser number of data samples as compared to
other classes. This results in imbalanced data conditions that will automatically jeopardize
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the whole data-driven bit selection process. A single supervised classifier generally fails to
perform adequately with imbalanced data conditions. Popular supervised paradigms such
as KNC, ANN, SVC, etc. become biased for majority classes while ignoring the smaller
classes. However, overall classification accuracy will be reported high in case of imbalanced
data conditions. To tackle imbalanced data conditions, certain modifications have been
suggested by the researchers that are rarely applied in the petroleum domain. This problem
can be handled at two levels namely, the data level, algorithm levels, and both. Four major
solutions can be applied for handling imbalanced data conditions namely, (a) resampling
(b) boosting (c) adaptive algorithm (d) cost-sensitive learning [25]. In this study, boosting,
and resampling have been selected for handling the imbalanced data condition occurring
during the drill bit selection process. Drill bit selection is a complex multiclass classification
problem that requires strong classifier paradigms for its classification. AdaBoost and
RF are the two strong ensemble classifiers that incorporate boosting techniques within
their internal architectures that can be combined with resampling techniques to handle
imbalanced data efficiently.
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Figure 4. The number of data samples available in real field drilling data for each bit type.

4.4. Data Preprocessing

Several petroleum researchers have supported the idea of preprocessing real-field
wells data before uploading it to machine learning models [50]. Preprocessing of input
data helps to enhance the prediction accuracy of machine learning models and reduces the
chances of errors. All the missing, garbage, null and abnormal values have been removed
in the preprocessing stage according to the known standard ranges of input variables.
Any value beyond the standard range are unacceptable and are removed from raw input
data. Further, the normalization of input data was performed to diminish the impact of
larger values on the smaller ones. Mustaffa and Yusof [51] compared the normalization
techniques and reported that Min-max normalization is particularly suitable for those
paradigms which have distance measurement or optimization in their internal design such
as KNC, NBC SVC, etc. [52]. Min-max normalization is also recommended for those input
data which don’t follow Gaussian distribution which applies to operational field data
acquired in this study. The data can be normalized as given below.

~ Max(X) — Min(X) ©)

where Xpax and Xyin are maximum values and minimum values of operational variables.
This technique also ensures that each input variable is uniformly scaled down on the same
level.
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4.5. Noise Reduction

The problem of noise in the sensor recorded data has been reported in several research
works that affect the performance of machine learning models. Conventional noise filtering
techniques such as Fourier transform, Moving average, SG filters, etc. are found to be
less effective for the removal of noise contents from drilling data [53]. In this study,
Wavelet filters have been utilized for the denoising of drilling data which is a popular noise
filtering technique [53]. In wavelet transform, spare representation of drilling data has been
generated to concentrate whole data features into large magnitude wavelet coefficients.
The smaller value coefficients are considered as noise components. Later, these smaller
coefficients are eliminated during the noise filtering process. The wavelet transform of
input data can be given as:

Wr(l k) = - 70T<t>x(t;k>dt %

where k is the scaling factor, /1 is the expansion factor and x(t) is the wavelet basis function.
Further, an inverse wavelet transform can be taken to reconstruct the original waveform of
input data. Inverse wavelet transform can be given as:

—+00 +00

1 1 t—k
Ino(t) = ”’XZO ZOhZWT(h,k)X<h>dhdk @®)
where w,, is the wavelet factor,  is the factor of expansion, k is the scaling factor, and x(t)
is the wavelet basis function. The lower wavelet coefficients are removed in the noise
filtering process, however, the properties of original data are still preserved. In this study,
the Haar wavelet has been used for filtering noise components from drilling data. Several
research works have also supported the utilization of the Haar wavelet for denoising
drilling data [53]. The noise contents are found to be large in drilling data because surface
installed sensors have high chances of exposure from surrounding noise. Figure 5 shows
the denoising of the WOB variable using the 1-D wavelet filtering technique.
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Figure 5. The denoising of WOB variable using the 1-D Wavelet filtering technique.

4.6. Attribute Selection

Drilling data contain redundant predictor variables that will increase computational
cost and time during the training phase of machine learning models. Various feature
extraction and attribute selection techniques such as Principal component analysis, Fisher
discriminant analysis, Univariate attribute selection, Relief algorithm, correlation heat-map,
etc. are available in the literature to eliminate the redundant variables or attributes from
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input data. The availability of only relevant features or attributes in training data enhances
model accuracy, reduces the influence of noise, and training time of machine learning
models. In this work, the Forest of decision trees based feature importance has been
calculated for the identification of important drilling variables for the bit selection task. It
allocates ranks and weights to input drilling variables depending upon their contribution to
the classification task. Figure 6 shows predictor variables arranged according to their ranks
and weights assigned through a forest of decision tree-based algorithm. Out of sixteen
input (predictor) variables, BS and TFA were recognized as high contributing variables for
bit selection whereas TG contribution was the lowest as shown in Figure 6. Finally, TG was
eliminated from the training datasets due to its redundant nature.

Importance Weights
e 2 2 o © 2 9
g 88 = B ® =&

=4
S
~

=

S > 2 & DO AN ORI IECRE >
AP ﬁéﬁ&,c«-jz,\g@o T FF S

9
Input Drilling Variables

Figure 6. Importance of input drilling variables for the selection of drill bit type.

4.7. Model Training with Parameter Optimization

The processed drilling data were split into training and testing subsets utilizing the
cross-validation technique. The cross-validation of input data is done to avoid the problem
of overfitting and underfitting of machine learning models [54,55]. Several schemes of
cross-validation are available in the literature for data partitions such as k-fold, stratified
k-fold, leave one out, leave P-out, hold out, etc. K fold cross-validation was primarily
utilized for data partition because it effectively reduces variance error associated with
input data [54]. 10-fold cross-validation (10-FCV) splits the training data into K = 10
subsets where (K-1) subsets are used for training the classifiers and Kth for their validation.
Iterations will continue until the subsets have performed at least once as a validation set.
The concluding results of classifier paradigms are calculated by averaging the classification
accuracies acquired in each iteration. After 10-fold cross-validation, training and testing
of classifiers have been done to evaluate their performances. Generally, machine learning
models are prone to overfitting and underfitting conditions. Thus, additional validation
curves are generated to identify stable regions existing in search ranges of various models’
parameters.

