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Abstract: Accurately estimating the online state-of-charge (SOC) of the battery is one of the crucial
issues of the battery management system. In this paper, the gas–liquid dynamics (GLD) battery model
with direct temperature input is selected to model Li(NiMnCo)O2 battery. The extended Kalman
Filter (EKF) algorithm is elaborated to couple the offline model and online model to achieve the goal
of quickly eliminating initial errors in the online SOC estimation. An implementation of the hybrid
pulse power characterization test is performed to identify the offline parameters and determine the
open-circuit voltage vs. SOC curve. Apart from the standard cycles including Constant Current cycle,
Federal Urban Driving Schedule cycle, Urban Dynamometer Driving Schedule cycle and Dynamic
Stress Test cycle, a combined cycle is constructed for experimental validation. Furthermore, the study
of the effect of sampling time on estimation accuracy and the robustness analysis of the initial value
are carried out. The results demonstrate that the proposed method realizes the accurate estimation of
SOC with a maximum mean absolute error at 0.50% in five working conditions and shows strong
robustness against the sparse sampling and input error.

Keywords: state-of-charge estimation; gas–liquid dynamics model; online parameter identification;
lithium-ion battery

1. Introduction

With the intensification of the energy crisis and environmental pollution, the research
of electric vehicles (EVs) has become a strategic project to hasten progress toward sus-
tainable development throughout the world [1]. Battery management system (BMS) is an
important part of EVs and a core issue in the current research field of new energy vehicles.
The functions of BMS include battery parameter detection, battery state estimation, online
fault diagnosis, battery thermal control, etc. Among them, the real-time estimation of the
state-of-charge (SOC) is one of the fundamental issues of BMS [2].

For EVs, SOC reflects the remaining capacity of the battery, which is the basis of the
remaining mileage calculation. The correct estimation of SOC can not only improve the
efficiency of EVs but also protect the battery and increase the battery’s service life, thereby
generating economic benefits [3,4]. The charge and discharge process of the battery is a
quite complicated nonlinear electrochemical reaction process [5]. As a result, different
from offline SOC which is relatively easy to be obtained by discharging experiment in the
laboratory, online SOC is difficult to obtain from the internal chemical characteristics of
the battery and can only be estimated indirectly by some measurable parameters, such as
terminal voltage, current and temperature [6].

At present, scholars have proposed a great variety of methods for accurately esti-
mating SOC. The model-based method is one of the most commonly used approaches in
practical applications [7]. The model-based SOC estimation methods are usually divided
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into the method based on the electrochemical model and that based on the equivalent
circuit model [8–10]. The electrochemical model parameters have actual physical meanings
and can reflect the relationship among physical quantities in electrochemical reactions
inside the battery [11]. However, due to a large number of partial differential equations
to solve, the on-board application of this method is difficult to realize [12]. Compared
with the electrochemical model, the equivalent circuit model is widely used in battery
SOC estimation for its fewer parameters and simpler mathematical expression [13]. Com-
mon SOC estimation methods based on equivalent circuit models are usually based on
observer technology, including particle filter [14], sliding mode observers [15] and Kalman
filtering [16]. However, the trade-off between the estimation accuracy and computational
complexity for the equivalent circuit model is a troublesome problem. Furthermore, as the
orders of resistance-capacitance (RC) grow, the difficulty of parameter identification and
uncertainty of models are visibly increasing because one more RC will lead to one more
state equation and two more uncertain parameters [7]. In addition to the above two models,
Chen proposed a universal and feasible gas–liquid dynamics (GLD) battery model without
significantly increasing the complexity and the amount of calculation to estimate the SOC of
the battery, which is robust against different types of batteries [17]. The GLD battery model
based on several gas equations and Bernoulli equation in the gas–liquid system reflects
the electron transference, terminal voltage lag, Li+ diffuseness and equilibrium, ohmic
effect, etc., in lithium-ion batteries (LIBs). Neither complicated optimization algorithms nor
matrix operations are applied to ensure the real-time performance of SOC online estimation.
However, the above GLD model only considers offline parameter identification and does
not conduct a more in-depth study on the online parameter identification of the model.

