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Abstract: Frequency control is essential to ensure reliability and quality of power systems. North
American Electric Reliability Corporation’s (NERC) Control Performance Standard 1 (CPS1) is widely
adopted by many operating authorities to examine the quality of the frequency control. The operating
authority would have a strong interest in knowing how the frequency-sensitive features affect the
CPS1 score and finding out more effective unit-dispatch schedules for reaching the CPS1 goal. As
frequency-sensitive features usually possess multi-variable and high-correlated characteristics, this
paper employed an ensemble learning technique (the Gradient Boosting Decision Tree algorithm,
GBDT) to construct Frequency Response Model (FRM) of the Taipower system in Taiwan to evaluate
by CPS1 score. The proposed CPS1 model was then integrated with Unit Commitment (UC) program
to determine the unit-dispatch that achieves the targeted CPS1 score. The feasibility and effectiveness
of the proposed CPS1-UC platform were validated and compared with the other benchmark model-
based UC methods by two operating cases. The proposed model shows promising results: the
system frequency could be maintained well, especially in the periods of the early morning or the
high renewable penetration.

Keywords: Control Performance Standard 1 (CPS1); frequency control; machine learning;
unit commitment

1. Introduction

The problem of determining the optimal unit commitment (UC) in power generation
systems is solved by minimizing the total system cost while maintaining the load generation
balance. At early stages, traditional UC are mainly based on cost considerations with unit
and transmission security constraints. However, with the growing global emphasis on
reduced emissions and renewable penetration, the UC model has recently been modified
to take better account of the need for emission reduction or increased renewable resources
during the power generation process [1–5].

Nevertheless, ensuring satisfactory frequency quality is still one of the most important
practical concerns. The metric for evaluating frequency quality is usually referred to as
the North American Electric Reliability Corporation’s (NERC) two Control Performance
Standards (CPS1 and CPS2) [6]. The CPS score (i.e., frequency response quality index)
could be affected by the generator type, load characteristics, regulation reserve, and the
nature of the system itself (i.e., interconnection or island). Thus, each Independent System
Operator (ISO) in North America has formulated its own requirements for the regulation
reserve based on its own particular system [7].

In recent years, several statistical-based methods have been proposed to evaluate the
CPS score by constructing a reference based on the load frequency control (LFC) model or
UC model. For example, Chung developed an artificial neural network (ANN) algorithm
to improve the CPS score by estimating the area control error (ACE) of the LFC model [8].
Some studies built up frequency constraints on specific generating units within the UC
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model [9–12]. Zhang established a low-order LFC model to calculate the CPS score training
set (including CPS1 and the balancing authority ACE limit (BAAL)), then used a multiple
linear regression (MLR) to determine the regulation reserve required to satisfy the target
CPS1 score [13]. Yang used a cumulative distribution function (CDF) method to analyze
the relationships between the automatic generation control (AGC) ramp rate, the droop
response capability, and the CPS1 score [14].

The constructed models in the aforementioned studies are of reduced-order or linear
fashions. However, the influential frequency-sensitive features are not only complicated
by the nonlinearities of the real-world power system but correlated with each other. Con-
sequently, the results obtained from some specific hours could differ a lot as the system
frequency responses are evaluated by the reduced-order models. Conversely, in order
to estimate the frequency responses of the real-world power system, more intelligent ap-
proaches are needed to cope with the multivariate and nonlinear problems. Nowadays, the
supervised machine learning algorithms such as support vector machine (SVM), decision
tree, deep learning and gradient boost decision tree (GBDT) [15–19], are able to identify the
multivariate and nonlinearities of the system. Therefore, this paper attempts to introduce
the supervised machine learning algorithm to construct the frequency response model
(FRM), and integrate the model into the unit commitment program. The main contributions
of this research are summarized as follows:

(1) This study commences by employing an ensemble machine learning technique to
formulate a robust FRM. For the formulation process, the ensemble learning technique
can not only deal with data refinement, such as outlier detection and feature selection,
but also feature modeling based on the operation’s domain knowledge.

(2) The FRM model that is formulated by the ensemble learning technique is able to con-
form to the frequency response of the actual system from time to time by automatically
tuning the hyperparameters within the model.

(3) The well-trained FRM model is further integrated with a UC program to determine
the unit scheduling result. Testing results show that the proposed solution not only
ensures the compliance of the unit dispatch schedule to the NERC’s CPS1 standard,
but also further minimizes the system operating cost compared to that of the real
dispatch history.

(4) Comparative results from different methodologies have shown that the proposed
FRM model is superior in portraying system frequency response over the simplified
model that did not take the multivariate and nonlinear characteristics into account.
Moreover, the proposed tree-based learning technique has shown its advantage in
portraying the system state with more accurate feature interpretation over the neural-
network based technique.

(5) The proposed hybrid model (FRM plus UC) can portray different hypothetical cases,
such as renewable penetration into the power system, for system operators to foresee
the challenges they could face.

The remainder of this paper is organized as follows. Section 2 describes the data anal-
ysis process applied to the historical data and introduces the ensemble learning approach
employed to construct a FRM (i.e., CPS1-compliant model) based on the frequency-sensitive
features. Section 3 presents the frequency-constrained UC program for CPS1-compliant
scheduling. Section 4 describes the integration of the FRM to perform CPS-compliant unit
scheduling. Section 5 demonstrates the validity and effectiveness of the proposed schedul-
ing method through two case studies. Finally, Section 6 presents concluding remarks and
suggests avenues for future research.

2. Construction of the CPS1 Compliant Model

The conventional wisdom to model a complicated system generally involves in identi-
fying key features that have influential impacts on the system behavior, followed by the
model construction by interlinking the features with model parameters. To make the fea-
tures effectively exert the model to closely trace the real system behavior, hyperparameter
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tuning is essential. This work is done either by going through a regression method or an
intelligent training. Once the model validation is confirmed, the finely turned model could
be gainfully used for the other applications, such as unit commitment program in this study.

Generally speaking, feature identification as well as the model parameter tuning are
considered as the most complicated parts in system modeling because they usually involve
in multivariate and highly correlated functions which cannot be easily grasped by the
traditional linear system approach. Until the recent development of machine learning
techniques, the accuracy of the complex system model could be elevated to a higher level.
Figure 1 demonstrates the example of system modeling procedure using the machine
learning algorithms. The construction of the CPS1-compliance model using the same
procedure will be detailed in the following subsections.