Underfitting conditions, training, and validation scores of machine models will be
recorded at lower values. In the case of overfitting, training scores are reported to be
high in combination with low validation scores. To avoid overfitting and underfitting
conditions, models’ parameters are needed to be optimized within the stable regions where
no dramatic change of training and validation scores take place as shown in Figures 7-10
The optimization of the model’s parameters has been performed through the grid search
technique which is a popular tuning algorithm in the petroleum domain. The search
ranges and optimum values of models’ parameters are shown in Table 4. Figure 7 depicts
the validation curves generated for the smoothing parameter of NBC and the number
of hidden layers of MLP. Figure 8 shows validation curves generated for the important
parameters of the KNC classifier viz. the number of neighbors and leaf size. Figure 9
contains validation curves generated for the regularization and gamma parameters of SVC.
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Figure 10 illustrates validation curves for four important parameters of RF viz. number
of estimators, maximum depth of decision tree, minimum samples needed at a leaf node,
minimum number of samples needed for splitting the node. Figure 11 shows training error
minimization versus the number of iterations plot for SVC classifier for drill bit selection.
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Figure 7. Validation curves generated for NBC and MLP (a) NBC Smoothing parameter and (b) MLP number of hidden

layers.
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Figure 8. Validation curves generated for the important parameters of KNC classifier (a) Number of neighbors (b) Leaf size.
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Figure 9. Validation curves generated for two important parameters of SVC classifier (a) Regularization parameter C
(b) Gamma parameter.
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Figure 10. Validation curves generated for four important parameters of RF (a) Number of estimators (b) Maximum depth
of decision tree (c) Minimum samples needed at leaf node (d) Minimum number of samples needed for splitting.

Table 4. Optimum values of various models’ parameters applied in this research work.

S. No. Paradigms Model Parameters Search Range Optimum Value
1 MLP Learning rate 0.0001-0.5 0.001
Maximum number of iterations 100-1000 500
Neurons in the hidden layer 0-1000 20
Activation function identity, logistic, tanh and relu relu
Solver adam, Ibfgs, and sgd adam
2 KNC Number of Neighbors 1-10 5
Weight uniform/distance Uniform
Algorithm Auto, ball_tree, kd_tree, brute Auto
Leaf size 1-100 40
3 NBC Var_smoothing 1x10%to1 x 107! 1x10°8
4 SVR Penalty parameter (C) 0.1-10,000 100
Kernel type Linear, polynomial, Gaussian Gaussian
Gamma parameter (y) 0.01-10 5
5 RF Number of estimators 1-1000 100
Maximum number of iterations 10-1000 1000
Minimum samples for split an internal node 1-20 2
Maximum depth of the tree 1-1000 ‘None’
Minimum leaf samples 0-25 1
6 AdaBoost Number of estimators 1-1000 100
Base estimator Any supervised paradigm Decision tree
Learning rate 0.1-1 0.1
Boosting algorithm SAMME/SAMME.R SAMME R
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Figure 11. Minimization of classification error plot generated during the training phase of SVC using
the Grid search technique.

4.8. Performance Evaluation Metrics

The evaluation metrics perform a significant role in the assessment of supervised
classifier’s enactment. Conventionally, accuracy was considered a reliable performance
evaluation parameter. However, it becomes unreliable in case of imbalanced data condi-
tions where it does not account for smaller classes. Thus, additional statistical indicators’
parameters namely, precision, recall, G-means, Matthew coefficient of correlation (MCC),
and F1 score are also calculated to determine the performance of classifiers as given below:

TP+ TN
TP+ TN+ FP+FN

Accuracy = 9
where accuracy is a widely applied parameter for the performance evaluation of intelli-
gent classifiers, FP is false positives, TP is true positives, TN is true negatives and FN is
false negatives:

. TP
Precision = TP L EP (10)
where FP is false positive and TP is true positive.
TP
R = o 11
ecall = 75 FN (11)
where TP is true positive and FN is false negative.
TP
Flscores = (12)

TP+ 1(FP+FN)

where Flgeres values have been estimated to ensure the authentication of precision and
recall results. This parameter is widely applied in the area of information retrieval. All the
above-mentioned parameters are influenced by the data imbalance issues and may mislead
classification results [52]. Therefore, MCC and G-mean have been calculated to ensure the
reliability of the accuracy parameter [52].

SC x TS — YK PCy x TC;

\/(T52 - %PC%) X <T52 — %TC,%)

MCC =

(13)
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where PCk is the number of iterations in which K class has been predicted, TCk is the
number of iteration in which K class is correctly predicted, SC is the number of data samples
correctly classified and TS is the number of all the data samples considered in the classifi-
cation task. MCC parameter has been utilized for ensuring that the classification results
are reliable and unaffected by data imbalance issues [55]. G-mean is also a performance
indicator parameter that is not affected by data imbalance. Kubat et al. proposed G-mean

as given below [55].
G-mean = TPygte. T Nyate (14)

where TPy is the true positive rate and TNy, is the true negative rate. Both of these
parameters are expected to be high concurrently for good classification results. Additional
statistical indicators” parameters namely, precision, recall, G-means, etc. are also determined
as they are primarily recommended in the literature for evaluating the performance of
classifiers for imbalanced data conditions. Figure 12 shows a generalized workflow of the
drill bit selection process based on the proposed approach.
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I Data Preprocessing I
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Is training &
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Figure 12. A generalized workflow of drill bit selection process based on the proposed approach.

5. Results and Discussion

This section discusses the results obtained while selecting different types of drill
bit through machine learning models. Two ensemble methods namely, AdaBoost and
random forest (RF), have been investigated for handling the complex multiclass imbalanced
data problem associated with the intelligent drill bit selection process. Validation curves
have been generated to identify the stable regions existing in ranges of various models’
parameters as shown in Figures 7-10. A detailed description of drill bit types has been
provided in Table Al of Appendix A. Two data-driven experimental scenarios have been
simulated to test the intelligent bit selection approach. In the first experimental scenario,
machine learning models were trained and tested on the combined dataset obtained from
eight wells using 10-FCV. The input data utilized for training and testing of various machine
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learning models contain uneven training samples belonging to various classes as shown in
Figure 4. In the case of imbalanced data, classification accuracy becomes unreliable and
unfit for the performance evaluation of machine learning models. Thus, average values
of recall, precision, F1 score, G-mean, and MCC, have been determined to examine the
overall performance of various machine learning models. Table 5 shows the classification
performance of standard classifiers for bit selection. It can be observed from Table 5 that
the performance of NBC and KNC are the lowest among all the other classifiers. NBC has
failed to learn about hidden dependencies or patterns among diverse variables present
inside the training data samples related to smaller classes. Smaller classes have existed
sparsely in the training data space due to data scarcity which also harms the performance
of KNC with testing data.

Table 5. The performance of machine learning classifiers for drill bit selection in the first scenario.