As the accuracy of using offline identification parameters to estimate SOC will decrease
with working time increasing and working condition varying [6]. Some online parameter
identification methods are proposed to eliminate errors caused by parameter changes.
Wang et al. proposed a recursive least squares (RLS) approach for online parameter
identification [18]. This method corrects the previously estimated value by the recursive
algorithm after the new observation result is obtained until the new estimated result
reaches the set accuracy. Khare et al. [19] improved RLS method and proposed a forgetting
factor recursive least-square (FFRLS) method for parameter identification, which could
avoid the occurrence of RLS “Data saturation” phenomenon. Apart from the common
RLS and its derivatives, Kalman filter (KF) and its derivatives have also become popular
techniques for addressing the issue of online state or parameter estimation for both linear
and nonlinear systems. The extended Kalman Filter (EKF) was first applied to state
and parameter identification in BMS and proven to be a reliable approach for online
estimation by Pet [20–22]. Based on the first-order RC circuit model, an EKF is introduced
for battery parameters online identification only using current and voltage by Wang
et al. [23]. Similarly, Pei et al. [24] used the dual extended Kalman filter (DEKF) based
on an equivalent circuit to estimate the parameters only by the load current and terminal
voltage instead of temperature and ageing. Xiong et al. [25] proposed an adaptive extended
Kalman filter (AEKF) to overcome the drawback that traditional KF is too dependent
on the good estimation of the process and measurement noise matrix Q and R. This
method avoids that uncertainty of the initial noise information results in the degrading the
estimation performance but it lacks analysis for cell parameter variances under different
temperatures. To compensate for this drawback, Feng et al. [26] proposed an online
parameters identification method by exploiting KF and adapted to concurrently estimate
both state and parameters, thereby realizing online simultaneous update of states and
parameters at various ambient temperatures. To effectively eliminate the deviation caused
by first-order approximation of Taylor series expansion in EKF, an unscented Kalman filter
(UKF) is proposed by Xing et al. [27] to cope with uncertainties of the working condition
and battery model inherent inaccuracy. Additionally, Genetic algorithm (GA) can also be
applied for online parameter identification of batteries [28].
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For the experimental verification of battery SOC estimation, normally a single working
condition such as Constant Current (CC), Dynamic Stress Test (DST), Federal Urban Driving
Schedule (FUDS) and Urban Dynamometer Driving Schedule (UDDS) is used in most of the
above-mentioned studies. However, many operating conditions in the actual operation of
vehicles are often changing. For instance, different drivers have different driving styles [29].
People who are accustomed to driving in an aggressive and almost bullying manner tend
to speed and weave in and out of traffic, making the EVs’ battery often discharge at a
high C-rate. On the contrary, defensive drives prefer to follow and obey posted signs and
speed limits to avoid rapid acceleration and deceleration, making the battery discharge
and charge C-rate more stable. Apart from that, people often drive on different roads
and switch driving scenes, such as highways, suburbs and cities. The above facts mean
that there may be a variety of working conditions in one discharge cycle corresponding
to the battery of an electric vehicle in real situations. To address this issue, Du et al. [30]
collected the data from the actual driving condition to verify their SOC estimation. There
is little research on the combination of the driving cycles and to simulate the actual driving
condition, most of the studies refer to the standard single cycle (DST, UDDS, etc.) [31–33],
perhaps because different working conditions are already included in a single cycle, such as
DST cycle which uses a 360 s sequence of power steps with seven discrete power levels to
represent different driving conditions. Despite this, the combination of the different cycles
could be a good complement to simulating the real driving condition more realistically.
Additionally, the sampling interval is also crucial in the SOC estimation process, especially
for the coulomb counting approach [34]. To make the SOC estimation more accurate, it is
necessary to use a higher sampling frequency for the Coulomb counting method to obtain
more accurate current information [34]. For the studies on online parameters identification
and estimation of SOC, many methods combined with RC model use Coulomb counting
as the part of the state equation [35–37]. Therefore, it is difficult to implement sparse
sampling for these methods. The sampling frequency in the above-mentioned research is
often 1–10 HZ, which lacks exploration of algorithm performance under sparse sampling
conditions. High sampling frequency can make the estimation more accurate, but the
compensation for this improvement is that the cost of hardware is also greatly increased
due to the demand for extra storage space and massive computing power [38]. Therefore,
it is important to ensure the accurate estimation of SOC under the condition of sparse
sampling, that is, increasing the sampling period to reduce costs and thus achieve practical
applications.

1.1. Contribution of This Paper

In this article, from the perspective of the multiscenario, a SOC estimation method
is proposed to eliminate initial errors rapidly and achieve high-precision SOC estimation
under a wide sampling period and a combined condition.

First of all, the result of the offline model is transformed into the input of the online
model, so the offline model and online model are coupled and the estimation error is
transformed into the input error, which could achieve the goal of quickly eliminating
initial errors.

Moreover, to more realistically simulate the actual charge and discharge process of
electric vehicle batteries, a combined scenario including Constant Current (CC) cycle,
Federal Urban Driving Schedule (FUDS) cycle, Urban Dynamometer Driving Schedule
cycle (UDDS) and Dynamic Stress Test (DST) cycle is constructed. The proposed algo-
rithm realizes the accurate estimation of SOC in a single cycle coupled with multiple
operating conditions.

Additionally, a systematic study on the effect of sampling time and initial error on
estimation accuracy is done in this article. The high precise estimation is still achieved
under the sparse sampling and large initial error through this algorithm.
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1.2. Organization of This Paper

The structure of this paper is organized as follows: In Section 2, the GLD battery model
is introduced and based on that, we present offline and online parameter identification
methods and they are combined to estimate the battery SOC. The experiment details
including the construction of combined load profiles are presented in Section 3. Then,
results and discussion of the proposed approach are demonstrated in Section 4. Section 5
summarizes the conclusions in this work.

2. Identification of Battery Model Parameters
2.1. Battery Modelling

This paper uses the GLD battery model derived from a series of Gas Equation and
Bernoulli Equation in the equivalent gas–liquid system [17]. Partly different from GLD
battery model, the temperature is introduced to be a direct input.