Energies 2021, 14, x FOR PEER REVIEW 3 of 20 
 

 

model construction by interlinking the features with model parameters. To make the fea-

tures effectively exert the model to closely trace the real system behavior, hyperparameter 

tuning is essential. This work is done either by going through a regression method or an 

intelligent training. Once the model validation is confirmed, the finely turned model could 

be gainfully used for the other applications, such as unit commitment program in this 

study. 

Generally speaking, feature identification as well as the model parameter tuning are 

considered as the most complicated parts in system modeling because they usually in-

volve in multivariate and highly correlated functions which cannot be easily grasped by 

the traditional linear system approach. Until the recent development of machine learning 

techniques, the accuracy of the complex system model could be elevated to a higher level. 

Figure 1 demonstrates the example of system modeling procedure using the machine 

learning algorithms. The construction of the CPS1-compliance model using the same pro-

cedure will be detailed in the following subsections. 

 

Figure 1. Procedure of constructing a CPS1-compliance model (ALGO: algorithm). 

2.1. Exploratory Data Analysis for CPS1 in Taipower System (Feature Definition) 

The Taipower system is an independent power system, with no interconnected ties 

to the neighboring areas. Since the load-generation balance is solely reflected by the sys-

tem frequency, Taipower company abides by the CPS1 compliance rule (i.e., the system 

frequency quality index), which is the same as the metric adopted by the Electric Reliabil-

ity Council of Texas (ERCOT) system in Texas (USA). Since the Taipower system is an 

isolated power system, therefore, the CPS1 score was calculated by Equation (1), which is 

shown as follows [6]: 

 
2

2
1 2 100%

T n t
CPS

AVG F F


  
 
 
 
  , 

(1) 

where AVGT represents the averaging window within T periods; Fn is the actual frequency; 

Ft is the target frequency; ε is the target noise and is equal to 30 mHz in TPC’s case. 

To better identify which the system states significantly influence the CPS1 record, an 

exploratory data analysis (EDA) method was employed to analyze the hourly operational 

data of the Taipower system. Figure 2 shows the average hourly CPS1 scores over the 12-

month period. Note that for each hour, the white spot indicates the average CPS1 score, 

the black bars indicate the range of CPS1 scores, and the red dashed line represents the 

threshold of the CPS1 score (i.e., 100%). In general, the results show that the CPS1 scores 

of the first-shift period (i.e., 00:00 to 08:00) were lower than those of the other periods, 

with more than half of the scores failing to meet the target requirement of 100%. 
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2.1. Exploratory Data Analysis for CPS1 in Taipower System (Feature Definition)

The Taipower system is an independent power system, with no interconnected ties to
the neighboring areas. Since the load-generation balance is solely reflected by the system
frequency, Taipower company abides by the CPS1 compliance rule (i.e., the system frequency
quality index), which is the same as the metric adopted by the Electric Reliability Council of
Texas (ERCOT) system in Texas (USA). Since the Taipower system is an isolated power system,
therefore, the CPS1 score was calculated by Equation (1), which is shown as follows [6]:

CPS1 =

(
2− AVGT(Fn − Ft)

2

ε2

)
× 100%, (1)

where AVGT represents the averaging window within T periods; Fn is the actual frequency;
Ft is the target frequency; ε is the target noise and is equal to 30 mHz in TPC’s case.

To better identify which the system states significantly influence the CPS1 record, an
exploratory data analysis (EDA) method was employed to analyze the hourly operational
data of the Taipower system. Figure 2 shows the average hourly CPS1 scores over the
12-month period. Note that for each hour, the white spot indicates the average CPS1 score,
the black bars indicate the range of CPS1 scores, and the red dashed line represents the
threshold of the CPS1 score (i.e., 100%). In general, the results show that the CPS1 scores of
the first-shift period (i.e., 00:00 to 08:00) were lower than those of the other periods, with
more than half of the scores failing to meet the target requirement of 100%.
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Given the results presented in Figure 2, the present study aims to improve the frequency
quality of the Taipower system to increase the CPS1 score in the first-shift period. Following
lengthy discussions with the Taipower dispatchers, 11 frequency-sensitive features were
identified as shown in Table 1. Features x1 to x3 are time-dependent, while features x6 to x11
relate to the generating unit. Among these latter features, x6 to x8 relate to the AGC signal
control. Feature x9 relates to the inertia of the parallel units, where a larger inertia value
results in a more stable system frequency. Features x10 and x11 refer to the pumped-storage
hydro units (PSHUs) pumping load operation. According to Taipower’s operation rule,
PSHUs are operated mainly in the pumping mode during the first-shift period. Finally,
feature y1 refers to the CPS1 score and is obtained by averaging the hourly values.

Table 1. Frequency-sensitive features for the Taipower system.

Feature Label Definition Unit

Input

x1 Hour Hour of day Hour

x2 Week Week Week

x3 Month Month Month

x4 Load Load demand during each hour MWh

x5 Load Var Load variance between two adjacent hours MWh

x6 Ramp Rate Capability of changing output in minute MW/min

x7 AGC Up Margin of up-regulation (secondary control) MW

x8 AGC Down Margin of down-regulation (secondary control) MW

x9 Inertia Inertia of power plant unit second

x10 Pumping Load Pumping load demand of
Pumped-Storage Hydro Units (PSHUs) MWh

x11 Pumping Load Var Pumping load variance of
Pumped-Storage Hydro Units (PSHUs) MWh

Output

y1 CPS1 CPS1 score (Equation (1)) %

2.2. Outlier Detection

As the outliers are unlabeled in the present study, an unsupervised ensemble learning
algorithm is required to perform outlier detection. Reference [20] evaluates the average
accuracy, stability, computing time, and memory usage degree of 14 common unsupervised
algorithms when applied to large-scale public and industrial datasets. The results showed
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that the isolation forest (iForest) algorithm performed better in identifying outliers than
probabilistic methods such as probabilistic principal component analysis (PPCA), neural
network methods such as grow when required (GWR), domain-based methods such as a
one-class SVM, and distance-based methods such as the Mahalanobis distance. iForest is
an ensemble method composed of multiple binary iTrees. The iForest algorithm has the
following four main advantages for large-scale optimization-type problems: (1) it does not
need to calculate the distance and density of the samples, and hence, the computational
load and computing time are reduced; (2) the computing time scales proportionally with
the size of the dataset); (3) the accuracy improves as the data volume increases; and (4)
only a few hyperparameters must be set in advance [21].

