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Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) expect a promising future in addressing
the major problems associated with production and consumption of renewable energies and meeting
the future societal and environmental needs. Design and fabrication of new proton exchange mem-
branes (PEMs) with high proton conductivity and durability is crucial to overcome the drawbacks of
the present PEMs. Acid-doped polybenzimidazoles (PBIs) carry high proton conductivity and long-
term thermal, chemical, and structural stabilities are recognized as the suited polymeric materials for
next-generation PEMs of high-temperature fuel cells in place of Nafion® membranes. This paper aims
to review the recent developments in acid-doped PBI-based PEMs for use in PEMFCs. The structures
and proton conductivity of a variety of acid-doped PBI-based PEMs are discussed. More recent
development in PBI-based electrospun nanofiber PEMs is also considered. The electrochemical
performance of PBI-based PEMs in PEMFCs and new trends in the optimization of acid-doped PBIs
are explored.

Keywords: fuel cells; polymer electrolyte membranes; proton exchange membranes (PEMs);
polybenzimidazole (PBI); high-temperature PEMs; acid doping; proton conductivity; nanofibers

1. Introduction

Fuel cells, as attractive energy-conversion devices, are able to directly convert chemi-
cal energy stored in hydrogen and other simple organic substances into electrical energy
via an electrochemical reaction. The energy conversion efficiency in fuel cells is up to
60%, much higher than those of conventional combustion-based power plants (~33%) and
internal combustion engines installed in today’s ground vehicles (~20%). More importantly,
fuel cells only produce pollution-free emissions, pure water, and potentially reusable heat.
Together, these features strongly suggest that fuel cells not only address the major problems
associated with the production and consumption of energies but also meet the increasing so-
cietal and environmental needs [1]. To date, several types of fuel cells have been developed,
including alkaline fuel cells (AFCs), polymer electrolyte membrane fuel cells (PEMFCs),
phosphoric acid fuel cells (PAFCs), molten carbonate fuel cells (MCFCs), and solid-oxide
fuel cells (SOFCs) [2–4]. Among various types of fuel cells, PEMFCs are widely regarded
as the most promising for light-duty transportation and portable energy applications.
PEMFCs possess several attractive advantages, such as high energy efficiency, high power
density, rapid start-up, and immediate response to power changes [5–7]. Compared to
SOFCs, MCFCs, and other types of fuel cells that require much higher temperatures of
500–1000 ◦C [3], PEMFCs usually operate at relatively low temperatures of 100–200 ◦C.
The term ‘low temperature’ does not appear to be high from an engineering point of view;
however, operating PEMFCs at higher temperatures can enhance the effectiveness of PEMs
and yield a substantial energy benefits. For example, the adsorption of CO on catalyst
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materials decreases with the increase of operating temperature since catalysts are easily
poisoned by the adsorbed CO at low operating temperatures [6]. When the operating
temperature is higher than 160 ◦C, CO-induced poisoning of catalysts can be notably
suppressed. As a result, PEMFCs can tolerate CO up to 3% and preserve an excellent power
performance in hydrogen fuels [8–11]. In addition, high humidity is essential to main-
tain the proton diffusion in the membranes, but it is not necessary at high temperatures.
Low humidity or no humidity can greatly reduce the risk of fuel cell flooding.

In the view of the architecture of a PEMFC, the membrane electrode assembly (MEA)
is the most important component, which is a sandwiched three-layer membrane structure
comprising of two electrodes, an anode, and a cathode separated by a polymer electrolyte
membrane, also known as a proton exchange membrane (PEM) (Figure 1). The PEM is at
the heart of a PEMFC, as it is crucial to the electrochemical performance of the PEMFC.
The roles of the PEM are: (1) to separate the anode and the cathode, (2) to prevent direct
contact of the reactant gases (e.g., H2 and O2), (3) to allow proton diffusion from the anode
to the cathode, (4) to act as an electron nonconductive layer to avoid electrical shortening of
the MEA, (5) to force electrons through an external circuit to the cathode, and (6) to provide
mechanical integrity to support the electrocatalyst nanoparticles. In addition to the PEM,
both the anode and the cathode include Pt nanoparticles as the electrocatalyst.
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Figure 1. Schematic illustration of a PEMFC, which comprises of an anode and a cathode separated
by a PEM (hydrogenandfuelcell.energy.gov).