The inflation and deflation process of the gas–liquid dynamics model can be equivalent
to the corresponding charge and discharge process of the battery. The schematic of the
GLD model is shown in Figure 1a.
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3—valve. 4—liquid. 5—gas in the container. 6—pipe outer nozzle. 7—gas dissolved in liquid.

Taking the discharge process of the battery as an example, at time t1, it can be assumed
that the GLD battery model is in a steady state, and at this time the gas pressure, the
amount of substance of gas, and the amount of gas dissolved in liquid are P1, n1 and nj1,
respectively; The amount of gas substance dissolved in a liquid can be calculated according
to the modified ideal gas law.

nj1 =
P1 ϕmVw

RT + bmP1
(1)

where T represents thermodynamic temperature; ϕm and bm are effective clearance and
Van der Wal volume of gas molecules, respectively; R is the thermodynamic constant
(R = 8.314 J/mol·K).

The valve of the container is opened for a while ∆t so that the gas in the container
is released outwards (Figure 1b). During this deflation process, the flow velocity, the
resistance coefficient of gas flow, and the pressure of the external nozzle are v, µ, and P0,
respectively. The valve is closed at t2 = ∆t+ t1, when the gas pressure is P2 and the amount
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of substance of gas is n2; the ideal gas state equation and Bernoulli equation of gas flow
during gas exhausting can be written as:

P2V = n2RT (2)

P2 = P0 +
1
2

µv +
1
2

ρµv2 (3)

After a long enough time until t3, the GLD battery model reaches a steady state again.
At this time, the gas pressure in the container, the amount of substance of gas and the
amount of substance of gas dissolved in the liquid are P3, n3 and nj3, respectively; the ideal
gas state equation and solubility equation of gas after rebalancing can be written as:

P3V = n3RT (4)

nj3 =
P3 ϕmVw

RT + bmP3
(5)

At the moment when the valve is closed, the amount of gaseous substance in the
vessel is n2; After closing the valve, the amount of gas substance of gas precipitated from
the liquid is nj1 − nj3; Therefore, the relationship among the amount of substance can be
given by:

n3 = n2 +
(
nj1 − nj3

)
(6)

The Equations (1)–(6) are introduced to Equation (7)

P3 − P2 =
R2T2 ϕmVw

Vb2
m

× (
1

RT
bm

+ P3
− 1

RT
bm

+ P1
) (7)

The Equation (7) could be simplified to the following two Equations:

P3 − P2 = k1k2
2T2 × (

1
k2T + P3

− 1
k2T + P1

) (8)

k1 =
φmVW

V
, k2 =

R
bm

(9)

Because all the parameters have physical meanings, k2T + P3 > 0 and k2T + P1 > 0.
Equation (8) can also be written as:

P2
3 + P3(k2T − P2 +

k1k2
2T2

k2T + P1
)− (P2k2T +

P1k1k2
2T2

k2T + P1
) = 0 (10)

Assuming a = 1, b = (k2 − P2 +
k1

k2+P1
), c = −( k1P1

k2+P1
+ P2k2) and ac< 0, b2 − 4ac >0,

according to the Veda theorem, the equation has only one positive real root, which is
given by:

P3 =

√
b2 − 4c− b

2
(11)

The above derivation takes the process of opening the valve to release gas as an
example. The derivation result of opening the valve to pump gas from the outside into the
vessel is consistent with the above result.

During the air inflation process, the Bernoulli equation for pumping gas into the vessel:

P2 = P0 −
(

1
2

µρv +
1
2

ρv2
)

(12)

Therefore, the Bernoulli equation of the inflation process and the deflation process can
be unified into the following formula:
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P2 = P0 −
1
2

µv− 1
2

ρµ|v|v (13)

where v > 0 when charging, v < 0 when discharging.
Simplifying the derived gas–liquid dynamic battery model:

k3 =
1
2

µ, k4 =
1
2

ρµ (14)

Therefore, according to the correspondence of parameters between the GLD model
and battery (Table 1), the final GLD open-circuit voltage battery model is derived:

P2 = U0_measured − k3 I − k4 I|I|, charge : I > 0, discharge : I < 0 (15)

UOCVestimated = −b+
√

b2−4c
2

b = k2T − P2 +
k1k2

2T2

k2T+UOCV_initial

c = −(P2k2T +
UOCV_initialk1k2

2T2

k2T+UOCV_initial
)

(16)

Table 1. Correspondence of parameters between the GLD model and battery.

GLD Battery Model Parameters Actual Battery Parameters

Pressure of gas at the nozzle P0 Terminal voltage U0_measured
Gas flow velocity v Electron flow I

Pressure of gas P1 before opening the valve Initial open-circuit voltage UOCV_initial
Pressure of gas P3 after rebalance Estimated open-circuit voltage UOCV_estimated

Temperature in cans T Temperature of the battery T

2.2. Offline Parameters Identification

To use the GLD model to estimate the open-circuit voltage of the battery, it is important
to identify the corresponding parameters k1, k2, k3, k4. An offline identification method
using the optimizing objective function based on GA is introduced in Reference [17]. In
this article, the same method is applied to determine the first series of offline parameters,
noted as parameters_offline. When the battery works under different scenarios includ-
ing UDDS, DST, FUDS, CC and combined driving cycle, this set of offline parameters
remains unchanged.