Having constructed the iForest, the path length of sample p is normalized by the average
path length of the whole sample, and the outlier score of sample p is calculated according to
Equation (2). The samples are then sorted in accordance with their outlier scores [21]:

s(p, n) = 2−
E(h(p))

c(n) , (2)

where s(p, n) is the outlier score; h(p) is the path length of sample x in the iTree; E(h(p)) is
the mean height of multiple iTrees h(p); and c(n) is the average path length of the iTree
constructed by n samples.

In our case, the 11 frequency-sensitive features, which are identified in Table 1, were
separately applied to the iForest algorithm for outlier detection. In the implementation of
the iForest algorithm, the hyperparameters were specified as follows: (1) a subsample size
of 256, (2) a tree depth of 8, and a forest size of 100 (trees). In other words, for each feature,
256 independent samples were randomly selected to constitute an iTree with a maximum
depth of 8; at most, 100 iTrees were constructed.

Figure 3 shows the outlier detection results for six of the frequency-sensitive features.
The results confirm that the detected outliers are all located at the periphery. The inliers
were then used for further feature selection and modeling purposes, which will be described
in next section.
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2.3. Feature Selection

Generally speaking, features presenting with a higher proportion have a greater effect
on the model outcome. To extract the influential features, we introduce the ensemble
learning technique.

The underlying concept of ensemble learning is to construct a single strong learner
through the integration of multiple weak learners [22]. Among the many available ensemble
learning techniques, gradient boosting decision tree (GBDT), which belongs to the boosting
tree-based algorithms, has been suggested in this case because it can use multiple weak
decision trees to construct a single strong decision tree (low variance low bias). In the
implementation of GBDT, the convergence rate for the loss function is accelerated by a
gradient function, and the overall deviation of the algorithm is gradually reduced as the
training process proceeds [23]. After careful consideration, we decided that the analysis of
the Taipower data collected in the present study did not require parallel computing, but
the high prediction accuracy was a greater concern. Therefore, the GBDT algorithm was
deliberately chosen for feature selection.

Figure 4a presents a schematic diagram of the GBDT procedure. In general, the GBDT
algorithm consists of a decision tree (DT) structure constructed within a gradient boosting
(GB) architecture. The integrated architecture ensures that the predicted value goes along
the negative gradient direction to approach the actual value and minimizes the residual
between the two values (i.e., the predicted value and the actual value). In the present
study, the loss function of the GBDT algorithm is set as the least square error between the
predicted value and the actual value, as shown in Equation (3):

L(yi − f (xi)) =
1
2
[yi − f (xi)]

2 (3)

where yi is the actual value. In this research, the historical CPS1 score is regarded as yi, the
predicted value is f (xi), and xi is the input of the ith sample. Each sample has 11 features
during the feature selection procedure.
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At first, the initialization of the estimated value f0(x) is set as the mean of the samples.
The estimated residual γim of each iteration is determined by taking the partial derivation of
the loss function as shown in Equation (4). Then, the residuals of every sample are calculated
by the difference between the actual value of the mth tree and the predicted value of the
(m − 1)th tree. The estimated residual of the ith sample in the mth tree is calculated by

γim = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f= fm−1

(4)
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Then, a regression decision tree (RDT) is constructed to fit the estimated residual
γim, and the terminal regions Rjm of the decision tree are given. Note that each leaf Rjm
of a decision tree can have more than one sample γim. However, it is unclear what the
real output value of each leaf should be if there is more than one sample in the same leaf.
Therefore, the new residual γjm (i.e., the value of each leaf) is calculated by the samples of
the terminal leaf Rjm, as shown in Equation (5):

γjm = argminγ ∑
xi∈Rjm

L(yi, fm−1(xi) + γ) (5)

where Rjm refers to the jth terminal region in the mth tree.
Finally, the estimated model fm(x) as shown in Equation (6) is updated according to

the new residual γjm and the learning rate α:

fm(x) = fm−1(x) + α
Jm

∑
j=1

γjm I
(
xi ∈ Rjm

)
(6)

The entire GBDT procedure is completed according to a set number of iterations (i.e.,
the number of decision trees M) [24]. For this case, the process deals with 120,000 data
samples. Among the collected inliers, 70% were taken as the training set, with the remainder
used for testing. To avoid over-fitting, the training set was used to train the model using
five-fold cross-validation. After finishing all settings of the grid search, the best result was
obtained in the 200th iteration, with the main hyperparameters of the model, namely the
learning rate and the depth of the regression tree, having values of 0.08 and 9, respectively.

From the results of the feature selection, the importance of all frequency-sensitive
features with CPS1 score are ranked and shown in Figure 5. Figure 5 shows the GBDT
results for the relative importance of the 11 features in the CPS1 model. The percentage of
each feature indicates the associated number of nodes over the whole decision tree that is
shown in Figure 4b. The highest six features, namely AGC down, AGC up, inertia, load
variation, load, and ramp rate, account for 80% of the total number of nodes. In other
words, these features have greater influence on the CPS1 score. It is interesting to note
that the dispatchers originally felt that the amount of pumped-storage load could be an
important factor that affected the CPS1 quality. However, the result of Figure 5 shows that
the influence of the pumped-storage load was not as high as they expected. Consequently,
the frequency-sensitive features that have higher percentage weightings in the rank are
selected to construct the FRM model.

Energies 2021, 14, x FOR PEER REVIEW 7 of 20 
 

 

  
 

1

,

m

i i

im

i
f f

L y f x

f x




 
   

    

(4) 

Then, a regression decision tree (RDT) is constructed to fit the estimated residual 𝛾𝑖𝑚, 

and the terminal regions 𝑅𝑗𝑚 of the decision tree are given. Note that each leaf 𝑅𝑗𝑚 of a 

decision tree can have more than one sample 𝛾𝑖𝑚. However, it is unclear what the real 

output value of each leaf should be if there is more than one sample in the same leaf. 

Therefore, the new residual 𝛾𝑗𝑚 (i.e., the value of each leaf) is calculated by the samples 

of the terminal leaf 𝑅𝑗𝑚, as shown in Equation (5): 

  1arg min ,
i jm

jm i m i

x R

L y f x 



   
(5) 

where 𝑅𝑗𝑚 refers to the jth terminal region in the mth tree. 