Classifiers Training Accuracy  Testing Accuracy Precision Recall Flscore MCC G-Mean
NBC 56.15 55.001 0.639 0.550 0.517 0.516 0.61
KNC 63.00 60.00 0.623 0.61 0.60 0.566 0.54
MLP 72.12 71.06 0.711 0.711 0.708 0.678 0.70
SvC 0.83 0.82 0.79 0.78 0.81 0.83 0.81

AdaBoost 0.96 0.90 0.90 0.90 0.91 0.90 0.90

Random 0.97 091 0.92 0.92 0.92 0.91 091
forest

MLP model has been trained on 70% of input data along with 15% for validation
and 15% as testing data. The optimum number of the hidden layer’s neurons of MLP
was estimated based on minimum training error after several iterations as shown in
Table A2 provided in Appendix A. MLP is three layers of a popular neural network with a
backpropagation (BP) paradigm in its internal architecture for the training phase. BP trains
the MLP network iteratively by adjusting the weights associated with each variable present
inside training data. The weights adaptation is dependent on the length of the gradient
vector calculated for error minimization in the training phase. The expected length of the
gradient vector is dependent on the number of samples present for each class. During
imbalanced data conditions, majority classes dominate the whole error minimization
process during the training phase and produce larger errors for minority classes. Thus,
the performance of MLP is adversely affected by the imbalance condition. MLP, NBC,
and KNC classifiers are prone to become biased for majority classes in imbalanced data
conditions. However, MLP has emerged as the second-best performing single supervise
classifier for drill bit selection followed by SVC in the first place as shown in Table 5. SVC
is known to have some level of immunity for imbalanced data condition but become biased
to majority classes in critically high imbalance condition. All of the above said supervised
models fail to provide proper generalization and become unreliable for selection of drill bit
type. Therefore, ensemble methods have been investigated for drill bit selection to achieve
better model generalization.

AdaBoost and RF are the two ensemble methods that have been utilized for handling
the imbalanced offset wells data for drill bit selection. RF has achieved higher testing
accuracy than AdaBoost for bit selection as shown in Table 5. Although, ensemble methods
have given much better results as compared to single supervised classifiers which are
affected by the imbalance conditions. Thus, both of these techniques were modified to
enhance their capability of imbalanced data classification. AdaBoost and RF have been
combined with an undersampling technique that reduced the data samples from majority
classes to make the whole dataset balance. Here, the class having the lowest number of
data samples was taken standard (class BT 13 with 10 samples) and other classes were
undersampled accordingly. However, this approach has degraded the performance of both
ensemble methods as their training and testing accuracies are heavily dependent upon
the majority class samples as shown in Table 6. In imbalanced data conditions, classifiers
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normally ignore smaller classes as fewer data samples are available during the training
phase. It increases difficulties for intelligent paradigms to learn and identify any hidden
pattern. This technique may produce satisfactory results when a reasonable amount of data
samples are present in the smaller classes. Further, oversampling was performed to tackle
this critical imbalance condition through SMOTE techniques. In SMOTE, the class having
the largest number of data samples (BT 1 with 1265 data samples) was taken as a standard
for the generation of synthetic data. SMOTE utilizes k-nearest neighbors samples (k = 5)
to acquire the data distribution of subsets for each class. The results are shown in Table 6.
Which demonstrate enhancement in training and testing accuracies of ensemble classifiers,
along with other performance metrics for oversampling. MCC and G-mean values have
also shown enhancement as compared to the earlier undersampling case. In oversampling
combinations, the ensemble classifiers are found to be more reliable and stable due to the
higher values of MCC and G-mean.

Table 6. Modified ensemble classifiers for the classification of imbalanced drilling data.

Modified Ensembles. Training Accuracy Testing Accuracy Precision  Recall F1 Score MCC G-Mean
Under Sampling AdaBoost (USA) 0.95 0.74 0.80 0.70 0.75 0.88 0.89
Over sampling AdaBoost (OSA) 0.96 0.85 0.82 0.80 0.87 0.90 0.90
Under sampling RF (USRF) 0.80 0.77 0.70 0.60 0.64 0.70 0.72
Over sampling RF (OSRF) 0.89 0.87 0.83 0.68 0.86 0.89 0.91
Weighted Class RF (WCRF) 0.93 0.92 0.93 0.92 0.92 0.92 0.96
Weighted Bootstrap Class R 093 0.93 0.93 0.92 0.92 0.92 0.97

(WBCRF)

In the second approach, classes are assigned weights to focus the classification opera-
tion on the samples of minority classes at the algorithm level. The weights will be adjusted
according to the inverse relationship with class frequencies in the training data. This
will result in the formation of a weighted class RF classifier (WCRF) for the classification
of imbalanced data. It can be observed from Table 6 that the WCRF has given a better
performance than standard RF for drill bit selection in terms of precision, recall, MCC,
and G-mean. This indicates that WCRF has a greater generalization ability than standard
RF due to enhancement in testing results. The generalization of supervised models such
as ANN, AdaBoost, RF etc. depends upon their classification performance with unseen
data samples that are available in testing datasets. The higher performance of the classifier
with the test dataset indicates better generalization of the trained classifier model which is
always desirable.

In the third approach, separate weight adjustment of classes has been performed based
on its distribution in every bootstrap sample in place of the whole training dataset. Such a
configuration of RF is known as RF with a bootstrap class weighting (WBCREF) classifier.
This classifier contains the benefits of both data sampling and weighting techniques that
are quite useful for compensating for the impact of imbalance conditions. Training and
testing results of WBCRF have shown a slight performance improvement when compared
with WCRE. Both these approaches have provided higher MCC and G-mean values than the
standard RF paradigm as shown in Table 6 and Figure 13. The WBCRF technique has given
the best classification results as compared to other classifiers considered in this study.

In the second experimental scenario, three subsets have been created from eight wells
data containing data samples belonging to 17.5”, 12.25”, and 8.5” individual wellbore
sections. All the earlier applied classifiers have been trained and tested on these subsets.
The performance of conventional classifiers has been assessed in terms of recall, G-mean,
precision, and F1 score for every BT to understand the effect of imbalanced data. Tables 7-9
contain drill bit selection test results for the 17.5” section subset. It can be observed from the
abovementioned tables that bit type 16 (minority class) is hard to predict due to a smaller
quantity of data points available during the training phase. KNC, SVC, and MLP have
also failed to identify BT 16 due to scarcity of data samples as shown in Tables 7-9. Thus,
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G-mean values are recorded to be zero for SVC, KNC, and MLP as it is clear identification
of the development of unreliable biased majority class classifiers.

WBCRF
WCRF
USRF
RF
USA
Adaboost
SvVC
MLP
KNC
NBC

0 0.2 0.4 0.6 0.8 1

BMCC mG-mean

Figure 13. MCC and G-mean scores of machine learning models considered in this study for the first
experimental scenario.

Table 7. The screening of 17.5” bits through RF and WBCRF models.

RF WBCRF
Bit Type Precision  Recall F1Score Bit Type Precision  Recall F1 Score
1 1.00 1.00 1.00 1 1.00 1.00 1.00
9 0.99 1.00 0.99 9 1.00 1.00 1.00
15 0.96 1.00 0.98 15 0.96 1.00 0.98
16 1.00 0.40 0.57 16 1.00 0.70 0.71
19 1.00 0.99 0.97 19 1.00 1.00 0.99
Average 0.99 0.88 091 Average 0.99 0.94 0.93
Accuracy 0.98 G-mean 0.83 Accuracy 0.99 G-mean 0.85

Table 8. The screening of 17.5” bits through KNC and NBC models.