2.3. Online Parameters Identification by Extended Kalman Filter (EKF)

The battery model parameters are not constant but are related to the battery’s tem-
perature, SOC, age, etc. As a result, the model parameters identified offline will cause
unavoidable calculation errors during BMS working process and may even increase the
error of the offline parameter model as the working time increases [6]. Moreover, offline
parameters identification lack generalization ability, which means that the parameters
identified under certain working conditions may not be applicable for other working condi-
tions and lead to inherent error [23]. The advantage of the online parameter identification
method is that it could simultaneously update the model parameters as the parameters
change during the battery operation, thereby eliminating the parameter’s deviation [26].
However, when the initial input of the online model is incorrect, in addition to identifying
online parameters, it is also necessary to eliminate the interference of initial errors. It is
difficult for an online model to obtain good estimation performance quickly in the initial
stage and this is likely to lead to an increase in the cumulative error of the estimation
and eventually divergence of the result. The offline parameters could compensate for
this disadvantage by the revision of the input due to its strong anti-interference ability.
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Therefore, the solution in this article is to refer to estimated OCV obtained from the offline
model as the input of online estimation model, which makes the estimation error transform
into input error and takes advantage of the strong anti-interference ability of the offline
model to quickly eliminate the initial error.

The proposed parameter identification method is based on the EKF theorem and the
derivation process is shown as follows.

Equations (15) and (16) can be written as the following functional expression:

UOCV_estimated = f (k1, k2, k3, k4, I, UOCV_initial, U0_measured, T) (17)

Replacing the parameters for the gas–liquid model with the parameters for the GLD
battery model, Equation (8) could be transformed as:

UOCV_estimated − P2 = k1k2
2T2 × (

1
k2T + UOCV_estimated

− 1
k2T+, UOCV_initial

) (18)

Then, based on Equation (18), P2 can be expressed by:

P2 = UOCV_estimated − k1k2
2T2 × (

1
k2T + UOCV_estimated

− 1
k2T+, UOCV_initial

) (19)

Substituting P2 in Equation (15) by Equation (19), the terminal voltage could be
expressed by k1, k2, k3, k4, I, UOCV_estimated, , UOCV_initial, T:

U0_estimated = UOCV_estimated − k1k2
2T2(

1
k2T + UOCV_estimated

− 1
k2T+, UOCV_initial

) + k3 I + k4 I|I| (20)

For the convenience of expression, Equation (20) could also be expressed as:

U0_estimated = f
(

k1, k2, k3, k4, I, UOCV_estimated , UOCV_initial , T
)

(21)

Equations (17) and (21) require 7 input parameters, respectively. The meaning of each
parameter is as follows:

For Equation (17), k1, k2, k3, k4 are identified by offline method and remain unchanged
during the whole working period; which can be noted as k1_offline, k2_offline, k3_offline, k4_offline,
I represents the battery electron flow; U0_measured, T, UOCV_initial , are battery terminal volt-
age and ambient temperature measured by corresponding sensors and initial open-circuit
voltage, respectively; UOCV_estimated represents the estimated current OCV. For Equation
(21), k1, k2, k3, k4 are online identified parameters and change in real-time during the whole
working period; which can be noted as k1_online, k2_online, k3_online, k4_online. I represents the
battery electron flow; UOCV_initial, T, Uocv_estimated are initial open-circuit voltage, ambient
temperature and estimated current open-circuit voltage by Equation (17), respectively,
where the Uocv_estimated is an output of Equation (17) with systematic error caused by the
offline GLD model error.

In order to use EKF to update the parameters in real-time, the state vector is set as:

Parak = [k1_online_k, k2_online_k, k3_online_k, k4_online_k]
T (22)

It can be assumed that since the sampling time of the system is several seconds, which
is quite short, the system parameters will only change slightly between two sampling
intervals tk, tk+1. Therefore, the discrete state transition matrix for parameters is given by:

Parak+1 = Parak + wk (23)

where wk represents the process noise and its covariance is Q, noted as wk ∈ N(0, Q).
The discrete state observation matrix is expressed as:

U0_measured_k+1 = H·Parak+1 + uk+1 (24)
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where the state observation matrix H is partial derivative matrix of k1, k2, k3, k4 in Equation (20).
H =

[
∂U0_estimated

k1_online

∂U0_estimated
k2_online

∂U0_estimated
k3_online

∂U0_estimated
k4_online

]
. uk+1 is the measurement

noise which represents the deviation caused by measurement noise and the observation
deviation of the observation matrix itself, and its covariance is R, noted as uk+1 ∈ N(0, R).

Assuming that parak, parak+1 represent the true value matrixes of the parameter at
time tk, tk+1, and p̃arak+1, parak+1 represent a prior state estimate and a posteriori state
estimate, respectively.