In a H2/O2 PEMFC, as schematized in Figure 1, gaseous hydrogen is fed into the anode
and adsorbs onto the catalytic Pt surface, where under Pt electrocatalysis, the hydrogen
molecules are split into protons (H+) and electrons (e−). The protons transport through the
PEM in the center toward the other side of the PEMFC, while the electrons transfer through
an external circuit to the cathode, thus forming an electrical current that can be used to do
work. On the cathode side, the oxygen flows through the channel to the cathode, where it
recombines the incoming protons and electrons to form water and potentially useful heat
as the only by-products. The anode, cathode, and overall reactions are as follows:

Reaction at anode : H2 → H+ + 2e
Reaction at cathode : 1

2O2 + 2e + 2H+ → H2O
Overall reaction : 1

2O2 + H2 → H2O + Electrical Energy + Heat

where the produced water can be removed from the fuel cell.
Although varying for different applications, an ideal PEM for PEMFCs must possess

the following characteristics, especially for electric vehicle applications:

(1) High proton conductivity (>0.1 S·cm−1) in a low-humidity environment and at high
operation temperatures over 100 ◦C;

hydrogenandfuelcell.energy.gov
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(2) Low fuel gas permeability;
(3) Superior electrochemical and thermal stabilities in a harsh environment;
(4) Excellent mechanical properties in both dry and hydrated states;
(5) Sufficient water uptake and moderate swelling;
(6) Outstanding long-term durability (>10 years) in the operating PEMFCs;
(7) Low cost (<$10 kW−1 based on a PEMFCs) and easy fabrication.

Since 1970s, DuPont has developed and commercialized the perfluorosulfonic acid
(PFSA) ionomer-based membranes, with the commercial trademark Nafion®, which have
been broadly used in PEMFCs because of their extraordinary chemical and thermal sta-
bilities and excellent proton conductivity, ~10−1 S·cm−1 or higher [6]. The perfluorinated
Nafion® membranes are composed of carbon–fluorine backbone chains with perfluoro
side chains containing sulfonic acid or carboxylic acid groups [7,9]. Their unique chemical
structure with functional groups endows them the outstanding hydrophilic property.
The unique functional groups also provide Nafion® membranes sufficient water uptake,
which plays an important role in proton conductivity. Nafion® membranes absorb water
in amounts dependent upon the number of functional groups. Yet, the dependence of
the proton conductivity on the water uptake of Nafion® membranes limits the maximum
operation temperature, less than 100 ◦C. A highly hydrated condition is needed to keep
the membrane humidification and maintain the proton conductivity, which requires
complex cooling and humidifying systems [9,12]. In addition to this drawback, Nafion®

membranes also have other disadvantages, including their complicated synthesis pro-
cesses, which leads to high price, $600–1200 m−2 [13] and relatively low mechanical
and chemical stability at high temperatures [7]. These challenges have driven research
to develop low-cost nonfluorinated membrane materials as an alternative to Nafion®

membranes. Therefore, nonfluorinated membranes with high proton conductivity and
high-temperature water-keeping properties are highly desirable to realize their potential
as PEMs in high-performance PEMFCs.

Of potential alternatives to Nafion® membranes, acid- or alkali-doped polybenzimi-
dazoles (PBIs) are considered as one of the most promising polymeric materials for use as
PEMs in PEMFCs [10,14–21]. The acid- or alkali-doped PBI membranes have outstanding
properties that allow them to be used as high-temperature PEMs up to 200 ◦C without
dehydration because of the presence of acid or alkaline groups as the proton carriers.
Moreover, PBI is a relatively low cost nonperfluorinated polymer and exhibits excellent
oxidative and thermal stabilities. Since the ionic conductivity of PBI was first reported
over 40 years ago, great efforts have been made to develop PBI membranes for use in fuel
cells. Figure 2 shows the annual number of publications for keywords: “polybenzimida-
zole (PBI)” and “PBI” plus “fuel cell”, respectively, against the calendar year (based on
Web of Science). It is notable that in the past two decades, the number of publications
on PBI used as PEMs in fuel cells has risen rapidly. Since 2000, the annual number
of publications on “PBI + Fuel Cell” has increased more than 16 times. For instance,
in 2014 there were 201 and 161 publications for “PBI” and “PBI + Fuel cell,” respectively.
Though the annual number of publications slightly decreases after 2014, research in these
two fields is still very active, especially in the optimization of PBI membranes and their
effects on the performance of PEMFCs.
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Experimental investigations on PBI-based PEMs for use in PEMFCs have been ex-
panded rapidly in recent years. Yet, comprehensive review papers on this subject are still
very limited. Thus, in this study we plan to give a timely review on the recent progress
in this field. So far, research of PBIs for use as PEMs can be generally classified into three
categories: (1) synthesis of broad PBI polymers containing doping groups, (2) acid-doped
PBI membranes, and (3) polymeric acid-doped PBI membranes. This review is focused on
modification of PBI membranes via various approaches and relevant comparative study
of these PBI membranes for PEMFCs. Recently developed novel porous PBI nanofiber
membranes for use as PEMs are further reviewed. Conclusions of the present review are
made in consequence.