KNC NBC
Bit Type  Precision Recall F1Score Bit Type Precision Recall F1 Score
1 0.98 0.93 0.96 1 0.99 0.77 0.87
9 0.68 0.63 0.65 9 0.60 0.60 0.60
15 0.67 0.92 0.92 15 0.47 0.86 0.61
16 0.00 0.00 0.00 16 0.50 1.00 0.67
19 0.57 0.56 0.56 19 0.77 0.72 0.74
Average 0.58 0.61 0.59 Average 0.67 0.79 0.70
Accuracy 0.81 G-mean 00 Accuracy 0.75 G-mean 0.779

Table 9. The screening of 17.5” bits through MLP and SVC models.

SvC MLP
Bit Type Precision  Recall F1Score Bit Type Precision  Recall F1 Score
1 1.00 0.98 0.99 1 0.99 0.95 0.97
9 0.91 0.74 0.82 9 0.79 0.81 0.80
15 0.86 0.98 0.92 15 0.80 0.98 0.88
16 0.0 0.0 0.0 16 0.00 0.00 0.00
19 0.79 0.94 0.86 19 0.83 0.80 0.81
Average 0.71 0.73 0.72 Average 0.68 0.71 0.69

Accuracy 0.92 G-mean 0.00 Accuracy 89 G-mean 0.00
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The drill bit 16 is intentionally discussed for understanding the effects of data im-
balance arise while drilling through the thin lithofacies layer. The subsurface formations
have varied thickness patterns in their natural state which result in random unequal data
samples for the training phase. Therefore, the uneven distribution of training data has
been particularly considered to evaluate the worst to the best performance of each classifier.
Uneven data samples for various bit types (class labels) in training data make classification
difficult for machine learning models. Drill bit selection has been formulated as a mul-
ticlass classification problem with 19 diverse bit types as class labels as shown in Table
Al. However, large fluctuation in the values of precision, recall, F1 score can be observed
from Tables 8 and 9. Standard RF has shown good classification performance even for
bit type 16 due to the presence of random bootstrap resampling technique in its internal
architecture. RF has given the best prediction performance for the 17.5” section subset with
good immunity to data imbalance conditions. Further, WBCRF has also been evaluated for
17.5” datasets that have given more accurate results with stable values for precision, recall,
and F1 score.

In the data subset of the 12.25” section, performance for every classifier has been
recorded as shown in Tables 10-12. Higher fluctuations in the values of precision, recall,
and F1 score has been recorded in classification results. This indicates that these sections
are physically challenging drilling zones. RF and WBCRF have given impressive results for
the classification of these critical geological zones as shown in Tables 10-12. In this section,
BTs 6 and 11 are minority classes that are hard to classify. However, only MLP becomes a
bias classifier as it fails to classify any samples for BT 11 as shown in Figure 13.

Table 10. The screening of 12.25” bits through RF and WBCRF models.

RF WBCRF

Bit Type Precision  Recall F1Score Bit Type Precision  Recall F1 Score

2 0.96 0.98 0.97 2 0.96 0.99 0.97
4 0.99 0.96 0.97 4 0.98 0.96 0.97
6 0.86 0.86 0.86 6 1.00 0.71 0.83
10 0.79 0.81 0.80 10 0.80 0.86 0.83
11 0.80 0.57 0.67 11 1.00 0.73 0.72
17 0.75 0.80 0.77 17 0.78 0.83 0.81
Average 0.86 0.83 0.84 Average 0.92 0.85 0.86
Accuracy 0.91 G-mean 0.82 Accuracy 0.92 G-mean 0.84

Table 11. The screening of 12.25” bit through KNC and NBC models.

KNC NBC
Bit Type  Precision Recall F1 Score BitType Precision Recall F1 Score
2 0.80 0.84 0.82 2 0.73 0.44 0.55
4 0.78 0.86 0.81 4 0.69 0.56 0.62
6 0.62 0.71 0.67 6 0.67 0.86 0.75
10 0.85 0.79 0.81 10 0.38 0.60 0.46
11 1.00 0.43 0.60 11 0.22 0.86 0.35
17 0.78 0.60 0.68 17 0.38 0.47 0.42
Average 0.81 0.70 0.73 Average 0.51 0.63 0.52
Accuracy 0.79 G-mean 0.685 Accuracy 0.53 G-mean 0.60

The geological lithofacies existing in section 8.5” are found to be the most challenging
formations for drilling operations due to several faults and unstable zones existing along
its depths. The 8.5” section formations have been reported to be unstable because they are
made up of softer rocks such as claystone, sandstone, siltstone, tuff, marl, limestone, and
argillaceous clay contents. Certain incidents of gas leaks and drill string stuck ups were
also recorded while drilling 8.5” section of the wells with high stick slips conditions in its
upper formations. Polycrystalline diamond compact bits (PDC) were primarily utilized for
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drilling softer 8.5” section because of their higher ROP values and stable drilling operation
(Table A1). However, it becomes difficult for the driller to choose the right PDC bit type
as varieties of bit models are available while planning for drilling operations. The pattern
recognition has become difficult in the 8.5” section as the performance of all the classifiers
has shown more fluctuations in their precision and recall values due to heterogeneity
of lithofacies as shown in Tables 13-15. Here, BT 12 and 13 are the minority classes for
which KNC and MLP failed to identify any samples while SVC and NBC have shown
poor prediction performance as shown in Figure 13. Finally, worst-to-best accuracy of
various classifiers in second data-driven scenario can be given as: WBCRF (0.92-0.99), RF
(0.91-0.98), SVC (0.88-0.94), MLP (0.74-0.89), KNC (0.61-0.81), and NBC (0.53-0.75). RF
and WBCRF have shown great immunity for data imbalance condition and successfully
maintained their performance even in the critical 8.5” section. Recently, hybrid drill bits
(e.g., Kymera) have been developed that combined the properties of conventional PDC
bit and roller cone bit types [56]. These hybrid bits seem to be a good solution for drilling
problematic 8.5” section while maintaining the stability of drilling operations. Figure 14
provides a summary of G-mean scores achieved by intelligent models for both experimental
scenarios. A comparative table of significant research publications has been provided in
Appendix A as Table 3.

Table 12. The screening of 12.25” bits through SVC and MLP classifier.

SvC MLP

Bit Type Precision  Recall F1Score Bit Type Precision  Recall F1 Score

2 0.98 0.98 0.98 2 0.81 0.85 0.83
4 1.00 0.99 0.99 4 0.77 0.94 0.85
6 0.86 0.86 0.86 6 0.75 0.43 0.55
10 0.94 0.74 0.83 10 0.79 0.81 0.80
11 0.75 0.86 0.80 11 0.00 0.00 0.00
17 0.74 0.97 0.84 17 0.93 0.43 0.59
Average 0.88 0.90 0.88 Average 0.67 0.58 0.79
Accuracy 0.94 G-mean 0.80 Accuracy 0.79 G-mean 0.00

Table 13. The selection of 8.5” bits through RF and WBCRF models.