The prior state estimate can be obtained from the state prediction equation:

p̃arak+1 = parak (25)

The posteriori state estimate can be obtained from the state update equation:

parak+1 = p̃arak+1 + K
(

U0_measured_k+1 − H· p̃arak+1

)
(26)

where H· p̃arak+1 = U0_estimated_k+1; K is a Kalman gain matrix.
Therefore Equation (26) could be written as:

parak+1 = p̃arak+1 + K(U0_measured_k+1 −U0_estimated_k+1) (27)

To derive Kalman gain matrix, one can note:

ẽk+1 = parak+1 − p̃arak+1 (28)

ek+1 = parak+1 − parak+1 (29)

P̃k+1 = E
[
ẽk+1, ẽk+1

T
]

(30)

Pk+1 = E
[
ek+1, ek+1

T
]

(31)

where ẽk+1 represents prior state estimate error; ek+1 represents posteriori state estimate
error; P̃k+1 is the covariance between the true value and the predicted value; Pk+1 is the
covariance between the true value and the best estimation.

Combining Equations (24) and (26) to eliminate U0_measured_k+1:

parak+1 = p̃arak+1 + K
(

H·Parak+1 + uk+1 − H· p̃arak+1

)
(32)

Transformation of Equation (28):

parak+1 − Parak+1 = p̃arak+1 − Parak+1 + KH
(

Parak+1 − p̃arak+1

)
+ Kuk+1 (33)

Replacing parak+1− Parak+1 and p̃arak+1− Parak+1 in Equation (33) by Equations (28)
and (29):

ek+1 = (1− KH)ẽk+1 − Kuk+1 (34)

Therefore, the estimated error variance matrix can be known from Equation (31):

Pk+1 = (1− KH)P̃k+1(1− KH)T − KRKT (35)

The estimation principle of Kalman filter is to minimize the covariance P of the optimal
state estimation and make it closer and closer to the true value. Therefore, its objective
function is:

J = ∑
min

Pk+1 (36)
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Calculating the partial derivative of the Kalman gain matrix K in Equation (35):

∂Pk+1
∂K

= −2P̃k+1HT + 2K
(

HP̃k+1HT + R
)
= 0 (37)

Therefore, Kalman gain matrix K could be expressed as:

K = P̃k+1HT
(

HP̃k+1HT + R
)−1

(38)

Replacing R in Equation (35) by Equation (38):

Pk+1 = (1− KH)P̃k+1 (39)

Combing Equations (23), (25) and (28) to eliminate p̃arak+1, parak+1:

ẽk+1 = parak+1 − p̃arak+1 = Parak + wk − parak = ek + wk (40)

According to Equation (30):

P̃k+1 = E
[
ẽk+1, ẽk+1

T
]
= E

[
(ek + wk), (ek + wk)

T
]

(41)

P̃k+1 = Pk + Q (42)

Therefore, all the unknowns are determined in Equation (26) and the online parameter
identification at one step is finished.

2.4. Combination of Offline Parameters and Online Parameters for SOC Estimation

The joint algorithm can be summarized as follows:

(1) Initialization
The covariance between the true value and the best estimate at the initial time:

P(0) = diag([1, 1, 1, 1]) (43)

All parameters in physical equations have actual physical meaning, so all parameters
are non-negative including k1, k2, k3, k4.and they cannot be initialized to be zero.
Therefore, the initial parameters for online identification are set to close to zero which
is (0.001,0.001,0.001,0.001). Additionally, step k is set as 1.

(2) Assignment
The current electron flow, terminal voltage and ambient temperature could be ob-
tained by corresponding sensors at step k, noted as, U, I, T. These three variables are
assigned to corresponding variables U0(k) I(k) and T(k), respectively.

U0(k) = U, I(k) = I, T(k) = T, UOCV_initial(1) = U0(1) (44)

(3) Calculation 1
According to Equation (17) and offline parameters in Section 4.1, the estimated open-
circuit voltage UOCV_estimated_k:

UOCV_estimated(k) = f
(

UOCV_initial(k), U0(k), k1_offline, k2_offline, k3_offline, k4_offline, I(k), T(k)
)

(45)

Then, UOCV_estimated(k) is set as one of the inputs to obtain estimated terminal voltage
U0_estimated(k):

U0_estimated(k) = f
(

UOCV_estimated(k), para(k− 1), I(k), T(k), UOCV_initial(k)
)

(46)
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Afterwards, the Jacobian matrix H could be given by:

H = [
∂U0_estimated

∂para(1)
,

∂U0_estimated

∂para(2)
,

∂U0_estimated

∂para(3)
,

∂U0_estimated

∂para(4)
] (47)

(4) Prediction
The discrete Kalman filter predictions for the online parameters and covariance
between the true value and the predicted value:

p̃ara(k) = para(k− 1) (48)

P̃(k) = P(k− 1) + Q (49)

(5) Update
According to the prior state estimate and estimated covariance calculated in (4), the
updates for the Kalman gain K(k), posteriori state estimate para(k), the covariance
between the true value and the best estimate P(k) are given by:

K(k) = P̃(k)HT
(

HP̃(k)HT + R
)
−1 (50)

P(k) = (1− K(k)H)P̃(k) (51)

para(k) = p̃ara(k) + K(k)(U0(k)−U0_estimated(k)) (52)

k = k + 1 (53)