2. Mechanism of Acid Doping for PBI Membranes

Substantial efforts have been made to explore the mechanisms of acid groups inter-
acting with PBI membranes. Kawahara et al. [22] studied the interaction between PBI and
strong acids in acid-doped PBI membranes by means of FTIR spectroscopy, and found that
acid molecules did not protonate the imidazole groups of PBI. They suggested that acid
molecules interacted with hydrogen bonding OH and N groups of the acid-doped PBI mem-
branes. Based on the proton conductivities measured at varying temperatures (30–90 ◦C)
and isostatic pressure (1–4000 bars), Bouchet et al. [23] proposed an activation mechanism.
Their experimental observations indicate that the acid anion plays an important role in the
proton migration. With this activation mechanism, the isobar and isothermal conductivities
determined three characteristic thermodynamic parameters, i.e., the activation volume
(∆V*, 4–10 cm3/mol), enthalpy (∆H*, 0.6–1.1 eV), and entropy (∆S*, 40–190 J·mol−1·K−1).
The dependences of these three characteristics upon the temperature and pressure were
confirmed to be consistent with thermodynamic predictions, and indicated that proton
transfers from one imide site to another, in which the anionic species participate.

Ma et al. [24] further confirmed that the proton conductivity of acid-doped PBI mem-
branes strongly depends upon the relative humidity (RH), temperature, and acid-doping
level. Accordingly, the temperature dependence of proton conductivity in acid-doped PBI
membranes can be explained by the Arrhenius relation:

σT = σ0 exp(−Ea/RT) (1)

where Ea is the activation energy, σ0 is the pre-exponential factor of proton conductivity, R
is the gas constant, and T is the absolute temperature (Kelvin). Given the doping level of
an acid-doped PBI membrane, proton conductivity increases with temperature and RH.

With phosphoric acid as a general acid agent for doping PBI membranes, the activation
energy decreases with increasing doping level, as a result of excess phosphoric acid in the
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acid-doped PBI membranes. Ma et al. [24] observed that the proton migration becomes
much easier at a higher acid-doping level, leading to an enhanced proton conductivity at
a constant RH and temperature. The increased proton diffusion is expected as a result of
excess phosphoric acid in the PBI membranes. As shown in Figure 3b, at lower doping levels
of 0 < X < 2 (X: Phosphoric acid molecules per polymer repeat unit) before the maximum
protonation of acid-doped PBI groups is reached, the phosphoric acid anions continuously
protonate the N atoms in the imino groups of the doped PBI structure. The formed structure
suggests that the proton diffusion mainly occurs between the protonated and nonprotonated
imino N groups (N-H+ . . . N-H) on the neighboring polymer chains, leading to relatively
low proton conductivity. When the acid-doping level increases above 2, but lower than 3,
the protons migrate along the direction of acid-benzimidazole-acid, as shown in Figure 3c.
Based on the Grotthuss mechanism [24], the presence of cooperative motion for two protons
along the polymer anion chain strongly influences the proton conductivity of acid-doped PBI
membranes. As the doping level further increases to X > 3, more excess phosphoric acid is
doped in the PBI structures, in which the protons mainly migrate along the mixed anionic
chains (H2PO4

− . . . H2PO4 and N-H+ . . . H2PO4
−), as shown in Figure 3d. In addition,

as shown in Figure 3e, the further increased acid level (4.2 < X < 6) allows protons to transfer
along the acid-H2O chains or the acid-anion chains (H2PO4

−-H+ . . . H2PO4
−).
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3. Phosphoric Acid-Doped PBI Membranes for Use as PEMs in Fuel Cells