Finally, the estimated model 𝑓𝑚(𝑥) as shown in Equation (6) is updated according 

to the new residual 𝛾𝑗𝑚 and the learning rate 𝛼: 

     1

1

Jm

m m jm i jm

j

f x f x I x R 



    (6) 

The entire GBDT procedure is completed according to a set number of iterations (i.e., 

the number of decision trees M) [24]. For this case, the process deals with 120,000 data 

samples. Among the collected inliers, 70% were taken as the training set, with the remain-

der used for testing. To avoid over-fitting, the training set was used to train the model 

using five-fold cross-validation. After finishing all settings of the grid search, the best re-

sult was obtained in the 200th iteration, with the main hyperparameters of the model, 

namely the learning rate and the depth of the regression tree, having values of 0.08 and 9, 

respectively. 

From the results of the feature selection, the importance of all frequency-sensitive 

features with CPS1 score are ranked and shown in Figure 5. Figure 5 shows the GBDT 

results for the relative importance of the 11 features in the CPS1 model. The percentage of 

each feature indicates the associated number of nodes over the whole decision tree that is 

shown in Figure 4b. The highest six features, namely AGC down, AGC up, inertia, load 

variation, load, and ramp rate, account for 80% of the total number of nodes. In other 

words, these features have greater influence on the CPS1 score. It is interesting to note 

that the dispatchers originally felt that the amount of pumped-storage load could be an 

important factor that affected the CPS1 quality. However, the result of Figure 5 shows that 

the influence of the pumped-storage load was not as high as they expected. Consequently, 

the frequency-sensitive features that have higher percentage weightings in the rank are 

selected to construct the FRM model. 

 

Figure 5. Ranking of frequency-sensitive features by importance. 

  

2.7%

3.1%

3.7%

4.3%

5.6%

12.0%

12.4%

13.4%

14.2%

14.2%

14.4%

Hour

Month

Pumping Load Var

Week

Pumping Load

Ramp Rate

Load

Load Var

Inertia

AGC Up

AGC Down

Figure 5. Ranking of frequency-sensitive features by importance.

2.4. CPS1 Model Construction

To reduce the data dimensionality and data processing complexity, only the first six
features in Figure 5 were selected to construct the CPS1 model, i.e., the FRM model. The
method of constructing the CPS1 model was the same as the method of feature selection
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described in Section 2.3. The hyperparameters of the CPS1 model were once again adjusted
using the grid search method and the five-fold cross-validation.

Figure 6 shows the variation of the root mean square error (RMSE) of the CPS1 model
with the number of iterations as a function of the depth and learning rate. The optimal model
performance was obtained using a learning rate of 0.08 and a tree depth of 9. It is seen that
for a constant learning rate u, a simple model with a lower depth (e.g., a tree depth, dmax,
equal to 8) leads to under-fitting compared to the optimal solution (dmax = 9, u = 0.08). By
contrast, a complex model with greater depth (e.g., dmax = 10) converges rapidly during the
first 60 iterations, but reaches the minimum RMSE value only much later. The average RMSE
of the training set and testing set were equal to 15.3% and 17.2%, respectively.
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3. UC Optimization Program for the Taipower System

The generation mix of the Taipower system in 2015 was roughly 76% fossil-fueled, 11%
nuclear, 5% pumped-storage hydro, 4% cascading hydro, 3% PV generation, and 1% other
renewable resources [25]. To feature different generating units for complying with the unit
dispatch constraints. A systematic UC model was constructed using the general algebraic
modeling system (GAMS). This UC model comprised 118 generating units, including
nuclear, coal, combined-cycle, diesel, heavy oil, hydro cascade, and pumped-storage units.
The original aim of the model was to minimize the total system cost (comprising the
fuel cost, the minimum output cost, the start-up cost, and the ancillary service cost) by
performing peak load shifting of the load curve. Having constructed the model with
around 140,000 equations, the UC problem was solved using the mixed integer linear
programming (MILP) method of the Gurobi solver.

3.1. Objective Function

The objective function was designed to minimize the total cost of thermal units in
the whole Taipower system. The total cost includes the incremental fuel cost, minimum
level cost, hot/warm/cold start-up cost and the penalty of the power shortage. In order to
construct the linearized UC model, the incremental fuel cost of each unit is fitted by six
piecewise functions. An example of the incremental fuel cost with the piecewise fitting
function is depicted in Figure 7 and the total cost function is described in Equation (7):

TotalCost = ∑
G

∑
H

PminCostg ·Ug,h + ∑
G

∑
H

∑
S

Pg,h,s · tp · PriceE
g,h + ∑

H
SlackE

h · PenaltyE

+∑
H

SlackAGCUp
h · PenaltyAGCUp + ∑

H
SlackAGCDown

h · PenaltyAGCDown

+∑
G

∑
H

Shot
g,h · SuCosthot

g,h + ∑
G

∑
H

Swarm
g,h · SuCostwarm

g,h + ∑
G

∑
H

Scold
g,h · SuCostcold

g,h

(7)

where PminCostg is the cost of the scheduled power generation of each unit g at minimum
level [unit: New Taiwan Dollar, NTD]; Ug,h is the status of each traditional generator
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g in the period h, h ∈ {1, 2, . . . , H}; tp is the time period in UC [in hour]; Pg,h,s is the
scheduled power generation of each segment s of each unit g in period h [unit: MW];
PriceE

g,h,s is the fuel cost of each segment s of each unit g in period h [unit: NTD/MWh];

SlackE
h , SlackAGCUp

h , SlackAGCDown
h are the slack factor of the requirement for energy, AGC

Up reserve and AGC Down reserve in period h, respectively [unit: MW]; PenaltyE, PenaltyAGCUp, PenaltyAGCDown

are the penalty price for shortage of energy, AGCUp reserve and AGCDown reserve in
period h, respectively [unit: NTD/MW]; Shot

g,h , Swarm
g,h , Scold

g,h are the hot, warm and cold

start-up status of each unit g in period h; SuCosthot
g,h , SuCostwarm

g,h , SuCostcold
g,h are the cost of

each unit g for hot, warm and cold start-up status in period h, respectively [unit: NTD].