(6) Calculation 2
Using the best estimate of the parameters para(k) as one of the inputs of Equation
(16), the best estimate of the open-circuit voltage UOCV_final(k) could be obtained:

UOCV_final(k) = f
(

UOCV_initial(k), U0(k), para(k), I(k), T(k)
)

(54)

UOCV_initial(k + 1) = UOCV_final(k) (55)

(7) Look-up table
According to the relationship between the SOC and OCV, the SOC at a specific OCV
can be obtained by looking up the table. The flowchart of the joint SOC estimation
algorithm is shown in Figure 2.
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3. Experimental Details
3.1. Experimental Setup

For the validation of the proposed algorithm in this paper, a test bench is established,
as shown in Figure 3a. NiCoMn(NCM) LIB produced by Panasonic (Figure 3b) is used
as experimental subjects to investigate the model performance. The specifications of the
test battery are presented as follows: nominal capacity 5.8 Ah, nominal voltage 3.7 V,
charging end voltage 4.2 V, discharging end voltage 3.0 V. These experiments are carried
out on the Ningbo Bate Technology (NBT) test bench (Ningbo Bate Technology Co., LTD,
Ningbo, China) with the ranges of voltage and current corresponding to 0–5 V and 0–20 A,
respectively. The control and measurement accuracy and stability are not greater than
the ±0.05% and 0.5% of the full scale. LIBs are arranged in a thermostat box (Shenzhen
Kejin Technology Co., TIM, Shenzhen, China) with the temperature controlled by forced air
convection in the range of 273–343 K (accuracy: ±1 K). The PC is used to load the charge
and discharge current under different conditions and record data.
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3.2. Battery Tests
3.2.1. Hybrid Pulse Power Characterization

The hybrid pulse power characterization (HPPC) is the battery parameter test in the
“Freedom CAR Power Assisted Battery Test Manual”. The details for the HPPC test in this
paper are as follows:

According to the USA Freedom CAR test manual, the terminal voltage, current,
temperature and the corresponding OCV under the different SOC could be obtained
through the HPPC experiments. The experimental protocol is implemented as follows.

(1) Capacity calibration: a LIB is completely discharged by 1 C constant current with the
cut-off voltage of 3.0 V, charged under 1 C constant current until the voltage reaches
4.2 V, and then turned to 4.2 V constant voltage charge with the cut-off current of
1/20 C. This step is circulated three times. The calibration capacity is the average of
the capacities under the three tests.

(2) OCV data: the load time t, C-rate l and count N are ruled in Equation (56).

N =
3600

l t
(56)

After finishing a one-time load, the LIB is switched into the open-circuit condition for
six hours.

(3) Step 2 is repeated N times under the charge or discharge process. These experimental
data are used to identify the offline parameters of the model and determined the SOC
vs. OCV curve. Figure 4 shows the test results of HPPC when N and l are equal to
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50 and 2 C, respectively. The OCV vs. SOC curves under the charge and discharge
almost coincide. However, the large deviation between these two curves occurs at
approximately SOC = 14–35% corresponding to the phase transition areas (LixCoO2,
0.75 < × < 0.93 is the mixed α + β phase) [39]. Although the extension of the standing
time might reduce the deviation, this method is time-consuming. Alternatively, the
more accurate OCV can be obtained by calculating their average values under the
same SOC, as shown in the black curve (Figure 4).
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3.2.2. Standard Tests and Combined Test

To verify that the estimation algorithm in the article has good performance under
different working conditions, four of the highly dynamic standard driving cycles with
the maximum discharge 2.5 C, namely, CC load profile (Figure 5a,b), DST load profile
(Figure 5c,d), FUDS load profile (Figure 5e,f) and UDDS load profile (Figure 5g,h), are
applied. Moreover, there are a great variety of operating conditions in the actual operation
of vehicles, which are constantly changing, so it is necessary to construct a combined
driving cycle to verify the performance of the proposed SOC estimation algorithm.
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The specific composition of the combined driving cycle is shown in Figure 6.
Energies 2021, 14, x FOR PEER REVIEW 13 of 19  

 
Figure 6. The curves of Time vs: (a) current; (b) voltage under combined condition. 

4. Results and Discussion 
4.1. Model Offline Parameters Identification 

The model offline parameters identification is really important for the accurate SOC 
estimation of the corresponding control algorithm. In this article, a GA algorithm pro-
posed by Chen is applied for offline parameter identification [17]. The offline parameters 𝑘 _ , 𝑘 _ , 𝑘 _ , 𝑘 _  are 0.40001, 0.02950, 0.00280, 1.2291 × 10−5, respec-
tively. 