RF WBCRF

Bit Type Precision  Recall F1Score Bit Type Precision  Recall F1 Score

3 0.91 0.99 0.95 3 0.92 0.99 0.95
5 0.98 0.87 0.92 5 0.98 0.89 0.93
12 0.93 0.81 0.87 12 0.93 0.81 0.87
13 1.00 0.67 0.80 13 1.00 1.00 1.00
18 0.89 0.98 0.93 18 0.94 0.98 0.96
Average 0.94 0.86 0.93 Average 0.95 0.93 0.94
Accuracy 0.93 G-mean 0.855 Accuracy 0.94 G-mean 0.931

Table 14. The selection of 8.5” drill bits through KNC and NBC models.

KNC NBC
Bit Type Precision  Recall F1Score Bit Type Precision  Recall F1 Score
3 0.74 0.92 0.82 3 0.71 0.93 0.80
5 0.52 0.42 0.46 5 0.80 0.51 0.62
12 0.24 0.25 0.24 12 0.39 0.69 0.50
13 0.00 0.00 0.00 13 0.43 0.33 0.38
18 0.60 0.61 0.60 18 0.74 0.57 0.64
Average 0.42 0.44 0.43 Average 0.61 0.61 0.59

Accuracy 0.61 G-mean 0.00 Accuracy 0.68 G-mean 0.573




Energies 2021, 14, 432

23 of 29

Table 15. The selection of 8.5” bits through SVC and MLP classifiers.

sSvC MLP
Bit Type Precision  Recall F1Score Bit Type Precision  Recall F1 Score
3 1.00 0.99 0.99 3 0.79 1.00 0.88
5 0.96 0.84 0.89 5 0.90 0.49 0.64
12 0.77 0.62 0.62 12 0.57 0.50 0.53
13 0.67 0.22 0.33 13 0.00 0.00 0.00
18 0.72 0.96 0.82 18 0.65 0.86 0.74
Average 0.82 0.73 0.75 Average 0.58 0.57 0.56
Accuracy 0.88 G-mean 0.643 Accuracy 0.74 G-mean 0.00
1
0.9
0.8
" 0.6
2 05
o
> 04
=
g 03
S 0.2
0.1
0
= NBC KNC MLP SVC RF WBCRF
—0—17.5" section 0.78 0 0.779 0 0.83 0.85
—0—1225" section 0.6 0.685 0 0.8 0.82 0.84
8.5" section 0.573 0 0 0.643 0.855 0.9331
~O— Combined input data 0.61 0.54 0.7 0.81 0.91 0.97

Figure 14. Summary of G-mean scores achieved by intelligent models for both experimental scenarios.

The present study shows that the ensemble methods have great potential for automatic
drill bit selection. With data resampling and boosting approaches, reliability, stability, and
performances of ensemble methods have improved as discussed in earlier parts of this
section. The proposed models do not have any known specific limitation. However, these
models are needed to be tested on the field with real-time streaming well data to achieve
more insight about their performance in practical scenarios. With the rapid advancement
in sensor based data acquisition new measurements may be available in future oil and
gas wells. This will require retraining of the proposed models with newer training data
sets. More research work is required for understanding the drill bit selection process with
real-time streaming data. It is highly recommended that driller (field engineers) should
understand the problems associated with drilling data before applying any data driven
models for drill bit selection. During data acquisition, data samples must be carefully
captured in such a way that equal number of data samples will be available for each
geological formations. The proposed models is advancement in the existing technology
that will enhance the efficiency of drilling operations for better extraction and utilization of
hydrocarbon resources for long sustainable time period. This will promote global economic
development that have huge impact on human sustainability. This will also satisfy the
goals of sustainable development described by United Nation Development Programme
(UNDP). To meet the global energy demands, more unconventional wells are being drilled
that requires industrial innovation to face the technological challenges. This study provides
an approach to automate the drill bit selection process over any field, which will minimize
human error, time, and drilling operational costs.
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6. Conclusions

A novel data-driven approach has been proposed using the fusion of data resampling
technique and ensemble method for handling the imbalance issues of complex drilling
data. The problem of imbalanced training data results in the development of unreliable
biased classifiers that are unfit for practical field applications. Two experimental data-
driven scenarios have been specially designed and tested to confirm the generalization of
the proposed approach for drill bit selection. An extensive comparative study has been
performed to evaluate the performance of popular classifiers for the screening of drill
bits. After a meticulous comparison of results, the following important conclusions can be
drawn as given below:

e  WBCREF technique has given the most impressive performance during automatic bit
type selection with testing accuracy ranges from 92% to 99%, and G-mean (0.84-0.97)
for various experimental scenarios.

e  The large fluctuations in the performance of classifiers have been recorded in the 8.5”
section in terms of precision, recall, and F1 scores. It is observed that drill bit selection
becomes difficult in the lower formations due to uncertainty in subsurface conditions.

e Data imbalance condition exists due to the drilling of thin lithofacies that harm the
performance of classifiers.

e  WBCREF has given good prediction results for screening drill bit even for critical
drilling zones.

e  The performance of conventional classifiers is largely affected by data imbalance
issues. Conventional classifiers can’t be trusted for the drill bit selection, especially for
critical drilling zones.

e  RF has shown great immunity for data imbalance conditions and successfully main-
tained its performance even in the critical 8.5” section.

e The proposed approach can also be applied over any other oil and gas fields to
automate the drill bit selection, which will minimize human error, time, and drilling
cost.

e  The combination of ensemble methods with the data resampling technique results in
modified ensemble classifiers that are found to be efficient even in highly imbalanced
conditions.

The present study shows that the ensemble methods have great potential for automatic
drill bit selection. More research work is required for understanding the drill bit selection
process with real-time streaming data. In future work, the reinforcement learning approach
will be investigated with streaming drilling data for automatic decision making in real-time.
The reinforcement learning approach seems to be quite a good option for the automation of
various drilling processes as it has the potential to enhance the performance of its models
in real-time conditions which is impossible for supervised paradigms.
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Appendix A

Table A1. Different drill bit utilized for drilling of Volve wells at different depths.