Energies 2021, 14, x FOR PEER REVIEW 9 of 20 
 

 

, , , ,

, , , , ,

E E E

g g h g h s g h h

G H G H S H

AGCUp AGCUp AGCDown AGCDown

h h

H H

hot hot warm warm cold

g h g h g h g h g h g

G H G H

TotalCost PminCost U P tp Price Slack Penalty

Slack Penalty Slack Penalty

S SuCost S SuCost S SuCost

      

   

     

  

 

  ,

cold

h

G H


 

(7) 

where PminCostg is the cost of the scheduled power generation of each unit 𝑔 at mini-

mum level [unit: New Taiwan Dollar, NTD]; 𝑈𝑔,ℎ is the status of each traditional genera-

tor 𝑔 in the period ℎ, ℎ ∈ {1,2, … , 𝐻}; 𝑡𝑝 is the time period in UC [in hour]; 𝑃𝑔,ℎ,𝑠 is the 

scheduled power generation of each segment 𝑠 of each unit 𝑔 in period ℎ [unit: MW]; 

𝑃𝑟𝑖𝑐𝑒𝑔,ℎ,𝑠
𝐸  is the fuel cost of each segment 𝑠  of each unit 𝑔  in period ℎ  [unit: 

NTD/MWh]; 𝑆𝑙𝑎𝑐𝑘ℎ
𝐸 ,  𝑆𝑙𝑎𝑐𝑘ℎ

𝐴𝐺𝐶𝑈𝑝
,  𝑆𝑙𝑎𝑐𝑘ℎ

𝐴𝐺𝐶𝐷𝑜𝑤𝑛 are the slack factor of the requirement for 

energy, AGC Up reserve and AGC Down reserve in period ℎ, respectively [unit: MW]; 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐸 ,  𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐴𝐺𝐶𝑈𝑝,  𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐴𝐺𝐶𝐷𝑜𝑤𝑛  are the penalty price for shortage of energy, 

AGCUp reserve and AGCDown reserve in period ℎ, respectively [unit: NTD/MW]; 𝑆𝑔,ℎ
ℎ𝑜𝑡 ,

𝑆𝑔,ℎ
𝑤𝑎𝑟𝑚,  𝑆𝑔,ℎ

𝑐𝑜𝑙𝑑  are the hot, warm and cold start-up status of each unit 𝑔  in period ℎ ; 

𝑆𝑢𝐶𝑜𝑠𝑡𝑔,ℎ
ℎ𝑜𝑡,  𝑆𝑢𝐶𝑜𝑠𝑡𝑔,ℎ

𝑤𝑎𝑟𝑚,  𝑆𝑢𝐶𝑜𝑠𝑡𝑔,ℎ
𝑐𝑜𝑙𝑑  are the cost of each unit 𝑔 for hot, warm and cold 

start-up status in period ℎ, respectively [unit: NTD]. 

 

Figure 7. Piecewise fitting function of the incremental fuel cost of each unit. 

3.2. UC Constraints 

The constraint of balancing requirements of supply-side and demand-side is shown 

as Equation (8), the constraints of unit characteristics are shown as Equations (9)–(19) and 

the reservoir-related constraints are shown as Equations (20) and (21). 

(i)  The balancing requirement of supply-side and demand-side considering the PSHU: 

min

, , , , ,

PSHUp PSHUg E

h g h g g h g h s g h h

G G G S G

Load P tp P U P tp P tp Slack
 

         
 

     (8) 

where 𝐿𝑜𝑎𝑑ℎ is the load requirement in period ℎ[unit: MWh]; 𝑃𝑔,ℎ
𝑃𝑆𝐻𝑈𝑝 is the scheduled 

pumping load of PSHU [unit: MW]; 𝑃𝑔,ℎ
𝑃𝑆𝐻𝑈𝑔

 is the scheduled power generation of PSHU 

[unit: MW]; 𝑃𝑔
𝑚𝑖𝑛 is the minimum output limit of each unit 𝑔 [unit: MW]. 

(ii)  The upper and lower limits of units including thermal, hydro and PSHU: 

min min max

, , , , ,g g h g g h g h s g g h

S

P U P U P P U       (9) 

where 𝑃𝑔
𝑚𝑎𝑥 is the maximum output limit of each unit 𝑔 [unit: MW]. 

(iii)  The ramp up/down limit of units: 

Figure 7. Piecewise fitting function of the incremental fuel cost of each unit.

3.2. UC Constraints

The constraint of balancing requirements of supply-side and demand-side is shown
as Equation (8), the constraints of unit characteristics are shown as Equations (9)–(19) and
the reservoir-related constraints are shown as Equations (20) and (21).

(i) The balancing requirement of supply-side and demand-side considering the PSHU:

Loadh + ∑
G

PPSHUp
g,h · tp =

(
∑
G

Pmin
g ·Ug,h + ∑

G
∑
S

Pg,h,s

)
· tp + ∑

G
PPSHUg

g,h · tp + SlackE
h (8)

where Loadh is the load requirement in period h [unit: MWh]; PPSHUp
g,h is the scheduled

pumping load of PSHU [unit: MW]; PPSHUg
g,h is the scheduled power generation of PSHU

[unit: MW]; Pmin
g is the minimum output limit of each unit g [unit: MW].

(ii) The upper and lower limits of units including thermal, hydro and PSHU:

Pmin
g ·Ug,h ≤ Pmin

g ·Ug,h + ∑
S

Pg,h,s ≤ Pmax
g ·Ug,h (9)

where Pmax
g is the maximum output limit of each unit g [unit: MW].

(iii) The ramp up/down limit of units:

∑
S

Pg,h,s −∑
S

Pg,h−1,s ≤ RRg (10)

∑
S

Pg,h−1,s −∑
S

Pg,h,s ≤ RRg (11)

where RRg is the ramp rate supplied by unit g in period h [unit: MW/min].

(iv) The states of start-up and shut down of units:

Sug,h − Sdg,h = Ug,h −Ug,h−1 (12)
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Sug,h + Sdg,h ≤ 1 (13)

where Sug,h is the start-up status of each traditional generator g in the period h; Sdg,h is the
shut down status of each traditional generator g in the period h.

(v) The minimum up/down time constraints of units

h

∑
t=h−MUg+1

Sug,t ≤ Ug,h (14)

h

∑
t=h−MDg+1

Sdg,t ≤ 1−Ug,h (15)

where MUg is the must up time period of each traditional generator g [unit: hour]; MDg is
the must down time period of each traditional generator g [unit: hour].

(vi) Maximum start-up times per day:

∑
g

Sug,h ≤ MDSg (16)

where MDSg is the maximum start-up time of each traditional generator g per day.