4.2. Online SOC Estimation Based on Combined Online and Offline Parameter Identification 
Figure 7 displays the estimation results of the proposed algorithm under CC load 

profile (Figure 7a), DST load profile (Figure 7b), FUDS load profile (Figure 7c), UDDS load 
profile (Figure 7d) and combined load profile (Figure 7e). To make the form of the figure 
consistent, the timescales of the x-axis are replaced with the discharged battery capacity 
whose unit is Ah and the reference lines in Figure 7a–e represent the theoretical SOC value 
under the corresponding capacity. The maximum errors (MEs) under five cycles are all 
below 2.55%, which are shown in Table 2. Compared with the result of the CC discharge 
scenario, the estimation results are significantly different under the other four discharge 
scenarios. The maximum error (ME) under CC (1.59%) is much smaller than the MEs un-
der DST (2.50%), FUDS (2.02%), UDDS (2.42%) and combined condition (2.51%), while the 
mean absolute errors (MAEs) for all five cycles are roughly close, between 0.35% and 
0.50%. Because of the sudden change of the current under DST, UDDS, FUDS and com-
bined condition, the errors all strikingly fluctuate almost during the whole range except 
for the end of the discharge process. As opposed to the above four conditions, the error 
curve under CC cycle is remarkably different and it sees a smooth trend during the whole 
discharge process. For the FUDS and UDDS scenarios, the shapes of their error curves are 
similar even though their time dimensions are different and their MEs both occur near the 
end of the discharge process. By contrast, the MEs under CC and DST appear at a rela-
tively high SOC period. 

Figure 6. The curves of Time vs: (a) current; (b) voltage under combined condition.

4. Results and Discussion
4.1. Model Offline Parameters Identification

The model offline parameters identification is really important for the accurate SOC
estimation of the corresponding control algorithm. In this article, a GA algorithm pro-
posed by Chen is applied for offline parameter identification [17]. The offline param-
eters k1_o f f line, k2_o f f line, k3_o f f line, k4_o f f line are 0.40001, 0.02950, 0.00280, 1.2291 × 10−5,
respectively.

4.2. Online SOC Estimation Based on Combined Online and Offline Parameter Identification

Figure 7 displays the estimation results of the proposed algorithm under CC load
profile (Figure 7a), DST load profile (Figure 7b), FUDS load profile (Figure 7c), UDDS
load profile (Figure 7d) and combined load profile (Figure 7e). To make the form of the
figure consistent, the timescales of the x-axis are replaced with the discharged battery
capacity whose unit is Ah and the reference lines in Figure 7a–e represent the theoretical
SOC value under the corresponding capacity. The maximum errors (MEs) under five cycles
are all below 2.55%, which are shown in Table 2. Compared with the result of the CC
discharge scenario, the estimation results are significantly different under the other four
discharge scenarios. The maximum error (ME) under CC (1.59%) is much smaller than the
MEs under DST (2.50%), FUDS (2.02%), UDDS (2.42%) and combined condition (2.51%),
while the mean absolute errors (MAEs) for all five cycles are roughly close, between 0.35%
and 0.50%. Because of the sudden change of the current under DST, UDDS, FUDS and
combined condition, the errors all strikingly fluctuate almost during the whole range except
for the end of the discharge process. As opposed to the above four conditions, the error
curve under CC cycle is remarkably different and it sees a smooth trend during the whole
discharge process. For the FUDS and UDDS scenarios, the shapes of their error curves are
similar even though their time dimensions are different and their MEs both occur near the
end of the discharge process. By contrast, the MEs under CC and DST appear at a relatively
high SOC period.
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Table 2. MAE and ME for SOC estimation results (sampling time 1 s).

Condition CC DST FUDS UDDS Combined
Condition

MAE (%) 0.50 0.43 0.39 0.35 0.49
ME (%) 1.59 2.50 2.02 2.42 2.51

Noticeably, for the combined condition, the combination of the four standard discharge
cycles hardly increases the estimation errors and even MAE (0.49%) under this scenario is a
bit smaller than that under CC (0.50%) and ME (2.51%) is similar to that (2.50%) under DST.
These results show that the proposed estimation algorithm achieves good performance
under four different standard cycles and this algorithm still maintains high estimation
accuracy even under a more complicated scenario, which reflects the applicability of the
proposed method to the actual operating condition.

To make a comparison for the estimation accuracy between the existing methods, a
summary of some typical KF-based estimation techniques and battery modelling method
such as Partnership for a New Generation of Vehicles (PNGV), RC model is shown in
Table 3.
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Table 3. Summary of Kalman Filter (KF)-based estimation techniques and battery modelling method.

Reference Estimation
Technique Model Parameter

Identification
Test

Condition MAE (%)

[40] EKF PNGV Online DST <2.1
[40] UKF PNGV Online DST <1.05
[41] UKF Combined Offline FUDS 0.8
[42] RLS + EKF 2RC Online FUDS 1.1
[43] Dual UKF 2RC Online DST 0.29
[44] Dual EKF 2RC Online FUDS 0.34
[45] EKF + UKF 2RC Online DST 0.39

4.3. Analysis of the Sampling Time

The sampling time of the sensor often has a certain error during actual work condition.
Although the error value is small, the accumulation of the error over a long period will
still have a negative impact on the performance of the system. Furthermore, sparse
sampling helps to reduce the hardware costs due to the decrease in data storage and
computational power, so it is necessary to analyze the effect of sampling time on the SOC
estimation accuracy. For the traditional online parameter identification methods combining
the Coulomb counting method, the sampling frequency in the above-mentioned research
is often 110 HZ [25,46], which lacks exploration of algorithm performance under sparse
sampling conditions because the accuracy of coulomb counting method strongly depends
on the high-frequency sampling. In this article, the relationship between estimation error
and sampling time is studied in CC FUDS, UDDS and combined condition except for DST,
because DST is composed of several segmented constant current condition which shows
strong periodicity and its period is only 360 s. When the sampling time of DST condition is
increased, the characteristics of DST condition is difficult to be reflected.