Wells Depth In-Out (m) Bit Type IADC Code Bit Size (Inch)
F-4 260-1360 1 M115 PDC 17.5
13602770 2 M422 PDC 12.25
2770-3510 3 M222 PDC 8.5
F-5 230-1415 4 M115 PDC 17.5
1415-2930 5 M223 PDC 12.25
2930-3785 6 M323 PDC 8.5
F-7 217-307 1 M115 PDC 17.5
915-1080 6 M115A PDC 12.25
F-9 216-918 10 Smith XR+VEC MTMZ2069 175
F-10 146-207 7 XR+VEC MZ25069 36
207-1400 8 XR+MG04B 26
1400-1463 9 Reed RSRT16M-C9 17.5
1463-2616 9 Reed RSR716M-C9 17.5
2616-2825 10 Smith MDI716 12.25
2825-3319 10 SmithMDI716 12.25
3319-3442 11 Reed Hycalog RSX81952195960 12.25
3442-3695 9 Reed Hycalog RSR716D 8.5
3695-4911 13 Reed Hycalog RSR816H-C1 8.5
4911-5311 13 Reed Hycalog RST816H-C1 8.5
F-12 365-1365 14 M415 PDC 26
1365-2510 15 M322 PDC 17.5
2510-2570 16 135 Milled Tooth 17.5
2570-3110 2 M422 PDC 12.25
3110-3515 3 M222 PDC 8.5
F-14 251-1369 14 M415M PDC 26"
1369-2513 5 M322 PDC 17.5”
2513-2573 16 MT 135 17.5”
2573-3114 2 PDC M422 12.25”
3114-3520 3 PDC M222 8.5”
F-15 144-226 1 M115 PDC 17.5”
226-1378 6 M115A PDC 26”
1378-1381 12 Reed Hycalog RST816H-C2 17.5”
1381-2480 19 M333 PDC 17.5”
2480-2536 18 M332 PDC 12.25”
2536-3670 5 M323 PDC 8.5
3670-4090 5 M323 PDC 8.5”

Table A2. Selection of the optimum number of neurons in the hidden layer of MLP based on

minimum training error.

Hidden Layer Neurons.

Neural Network

Average Percentage Error

[ —
Do B5©®No Uk W -

15-1-19
15-2-19
15-3-19
15-4-19
15-5-19
15-6-19
15-7-19
15-8-19
15-9-19
15-10-19
15-11-19
15-12-19

12.95
10.724

12.1
7.42
3.97
3.26
3.6
3.44
3.09
3.88
4.59
291
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Table A2. Cont.

Hidden Layer Neurons.

Neural Network

Average Percentage Error

13 15-13-19 3.67
14 15-14-19 1.55
15 15-15-19 291
16 15-16-19 1.85
17 15-17-19 2.38
18 15-18-19 3.53
19 15-19-19 3.03
20 15-20-19 3.83
Table A3. A comparative study of significant methods applied for drill bit selection.
S. No. Publication Techniques Field Details Data Types Advantages Limitations
Unfit for
. s Simple to apply horizontal and
1. Rabia (1985) [6] Cost per foot Unavailable Operational drilling and empirical in multilateral
parameters a1 .
nature drilling operation
and low accuracy
Based on only
. i Southern North Operational drilling . three operational
2. Rabia et al. (1986) [5] Specific Energy Sea parameters Simple to apply parameter and
low accuracy
Indirect
Countv of East measurement of
4. Hightower, (1964) [8] Offset Well logs Y Well logs Easy application rock properties
Texas an o
with high chances
of error risk
Perrin et al. (1997) Operational drillin rinllptiiriflalnd Low accuracy
5. ermeras drilling index Unavailable perationa 8 cotre aton @ and high chances
[10] parameters can be easily
. of error
applied
Mathematically
6. Xu etal. (1997) [12] Emplrl‘cal Unavailable MuFl logglgg.data, Improved cost complex and
modeling operational drilling data per foot model requires more
data
Indirect High level of
Formation measurements, uncertainty in
Mensa-Wilmot et al. S . Rock mechanical and and more well logs data due
7. drillability Unavailable - .
(1999) [11] rameter geologic properties accurate then to hydrocarbon
paramete empirical reservoir
correlations heterogeneity
Rock strength Southern Ital Accurate Require testin
Uboldi et al. (1999) measurements ay Rock mechanical and q &
10. . . near Apennines - . measurement of lab, costly and
[13] and indentation . geologic properties . . ;
. chain core properties time-consuming
technique
Not immune to
. . .. imbalanced data,
1. Bilgesu et al. (2000) ANN Middle East field BS, WOB, RPM, pump High prediction noise, overfitting
2] rate, DT, and BT accuracy L.
and underfitting
problems
Not immune to
Yidmaz, et al. (2002) ANN and fractal southeast . High prediction 1m.balanced.d.ata,
12. [17] tatisti Turk rock bit data . noise, overfitting
geostatistics urkey. accuracy and underfitting
problems
Requires human
. g . Simple, empirical,  visual expertise
13. Bataee et al. (2010) [7] bit dullness Shadegan oil field Human experience and organized. with high chances
of error
Not immune to
Edalatkhah, Rasoul, . s . More accurate imbalanced data,
14. and Hashemi, (2010) ANNI anitgiletlc South Pars Field Drllhng(;)}?teratlonal than individual noise, overfitting
[18] algo ata ANN model and underfitting

problems
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Table A3. Cont.
S. No. Publication Techniques Field Details Data Types Advantages Limitations
Not immune to
Hou. Chien. and offset wells data, More accurate imbalanced data,
15. Yuar{ (201 45 [19] ANN Tarim Oilfield, drillability, and then empirical noise, overfitting
! lithofacies information models and underfitting
problems
Application in
limited lithofacies,
16. Sherben}hei]al. (2016) Ig?r?gzllggs Ell(r;i Unavailable ;I?r?eg:ali ata gralfa Accurate method ~ computationally
8y 108 8y challenging, and
costly technology.
Application in
Resistance More accurate limited lithofacies,
17. Nabilou (2016) [20] inst Drillin Southwest of Iran Geo-Mechanical data than the empirical ~ computationally
agamns 8 correlation challenging and
costly technology
Rock strength T
analysis a1g1 d Application in
Mardiana and Dvnamic More accurate limited lithofacies,
18. Noviasta (2017) [15] FinitZ—Element Unavailable Offset well logs data than the empirical ~ computationally
Analysis (FEA) correlation challenging and
MZ deling costly technology
Not immune to
. 1 . More accurate imbalanced data,
19. Momeni et al. (2018) ANN Unavailable drilling bit records from than the empirical ~ noise, overfitting
[22] offset wells . L
correlation and underfitting
problems
Application in
Rock Strength. South West of . . More accurate limited lithofacies,
Cornel and Vazquez Analysis and bit dull grading and bit . .
20. (2020) [16] duil eradin Wandoan, records than the empirical ~ computationally
Lal groachg Queensland © correlations challenging and
PP costly technology
ANN, Genetic More accurate iigt ;H:milng tto
21 Abbas et al. (2019) algorithm and Unavailable Operational drilling than individual noisz aovceer fittiana’
’ [23] Mechanical earth parameters ANN model and ’ Jtng
.. and underfitting
model empirical models problems
Ensemble . e More reliable, Need to be tested
methods and Operational drilling stable, and on field with
22. Proposed Approach . North Sea parameters and mud / .
Resampling logeing d accurate than streaming data
techniques ogging data previous models conditions.
References

1. Fear, M.J.; Meany, N.C.; Evans, ].M. An expert system for drill bit selection. In Proceedings of the SPE/IADC Drilling Conference,

10.