(vii) Hot/warm/cold start-up:

Shot
g,h + Swarm

g,h + Scold
g,h = Sug,h (17)

h−1

∑
t=h−Thw

g

Sdg,t ≥ Shot
g,h (18)

h−Thw
g −1

∑
t=h−Twc

g

Sdg,t ≥ Swarm
g,h (19)

where Thw
g is time interval between hot start-up and warm start-up of each traditional

generator g; Twc
g is time interval between warm start-up and cold start-up of each traditional

generator g.

(viii) The efficiency of the conversion of PSHU:

∑
G

∑
H

(
PPSHUg

g,h · tp
)
= ∑

G
∑
H

(
PPSHUp

g,h · tp
)
· ηPSHU

g (20)

where ηPSHU
g is the conversion efficiency of each PSHU generator g.

(ix) The reservoir model for PSHU:

Qlevel
res,h = Qlevel

res,h−1 −∑
G

(
PPSHUp

g,h−1 · tp
)

/ρg + ∑
G

(
PPSHUg

g,h−1 · tp/ηPSHU
g

)
/ρg (21)

where Qlevel
res,h is the water level of each reservoir [unit: m3]; ρg is the electric-water ratio

[unit: MWh/m3].

3.3. Addional Frequency Control Constraints

Among the selected features, AGC up, AGC down, inertia, and ramp rate are more
capable of being controlled by the generating side management and are thus named as
the frequency-sensitive features that could be implemented inside the UC program. In
this study, the constraints of the frequency control between the supply and demand of
the power system included not only the load requirement and power generation of all the



Energies 2021, 14, 310 11 of 19

units in the whole system, but also the PSHU pumping load [26–29]. The frequency control
requirements specified by the CPS1 model would be incorporated into the UC model to
ensure the model output was CPS1-compliant. The following paragraphs describe the
inertia, AGC up, AGC down, and ramp rate constraints imposed on the UC solution by the
CPS1 model.

The total inertia of the system was composed of the power generation side and the
load demand side. In the actual condition, the inertia of the load demand side could not
be controlled. However, the inertia of the power generation side can be obtained from
the installed capacity and the inertia of the scheduling results, as shown in Equation (22).
Note that IReq

h is the required inertia of the system in each period and is obtained directly
from the CPS1 model. As the installed capacity of the generators increases, the inertia also
increases. The UC optimization program selects the most suitable units by meeting the
system inertia requirement and minimizing cost in every period. Thus:

∑
G

MVAg · Ig ·Ug,h

∑
G

MVAg ·Ug,h + MWRenew
h

≥ IReq
h (22)

where MVAg is the capacity of each traditional generator g and has units of MW, g ∈
{1, 2, . . . , G}; MWRenew

h is the power generation of renewables that do not contribute to
system inertia in each hour; Ig is the inertia of each traditional generator g.

In addition to the system inertia, the system frequency is also affected by the AGC
up, AGC down, and ramp rate features. The AGC up capacity that each unit can supply in
each period is described by Equations (23) to (25) below. Depending on the characteristics
of each unit, if a unit intends to supply the full AGC up capacity, it must first be already
committed and within AGC high, as shown in Equation (23). According to Taipower’s
operation rules, the available AGC up capacity must be less than or equal to the ramp rate
over a three-minute period, as shown in Equation (24). Finally, the total AGC up capacity
provided by all the units must be greater than the total requirement given by the CPS1
model in each period, as shown in Equation (25).

Pmin
g ·Ug,h + ∑

S
Pg,h,s + AGCUpg,h ≤ Pmax

g

(
Ug,h −UAGC

g,h

)
+ AGCHigh

g ·UAGC
g,h (23)

AGCUpg,h ≤ RRg · 3 ·UAGC
g,h (24)

∑
G

AGCUpg,h + SlackAGCUp
h ≥ AGCUpReq

h (25)

where AGCUpAcp
g,h is the scheduled quantity of AGC up of each unit g in period h [unit:

MW]; AGCHigh
g is the maximum limit of the AGC range of each unit g [unit: MW]; UAGC

g,h is
the status of the AGC mode of each unit g in period h.

The AGC Down capacity provided by a unit stabilizes the fluctuation of the system
frequency and is described by Equations (26) to (28). As shown in Equations (26)–(28), the
AGC Down capacity falls between the set point and the AGC low limit of the unit, and
must be less than the ramp rate over three minutes, as shown in Equation (26):

Pmin
g ·Ug,h + ∑

S
Pg,h,s − AGCLow

g ·UAGC
g,h ≥ AGCDowng,h (26)

AGCDowng,h ≤ RRg · 3 ·UAGC
g,h (27)

∑
G

AGCDowng,h + SlackAGCDown
h ≥ AGCDownReq

h (28)

where AGCLow
g is the minimum limit of the AGC range for each unit g [unit: MW].
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The ramp rate of the parallel units in the system also exerts an impact on the CPS1 score
(see Table 1). In the UC model, the total ramp rate of the committed units is constrained by
the following ramp rate requirement determined by the CPS1 model:

∑
G

RRg ·UAGC
g,h ≥ RRReq

h . (29)

3.4. Network Security Constraint

The network security constraint is to ensure system’s load generation balance in UC,
while the line flow limit is also satisfied in the N-1 case. The network topology was built
by PSS/E software including the transmission line of the voltage levels on 161 kV and 345
kV (around 1200 lines). For further details, please refer to [30,31]. The network security
constraint is defined as follows:

∑
G

[(
Pmin

g ·Ug,h,k + ∑
S

Pg,h,s,k

)
· Shi f tFactorg,h,k

]
≤ LineFlowLimith,k (30)

where Pmin
g is the minimum output limit of each unit g [unit: MW]; Ug,h,k is the status

of each generator g in the period h, h ∈ {1, 2, . . . , H} in kth case; Pg,h,s,k is the scheduled
power generation of each segment s of each unit g in period h in kth case [unit: MW];
Shi f tFactorg,h,k is the sensitivity of the line flows in the period h, h ∈ {1, 2, . . . , H} in kth
case regarding the change of. Shi f tFactorg,h,k is calculated by the power flow in PSS/E;
FlowLimith,k is the capacity limit of the transmission line in the period h, h ∈ {1, 2, . . . , H}
in kth case [MW].