PBIs carry excellent resistance to inorganic acids and alkalis, even at elevated temper-
atures. Thus, PBI membranes can almost retain their mechanical and chemical properties
after exposure to inorganic acids and alkalis. To improve the proton conductivity of PEMs
used in PEMFCs, strong inorganic acids (e.g., H3PO4, H2SO4, HClO4, HNO3, and HCl)
and inorganic alkalis (e.g., NaOH, KOH, and LiOH) have been used as doping agents
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for various PBIs [25]. These doping agents are compounds with high intrinsic proton
conductivity due to their robust hydrogen bond networks and strong, highly polarizable
hydrogen bonds [26]. Meanwhile, doped PBI membranes allow the operation of PEMFCs
at relatively high temperatures above 100 ◦C. The complexation of PBI polymers or copoly-
mers containing ether amine or amide groups of strong acidity/basicity can typically form
adducts. Recent research has demonstrated that the proton conductivity of acid-doped
PBI membranes primarily depends on the types of doping acid agents, the concentration,
and other related conditions [25]. The relationship between the proton conductivity of
acid-doped PBI membranes and their process parameters raises several outstanding issues,
including the choice of acid-doped PBI membranes for the best performance of PEMFCs
and mechanisms of acid interactions influencing the proton conductivity in acid-doped PBI
systems. To address these issues, the upcoming sections are to review the recent research
progress in PBI membranes doped with various types of acids.

Of all the acid agents, phosphoric acid has been most widely used to dope PBI
membranes in the last two decades. PBI is a basic polymer that can be easily complexed by
a strong acid to form a so-called acid-doped polymer electrolyte. Among others, Wasmus
et al. [18] first studied the proton conductivity in phosphoric acid-doped PBI membranes by
means of solid-state nuclear magnetic resonance (NMR) and demonstrated that phosphoric
acid in PBI membranes has less mobility than that of free phosphoric acid. Wasmus et al.
also suggested that interaction exists between PBI structures and phosphoric acid. Such an
interaction results in the high proton conductivity and maintains the high thermal stability
without external gas humidification. Wainright et al. [27] concluded that direct immersion
of PBI membranes into an aqueous solution of phosphoric acid can lead to improved proton
conductivity. Utilizing IR spectroscopy, Glipa et al. [28] further confirmed that proton
transfers from phosphoric acid to imino groups of PBI as well as the presence of phosphoric
acid at a high doping level.

Table 1 summarizes the recent literature works on the physical, chemical, and elec-
trochemical properties of acid-doped PBI membranes for use in fuel cells. According
to Wainright’s studies [29], the proton conductivity of phosphoric acid-doped PBI mem-
branes depends on the acid-doping level, temperature, and water vapor activity (Figure 4).
For example, the proton conductivity of phosphoric acid-doped PBI membranes at the
doping level of 501 mole percent (m/o) is two times higher than that of the PBI membranes
doped at 338 m/o. In addition to the doping level, proton conductivity also increases with
the increase of the treated temperature and water vapor activity. As shown in Figure 4,
the highest proton conductivity of 0.04 S·cm−1 can be achieved at the doping level of
501 m/o, temperature of 190 ◦C, and water vapor activity of 0.13. To minimize cata-
lyst activity limitation and suppress the poisoning effects from adsorbed intermediates
(e.g., CO), PBI membranes need low gas permeability. When used in methanol fuel cells at
high temperatures over 200 ◦C, acid-doped PBI membranes yielded low methanol vapor
permeability of 1.5 – 15×10−16 m3 (STP) m/m2·s·Pa and the maximum power density
of 0.25 W·cm−2 at current density of 700 mA·cm−2. Acid-doped PBI membranes do not
require external gas humidification for the operation of fuel cells and maintain the fuel cell
performance well without significant decay for over 600 h.
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Table 1. Summary of physical, chemical, and electrochemical properties of high-temperature proton exchange PBI mem-
branes for use as PEMs in fuel cells.

Ref.
No. Polymer Acid/Alkaline Agent

Mechanical
Strength

(MPa)

Doping
Level (wt%)

or (mol)

Proton
Conductivity
(σ, S·cm−1)

Power
Density
W·cm−2

Ref.

[30]

sulfonated poly [2,2′-
(p-oxydiphenylene)-

5,5′-bibenzimidazole]
(SOPBI)

H2SO4 81 154 wt% 1.5 × 10−1

(120 ◦C)
NA Polymer 2007, 48,

5556–5564

[31]

poly(arylene ether
sulfone)-b-

polybenzimidazole
copolymers

H3PO4 31 12 mol 4.7 × 10−2

(200 ◦C)
NA Polymer 2008, 49,

5387–5396

[32]
PBz-modified PBI

electrospun nanofiber
composite

H3PO4 115 13.2 mol 1.7 × 10−1

(160 ◦C)
0.67 J. Mater. Chem. A

2013, 1, 1171–1178

[33] sulfonated PBI H2SO4 1.6 ~50 mol 3.26 × 10−1

(160 ◦C)
0.152

Macromolecules
2010, 43,

6706–6715

[34]
poly(vinylphosphonic

acid)-doped PBI
(PVPA-PBI)

PVPA 91.1 6.1 wt% 1.72 × 10−2

(120 ◦C)
0.252 Sci. Rep. 2013, 3,

1764–1777

[20] alkaline-doped PBI KOH NA NA 9.5 × 10−2

(25 ◦C)
0.372

Electrochem.
Commun. 2000, 2,

697–702

[24] phosphoric
acid-doped PBI H3PO4 NA 630 wt% 5.9 × 10−2

(150 ◦C)
NA J. Electrochem. Soc.