Dallas, TX, USA, 15-18 February 1994.

Bilgesu, H.I,; AL-Rashidi, A.F.; Aminian, K.; Ameri, S. A new approach for drill bit selection. In Proceedings of the SPE Eastern
Regional Meeting, Morgantown, WV, USA, 17-19 October 2000.

Tewari, S.; Dwivedi, U.D. A Real-World Investigation of TwinSVM for the Classification of Petroleum Drilling Data. In Proceedings
of the IEEE Region 10 Symposium (TENSYMP), Kolkata, India, 7-9 June 2019; pp. 90-95.

Chaki, S.; Routray, A.; Mohanty, WK_; Jenamani, M. A novel multiclass SVM based framework to classify lithology from
well logs: A real-world application. In Proceedings of the Annual IEEE India conference (INDICON), New Delhi, India,
17-20 December 2015; pp. 2325-9418.

Rabia, H.; Farrelly, M.; Barr, M.V. A new approach to drill bit selection. In Proceedings of the European Petroleum Conference,
London, UK, 20-22 October 1986.

Rabia, H. Specific Energy as a Criterion for Bit Selection. J. Pet. Technol. 1985, 37, 1225-1229. [CrossRef]

Bataee, M.; Edalatkhah, S.; Ashena, R. Comparison between bit optimization using artificial neural network and other methods
base on log analysis applied in Shadegan oil field. In Proceedings of the International Oil and Gas Conference and Exhibition in
China, Beijing, China, 8-10 June 2010.

Hightower, W.J. Proper selection of drill bits and their use. In Proceedings of the SPE Mechanical Engineering Aspects of Drilling
and Production Symposium, Fort Worth, TX, USA, 23-24 March 1964.

Mason, K.L. Three-Cone Bit Selection with Sonic Logs. SPE Drill. Eng. 1987, 2, 135-142. [CrossRef]

Perrin, V.P; Wilmot, M.G.; Alexander, W.L. Drilling index-a new approach to bit performance evaluation. In Proceedings of the
S.PE./I.A.D.C. Drilling Conference, Amsterdam, The Netherlands, 4-6 March 1997; pp. 199-205.


http://doi.org/10.2118/12355-pa
http://doi.org/10.2118/13256-pa

Energies 2021, 14, 432 28 of 29

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.
38.

39.

40.

Mensa-Wilmot, G.; Calhoun, B.; Perrin, V.P. Formation drillability-definition, quantification and contributions to bit per-
formance evaluation. In Proceedings of the SPE/ IADC Middle East Drilling Technology Conference, Abu Dhabi, UAE,
8-10 November 1999.

Xu, H.; Tochikawa, T.; Hatakeyama, T. A practical method for modeling bit performance using mud logging data. In Proceedings
of the S.PE./I.A.D.C. Drilling Conference, Amsterdam, The Netherlands, 4-6 March 1997; pp. 127-131.

Uboldi, V.; Civolani, L.; Zausa, F. Rock strength measurements on cuttings as input data for optimizing drill bit selection. In
Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3-6 October 1999.

Sherbeny, W.E.; Hasan, G.; Lindsay, B.W.; Madkour, A.; Nagy, A.; Abulawi, M.; Mohammad, M.S.; Richard, A. Role of wellbore
imaging and specific mineralogy inputs data in bit selection and design software. In Proceedings of the SPE Kingdom of Saudi
Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 25-28 April 2016.

Mardiana, M.R.; Noviasta, B. Rock strength analysis and integrated FEM modeling optimise bit selection for deepwater
exploration. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Jakarta, Indonesia,
17-19 October 2017.

Cornel, S.; Vazquez, G. Use of big data and machine learning to optimise operational performance and drill bit design. In
Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition, Perth, Australia, 20-22 October 2020.

Yumaz, S.; Demircioglu, C.; Akin, S. Application of artificial neural networks to optimum bit selection. Comput. Geosci. 2002,
28,261-269. [CrossRef]

Edalatkhah, S.; Rasoul, R.; Hashemi, A. Bit selection optimization using artificial intelligence systems. Pet. Sci. Technol. 2010,
28,1946-1956. [CrossRef]

Hou, B.; Chen, M.; Yuan, J. Optimization and Application of Bit Selection Technology for Improving the Penetration Rate. Res. J.
Appl. Sci. Eng. Technol. 2014, 8, 179-187. [CrossRef]

Nabilou, A. Effect of Parameters of Selection and Replacement Drilling Bits Based on Geo-Mechanical Factors: (Case Study: Gas
and Oil Reservoir in the Southwest of Iran). Am. . Eng. Appl. Sci. 2016, 9, 380-395. [CrossRef]

Efendiyev, G.M.; Mammadov, P.Z.; Piriverdiyev, I.A.; Sarbopeyeva, M.D. Selection of the best combination of bit types and
technological parameters during drilling, taking into account uncertainty. Procedia Comput. Sci. 2017, 120, 67-74. [CrossRef]
Momeni, M.S.; Ridha, S.; Hosseini, S.J.; Meyghani, B.; Emamian, S.S. Bit selection using field drilling data and mathematical in-
vestigation. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2018; p. 012008.
Abbas, A K,; Assi, A.H.; Abbas, H.; Almubarak, H.; Saba, M.A. Drill bit selection optimization based on rate of penetration:
Application of artificial neural networks and Genetic algorithm. In Proceedings of the SPE Abu Dhabi International Exhibition
and Conference, UAE, Abu Dhabi, 11-14 November 2019.

Manuel, Y.A.; Momeni, M.; Hamdi, Z.; Zivar, D. A new method of bit selection using drill bit images. In Proceedings of the
Offshore Technology Conference Asia, Malaysia, Kuala Lumpur, 2 November 2020.

Longadge, R.; Dongre, S. Class imbalance problem in data mining review. arXiv 2013, arXiv:1305.1707. Available online:
http:/ /arxiv.org/abs/1305.1707 (accessed on 16 August 2019).

Ghorbani, R.; Ghousi, R. Comparing Different Resampling Methods in Predicting Students’ Performance Using Machine Learning
Techniques. IEEE Access 2020, 8, 67899-67911.

Chawla, N.V.; Bowyer, KW,; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. . Artif. Intell.
Res. 2002, 16, 321-357.

Lhassan, T.; Aljurf, M.; Al-Mohanna, F; Shoukri, M. Classification of Imbalance Data using Tomek Link (T-Link) Combined with
Random Under-sampling (RUS) as a Data Reduction Method. J. Inform. Data Min. 2016, 1, 1-11.