From the point distribution in Figure 8, the error does not strictly increase monotoni-
cally with the sampling time, but overall, the trends of average error are upward except for
CC cycle. Therefore, for the convenience of the qualitative analysis, the piecewise linear
curve-fitting of two sections is performed on CC, FUDS and UDDS. Different from CC,
FUDS and UDDS, since the average error under combined condition increases linearly with
approximately the same proportion as the sampling time rises, the results are not fitted
by segment. From the fitted curves, the average errors modestly grow with the sampling
time increasing under three scenarios (FUDS (blue line), UDDS (orange line), combined
condition (green line)), except for CC (red line) where the average error first slowly falls
into the bottom (0.459% at 12 s) and then climbs back. With the growth of the sampling
time, the sampling time corresponding to the divergence of the estimation results under all
four cycles is different. The combined condition firstly sees the estimation results diverge
(41 s), followed by CC (43 s), FUDS (78 s) and UDDS (119 s), respectively. The average
error witnesses the most noticeable increase under FUDS (blue line) from 0.3926% at 1 s
to 0.5709% at 78 s before divergence. The increase of the average error under synthesis
condition (green line) and UDDS (orange line) is less marked, rising by 0.055% and 0.11%,
respectively. Although the increase of the sampling would lead to the gradual growth
of MAE, the MAEs under FUDS, UDDS and combined condition only increase within
0.05% when the sampling time increases to 20 s and even the MAE under CC drops during
this period (sampling time is 1–20 s). These results reflect that the proposed algorithm
could still achieve good performance in SOC estimation when the sampling time is within
the 20 s. Furthermore, the reason why the algorithm could realize the sparse sampling is
that the Coulomb counting method is not combined with the proposed EKF algorithm as
part of the state equation and the state vector consists of only the parameters that need to
be identified.
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4.4. Robustness Analysis of the Initial Value

By the above verification, the accurate estimation of SOC could be realized under
different cycles and sparse sampling condition. Otherwise, the analysis of the robustness of
the algorithm against the initial OCV value is crucial for the practical application, because
the correct initial OCV value is unable to be obtained by the sensors. A common solution is
to assign the terminal voltage to the initial OCV value at the beginning, which is used in
the above experiments. However, only when the battery is left standing for a long time,
the terminal voltage measured for the first time is approximately equal to the open-circuit
voltage [47]. Apart from the analysis of the initial OCV value at the beginning, the analysis
of the correction ability of input error during operation is also conducted. The combined
scenario which is more complicated can better reflect the working conditions of electric
vehicles in actual operation than the single standard scenario, so the combined scenario is
used for this study.

To cover as many cases for initial value as possible, the inputs at the beginning are
chosen as 3.968 V, 3.780 V, 3.668 V and 3.530 V corresponding to 80%, 60%, 40% and 20%
SOC, respectively. Besides, the effect of input errors on estimation accuracy is studied
during whole discharge range so at 80% (267 s) 60% (2283 s) 40% (3630 s) of the actual
battery SOC, 20% input error is introduced. The results are shown in Figure 9.
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For the initial inputs at the beginning, all the estimation curves quickly converge to
the experimental curve within five seconds and the details for this process is illustrated in
the left enlarged image. Taking the purple line (20% input SOC) as an example, the SOC
is corrected from the initial 20% to 96% after the first iteration, and the estimated curve
coincides with the experimental curve after the following 3 s. Moreover, a random initial
value of OCV could be assigned in practical application. For the input errors at 20%, 40%,
60%, 80% SOC, they are all rapidly corrected by one step self-iteration and the subsequent
estimating results are not affected.

5. Conclusions

In this paper, the EKF algorithm combined with gas–liquid dynamics model has been
proposed for online estimation of the parameters and SOC for lithium-ion batteries. The
estimation equations are strictly derived by a corresponding mathematical formula and the
offline parameters are determined by genetic algorithm (GA) to avoid the filter divergence
caused by the initial input error. A combined scenario is constructed to more realistically
simulate the actual charge and discharge conditions of electric vehicle batteries. The validity
of the proposed approach has been carried out with maximum error of 2.51% (sampling
time 1 s) and maximum mean absolute error of 0.50% under four standard discharge
cycles, namely CC, DST, FUDS and UDDS and a combined condition. Furthermore, the
analysis of the sampling time proves that this algorithm still achieves good performance
in SOC estimation when the sampling time is within 20 s, which could avoid the use of
high-frequency sampling to achieve accurate estimation, which might lead to an increase
in the demand for storage space and computing power and ultimately increase the cost of
hardware. Meanwhile, the robustness analysis of the initial value indicates the proposed
algorithm could quickly eliminate the initial error and even the input error during working.

In our future work, the process of battery ageing can be simulated by changing the
combination of gas and liquid to introduce a small amount of irreversible reaction. Further-
more, the SOC estimation of a battery considering the state-of-health is worth investigating.
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