4. Integrating CPS1 Model into the UC Optimization Program

As shown in Figure 8, we integrated the UC program described above with the FRM
(i.e., CPS1 model) in an iterative framework to ensure that the UC scheduling output
satisfied the CPS1 target. Before executing the day-ahead UC model, we obtained the day-
ahead load forecast and self-schedule information. Finally, the UC results were exported
to the CPS1 model (i.e., outer loop checking) to compute the corresponding CPS1 score
and to check whether the CPS1 target was achieved. If the CPS1 score could not achieve
the target score, the requirements of the frequency control variables would be increased
through the inner loop to satisfy the target score. Within the inner loop that is shown in the
green block, additional AGC up and AGC down were called for. The updated AGC reserve
would be checked again by CPS1 model (i.e., inner loop checking). If the CPS1 score still
could not achieve the target score, then the requirements of inertia and ramp rate were
increased (This may commit the other offline units). Note that the data resolution inside
the CPS1 model is finer than that of the UC model (minute vs. hour) to closely reflect the
minute-scaled LFC response.

The inertia and ramp rate quantities appear discrete in the UC model because they
are related to the online generator numbers. The inertia and ramp rate quantities are
accordingly adjusted after revising the AGC up and AGC down quantities. The adjustment
of AGC up and AGC down quantities is more direct. That is, if the computed CPS1 score
fails to meet the target score, the AGC up/down requirements are increased by 50 MW
each time (see the left-hand side flowchart in Figure 8). Note that the smaller the increment
of AGC up/down, the more the iterations of the UC procedure. On the other hand, the
larger the increment of AGC up/down, the more the total operating cost. Consequently,
a suitable increment of AGC up/down is determined, i.e., 50 MW. The renewed AGC
up/down range is exported to the CPS1-compliant UC model (CPS1UC) to generate a
UC solution to meet the overall constraints. If the present online units cannot fulfill the
renewed AGC up/down range, the UC program calls another offline unit and updates the
system ramp rate and system inertia by adding the associated unit parameters. If the target
score cannot be reached in three iterations, the program directly calls another generating
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unit online. Finally, the frequency-sensitive features are returned to the UC model for final
rescheduling.
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5. Case Studies

According to NERC’s rule, CPS1 score should be 100% or higher [6]. In Taiwan, Taiwan
Power Company sets the goal of CPS1 score to be 120% so that the dispatchers can have more
margin to deal with daily system variance. The effectiveness of the CPS1UC was evaluated
using two case studies. Case I was taking the real operating data including load demand and
the unit dispatch outcome by manual dispatch (MD). We compared the unit dispatch results
obtained from the CPS1UC outcome with the other two model-based UC: UC combined
with the reduced order load frequency control model (ROLFC-UC) [13], and UC considering
the CPS1 constraint using the long short-term memory (LSTM) algorithm (LSTM-UC) [32].
The Case II was conducted on a hypothetical case in which a photovoltaic (PV) power with
maximum output of 3.9 GW (accounting for 11% of the total system generation capacity)
was added to the Taipower system. In this case study, the aforementioned methodologies
were used to compare the difference of the dispatch outcome. The proposed method was
simulated in a GAMS platform and Python environment running using an Intel Core
E3-1245V5 CPU operating at 3.50 GHz with 32 GB RAM.

5.1. Historical Operation Case (in the Early Morning (First Shift Period))

In this case, we focus on the CPS1 enhancement for the first shift period. Table 2
shows the model validation and total operating cost of the first shift period. Despite the
same load demand in the testing case, the total operating costs of the individual methods
are different due to the different dispatch outcomes. The accuracy of the proposed CPS1
model (i.e., RMSE 17) was better than that of the LSTM model (i.e., RMSE 25) under the
model validation process. In this case, the memory usage of the LSTM is 8 times that of the
GBDT. The training time of the hyperparameter tuning is 10 times that of the GBDT (GBDT
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took 500 s). It is evident that the tree-based ensemble learning algorithm dealing with the
domain knowledge formulation is better than the LSTM.

Table 2. CPS1 scores and requirements of PMS and CPS1UC in the first-shift period (Averaging over eight hours).

Manual Dispatch ROLFC-UC LSTM-UC CPS1UC
(Proposed)

Frequency Response Model NaN reduced-order LFC LSTM
(Neural Network)

GBDT
(tree based)

RMSE of CPS1 on training set (%) NaN NaN 23.2 15.3
RMSE of CPS1 on testing set (%) NaN NaN 25.5 17.2

Total Operating
Cost (NTD) 842 M 852 M 848 M 846 M

Figure 9 shows the details of the four methods in each hour. During the load dropping
period, the MD scenario shows that the operator continued to turn the generating unit off-
line, resulting in low system inertia. The other problem is that the provisions of AGC reserve
(AGC up and AGC down) as well as ramp rate were quite limited due to the insufficient
on-line units. The sequential consequence limited system’s frequency regulation capability,
resulting in low CPS1 score. Compared to the MD scenario, the remaining three methods
required higher Inertia in the UC constraint, the total operating cost still maintained low
among the scenarios. Note that ROLFC-UC did not take the inertia into consideration, it
would need more AGC reserve (AGC up and AGC down) as well as ramp rate to keep
CPS1 at 120%. On the contrary, the LSTM-UC and CPS1UC took inertia as additional UC
constraint. That is the reason why these two methods came up with less regulation reserve
but higher inertia requirement. Although LSTM-UC and CPS1UC led to similar results, the
accuracy of the model evaluation was different.
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5.2. Hypothetical Case (PV Case)

In the Case II (PV Case), the load demand was the same as that in Case I but with a
maximum PV power generation of 3.9 GW (accounting for 11% of the power generation of
the whole system) that was assumed to be integrated into the system.