Polikar, R. Ensemble-Based Systems in Decision Making. IEEE Circuits Syst. Mag. 2006, 6, 21-45. [CrossRef]

Zang, C.; Ma, Y. Ensemble Machine Learning: Methods and Application; Springer Publication: New York, NY, USA, 2012.

Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the Machine learning: Thirteenth
International Conference, Bari, Italy, 3-6 July 1996; pp. 148-156.

Sun, Y.; Wong, A.K.C.; Kamel, M.S. Classification of imbalanced data: A review. Int. ]. Pattern Recognit. Artif. Intell. 2009,
23, 687-719. [CrossRef]

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.

Cutler, A.; Cutler, D.R; Stevens, ].R. Random forests. In Ensemble Machine Learning, 2nd ed.; Zhang, C., Ma, Y.Q., Eds.; Springer:
New York, NY, USA, 2012; pp. 157-175.

Ho, T.K. Random decision forests. In Proceedings of the 3rd International conference on document analysis and recognition,
Montreal, QC, Canada, 14-16 August 1995.

Chen, C; Liaw, A.; Bremain, L. Using Random Forest to Learn Imbalanced Data. Report Number 666. 2004. Available online:
https:/ /statistics.berkeley.edu/sites/default/files / tech-reports /666.pdf (accessed on 1 November 2020).

Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21-27. [CrossRef]

McCallum, A.; Nigam, K. A comparison of event models for naive bayes text classification. In Proceedings of the AAAI'98
Workshop on Learning for Text Categorization. AAAI Digital Library, Madison, WI, USA, 26-27 July 1948; pp. 41-48.

Balaji, V.R.; Suganthi, S.T.; Rajadevi, R.; Kumar, V.K,; Balaji, B.S.; Pandiyan, S. Skin disease detection and segmentation using
dynamic graph cut algorithm and classification through Naive Bayes Classifier. Measurement 2020, 163, 107922.

Haykin, S. Neural Networks, a Comprehensive Foundation; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1998.


http://doi.org/10.1016/s0098-3004(01)00071-1
http://doi.org/10.1080/10916460903160818
http://doi.org/10.19026/rjaset.8.957
http://doi.org/10.3844/ajeassp.2016.380.395
http://doi.org/10.1016/j.procs.2017.11.211
http://arxiv.org/abs/1305.1707
http://doi.org/10.1109/mcas.2006.1688199
http://doi.org/10.1142/s0218001409007326
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
http://doi.org/10.1109/tit.1967.1053964

Energies 2021, 14, 432 29 of 29

41.
42.
43.
44.
45.
46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Vapnik, V. The Nature of Statistical Learning; Springer: New York, NY, USA, 2000.

Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297.

Equinor Website Database. Available online: https://www.equinor.com/en/how-and-why/digitalisation-in-our-dna/volve-
field-data-village-download.html (accessed on 17 August 2020).

Gan, C.; Cao, W.; Wu, M,; Liu, K,; Chen, X.; Hu, Y.; Ning, F. Two-level intelligent modeling method for the rate of penetration in
complex geological drilling process. Appl. Soft Comput. 2019, 80, 592-602.

Loken, E.A.; Lokkevik, J.; Sui, D. Data-driven approaches tests on a laboratory drilling system. J. Pet. Explor. Prod. Technol. 2020,
10, 3043-3055.

Karadzhova, G.N. Drilling Efficiency and Stability Comparison between Tricone, PDC and Kymera Drill Bits. Master’s Thesis,
University of Stavanger, Stavanger, Norway, 2014.

Akisanmi, O.A. Automatic Management of Rate of Penetration in Heterogeneous Formation Rocks. Master’s Thesis, University
of Stavanger, Stavanger, Norway, 2016.

Kenneth, E.; Russel, S.C. Innovative ability to change drilling responses of a PDC bit at the rig site using interchangeable
depth of-cut control features. In Proceedings of the IADC/SPE Drilling Conference and Exhibition, Fort Worth, TX, USA,
1-3 March 2016.

Jayadeva, J.; Kumar, D.; Naik, G.R. TwinSVM gesture classification using the surface Electromyogram. IEEE Trans. Inf. Technol.
Biomed. 2010, 14, 301-308.

Diaz, M.B.; Kim, K.Y.; Kang, T.H.; Shin, H.S. Drilling data from an enhanced geothermal project and its pre-processing ROP
forecasting improvement. Geothermics 2018, 72, 348-357. [CrossRef]

Mustaffa, Z.; Yusof, Y. A comparison of normalization techniques in predicting dengue outbreak. In Proceedings of the
International Conference on Business and Economics Research, Kuala Lumpur, Malaysia, 26-28 November 2010.

Tewari, S.; Dwivedi, U.D. A comparative study of heterogeneous ensemble methods for the identification of geological lithofacies.
J. Pet. Explor. Prod. Technol. 2020, 10, 1849-1868. [CrossRef]

Gan, C.; Cao, WH.; Wu, M; Chen, X; Hu, Y.L.; Liu, K.Z.; Wang, EW.; Zhang, S.B. Prediction of drilling rate of penetration (ROP)
using hybrid support vector regression: A case study on the Shennongjia area, Central China. J. Pet. Sci. Eng. 2019, 181, 1060200.
[CrossRef]

Kohavi, R. A study of cross validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th
International Joint Conference Artificial Intelligence, San Francisco, CA, USA, 20-25 August 1995; pp. 1137-1143.

Kubat, M.; Holte, R.; Matwin, S. Learning when negative examples abound. In Proceedings of the 9th European Conference on
Machine Learning, Berlin/Heidelberg, Germany, 23-25 April 1995; Springer: London, UK, 1995; pp. 146-153.

Pessier, R.; Damschen, M. Hybrid bits offer distinct advantages in selected roller-cone and pdc-bit applications. SPE Drill. Complet.
2011, 26, 96-103. [CrossRef]


https://www.equinor.com/en/how-and-why/digitalisation-in-our-dna/volve-field-data-village-download.html
https://www.equinor.com/en/how-and-why/digitalisation-in-our-dna/volve-field-data-village-download.html
http://doi.org/10.1016/j.geothermics.2017.12.007
http://doi.org/10.1007/s13202-020-00839-y
http://doi.org/10.1016/j.petrol.2019.106200
http://doi.org/10.2118/128741-PA

	Introduction 
	Literature Review 
	A Brief Description of Applied Models 
	Data Resampling Techniques 
	Oversampling 
	Undersampling 

	Ensemble Methods 
	Adaboost 
	Random Forest (RF) 


	Methodology 
	A Brief Description of the Volve Field 
	Data Description 
	Imbalanced Data Problem 
	Data Preprocessing 
	Noise Reduction 
	Attribute Selection 
	Model Training with Parameter Optimization 
	Performance Evaluation Metrics 

	Results and Discussion 
	Conclusions 
	
	References