Figure 10 shows the corresponding CPS1UC scheduling results. The green curve
shows the load demand. The blue curve shows the net load which is obtained by deducting
the PV power generation curve (black dotted line) from the load demand curve. The net
load curve shows that the original peak load was shifted from noon to evening due to the
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addition of PV power generation. In this case, we focus on the daytime period (from 7 a.m.
to 3 p.m.) when the PV power generation was active. Table 3 shows the cost comparison by
the different three methods (i.e., ROLFC-UC vs. CPS1UC vs. LSTM-UC). Figure 11 shows
that the three model-based UC all achieved the target CPS1 score. However, the values of
inertia, ramp rate and AGC reserve (AGC up and AGC down) are different. The common
results of these three methods show that the Inertia values during the high noon hours
were lower than those during the other operating hours. The ROLFC-UC called for more
AGC reserve (AGC up and AGC down) as well as ramp rate to keep CPS1 at 120% due to
the lower inertia value. On the contrary, the CPS1UC and the LSTM-UC took Inertia as
an additional UC constraint to keep the inertia at higher level. Therefore, they came up
with less regulation reserve and ramp rate values. This case shows a trade-off between
Inertia and regulation reserve, which implies that inertia is important for the frequency
stability. For a power system with high penetration renewables, the unit commitment
should consider not only the ramp rate and AGC reserve but inertia to ensure a good
frequency quality.
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6. Conclusions

This paper has proposed a model-based UC (CPS1UC) platform to ensure a CPS1-
compliant unit scheduling outcome. The proposed FRM was constructed by an ensemble
learning technique, the GBDT algorithm, to deal with feature identification and model
training. Unlike the traditional model formulation, the ensemble learning technique
help model define its own structure, tune the model parameters, and validate the model
accuracy. Once the model validation is complete, the quantities of the frequency control
features determined by the UC result were routinely exported to the FRM to check the CPS1
compliance until the UC result achieves the target CPS1 score. The validity and feasibility
of the proposed model-based UC platform were evaluated by two case studies. In Case
I, the proposed CPS1UC effectively exerted the dominant frequency control features to
reach CPS1 target with less operating cost and computing resource. In Case II, system
frequency becomes relatively unstable due to the increasing PV penetration into the system.
To comply with the CPS1 target, it is better to maintain a certain level of system inertia.
The CPS1UC solved this problem by committing several synchronous condensers and gas
turbines on line. The gas turbine is more flexible to be committed in a short time and is
more responsive to the frequency regulation.

As described above, the proposed FRM was constructed based on the mass historical
data, the accuracy of the model could improve to reflect the most updated system as the
proposed CPS1UC platform continuously operates in real time.

To sum up, the important findings of this study are listed as follows:

(1) This study commences by formulating a set of procedures and employing an ensemble
machine learning technique to analyze the real energy management system (EMS)
data of an isolated power system (i.e., 118 generating units) to construct a FRM. The
resulting FRM is then integrated with a UC program to determine the unit scheduling
result, which minimizes the system operating cost while the frequency compliance is
also maintained.

(2) During the period of the controlled frequency with lower compliance, i.e., the early
morning or high penetration RES, the system frequency quality could be improved by
the proposed UC with the integration of the FRM. Testing result shows that retaining
the proper quantity of frequency-sensitive feature, especially Inertia, is the most
effective way to keep the high frequency quality.

(3) The dominant features of the LFC (i.e., parameters of units, load damping, system
inertia) are hard to capture. The proposed method in this paper assists dispatchers to
clearly identify the frequency-sensitive features, and grasp their features effectively.

(4) Power system frequency operation is a nonlinear and complex problem. Compare
to the traditional LFC model, the proposed FRM has the advantage of self-learning
by feeding in the updated inputs so that the model output is more close to the real
system behavior. This feature validates the effectiveness of an artificial intelligent
algorithm in a smart grid system.
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Abbreviations

Indices
g index for unit
h index for time period
i index for samples in GBDT
m index for decision tree number in GBDT
p index for sample in iForest
res index for reservoir
s index for segment
Parameters
tp time period in hour
AGCHigh

g maximum limit of AGC range of each unit g
AGCLow

g minimum limit of AGC range for each unit g

AGCUpReq
h requirement of AGC Up reserve in each period h

AGCDownReq
h requirement of AGC Down reserve in each period h

G total number of units
Ig inertia of each generator g
IReq
g required inertia of system in each period h

Loadh load requirement in period h
MUg must up time period of each generator g
MDg must down time period of each generator g
MDSg maximum start-up time of each traditional generator g per day
MVAg capacity of each traditional generator g
MWRenew

h power generation of renewables
n total sample in iForest
Pmin

g minimum output limit of each unit g
Pmax

g maximum output limit of each unit g
PenaltyE penalty price for shortage of energy
PenaltyAGCUp penalty price for shortage of AGC Up reserve
PenaltyAGCDown penalty price for shortage of AGC Down reserve
PminCostg cost of scheduled power generation of each unit g at minimum level
PriceE

g,h,s fuel cost of each segment s of each unit g in period h
Qlevel

res,h water level of each reservoir
RRg ramp rate supplied by unit g in period h
RRReq

g required ramp rate of system in each period h
S total number of segments
SuCosthot

g,h cost of each unit g for hot start-up status in period h
SuCostwarm

g,h cost of each unit g for warm start-up status in period h
SuCostcold

g,h cost of each unit g for cold start-up status in period h
Thw

g time interval between hot start-up and warm start-up of each generator g
Twc

g time interval between warm start-up and cold start-up of each generator g
α learning rate
ηPSHU

g conversion efficiency of each PSHU generator g
ρg electric-water ratio of each hydro generator g
Variables
AGCUpg,h scheduled quantity of AGC Up of each unit g in period h
AGCDowng,h scheduled quantity of AGC Down of each unit g in period h
Pg,h,s scheduled power generation of each segment s of each unit g in period h
PPSHUp

g,h scheduled pumping load of PSHU

PPSHUg
g,h scheduled power generation of PSHU

Rjm terminal regions of a decision tree in GBDT
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SlackE
h slack factor of requirement for energy in period h

SlackAGCUp
h slack factor of requirement for AGC up reserve in period h

SlackAGCDown
h slack factor of requirement for AGC down reserve in period h

xi input of ith sample in GBDT
yi actual CPS1 value in GBDT
γim estimated residual in GBDT
Binary Variables
Shot

g,h hot start-up status of each unit g in period h
Swarm

g,h warm start-up status of each unit g in period h
Scold

g,h cold start-up status of each unit g in period h
Sug,h start-up status of each generator g in period h
Sdg,h shutdown status of each generator g in period h
Ug,h status of each generator g
UAGC

g,h status of AGC mode of each unit g in period h
Shi f tFactorg,h,k sensitivity of line flows in the period h, h ∈ {1, 2, . . . , H} in kth case
LineFlowLimith,k capacity limit of transmission line in the period h, h ∈ {1, 2, . . . , H} in kth case
Functions
c(n) average path length of iTree constructed by total n samples
E(h(p)) mean height of multiple iTrees h(p)
fm(x) estimated model of GBDT
h(p) path length of pth sample in iTree
L(·) loss function of GBDT
s(p, n) outlier score
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