2004, 151, A8–A16

[35]
PBI/sulfonated

polysulfone (SPSF)
polymer blends

polysulfone/
chlorosulfonic acid NA 5.2 mol NA 0.54

Electrochem.
Solid-State Lett.

2002, 5,
A125–A128

[36] phosphoric
acid-doped PBI

polyphosphoric acid
(PPA) 3.5 32 mol

1.0 × 10−2

(RT), 0.26
(200 ◦C)

0.9 Chem. Mater. 2005,
17, 5328–5333

[37]
PA-doped PBI

composite
membranes with ZrP

ZrP/H3PO4 NA 5.6 mol 9.0 × 10−2

(200 ◦C)
NA J. Membr. Sci. 2003,

226, 169–184

[38] PWA/SiO2-doped
PBI

phosphotungstic acid
(PWA)/SiO2

NA 60 wt% 3.0 × 10−3

(100 ◦C)
NA J. Power Sources

2000, 90, 231–235

[39] SiWA-SiO2-PBI SiWA-SiO2 NA 60 wt% 2.23 × 10−3

(160 ◦C)
NA J. Power Sources

2001, 94, 9–13

[40]

fluorine-containing
PBI/HMI-TF

composite
membranes

1-hexyl-3-
methylimidazolium
trifluoromethanesul-

fonate
(HMI-TF)

60.3 NA 1.6 × 10−2

(250 ◦C)
NA

Electrochim. Acta
2011, 56,

2842–2846

[41] SrCeO3-PBI
composite membrane

strontium cerate
(SrCeO3) NA 190 wt% 1.05 × 10−1

(180 ◦C)
0.44 Electrochim. Acta

2015, 154, 370–378

[42] PBI/DAIm TIPN
membrane

poly(1, 2-dimethy-3-
allylimidazolium)
(PDAIm)/KOH

48.2 2.89 wt% 9.67 × 10−2

(80 ◦C)
NA Electrochim. Acta

2017, 257, 9–19

[43] sulfonated PES/PBI
blend membrane

sulfonated poly(ether
sulfone) (PES)/PPA NA 98 wt% 1.21 × 10−1

(70 ◦C)
0.11 Eur. Polym. J. 2010,

46, 1633–1641
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Table 1. Cont.

Ref.
No. Polymer Acid/Alkaline Agent

Mechanical
Strength

(MPa)

Doping
Level (wt%)

or (mol)

Proton
Conductivity
(σ, S·cm−1)

Power
Density
W·cm−2

Ref.

[44] PBI/KOH membrane KOH 7.7 NA 1.84 × 10−2

(RT)
0.031

Int. J. Hydrogen
Energy 2008, 33,

7172–7176

[45] PA/PBI membrane H3PO4 NA 45 wt% NA 0.12
Int. J. Hydrogen
Energy 2009, 34,

9479–9485

[46] CeSPP-doped PBI
composite membrane

Cerium sulfophenyl
phosphate (CeSPP) 18 NA

1.1 × 10−1

(100% RH),
2.4 × 10−3

(0% RH),
(180 ◦C)

NA
Int. J. Hydrogen
Energy 2017, 42,

486–495

[47]
PA-doped

PBI/graphene oxide
composite membrane

H3PO4 NA 13 wt% 1.704 × 10−1

(165 ◦C)
0.38

Int. J. Hydrogen
Energy 2017, 42,

2636–2647

[48] PA-doped PBI/ZrP
composite membrane H3PO4 119 15.4 wt% 2.0 × 10−1

(180 ◦C)
NA

Int. J. Hydrogen
Energy 2017, 42,

2648–2657

[49] PA-doped PBI
membrane H3PO4 NA 75 wt%

6.2 × 10−2

(150 ◦C,
30% RH)

0.185
J. Electrochem. Soc.

2004, 151,
A304–A310

[50] crosslinked PBI-TEBP
membrane H3PO4 77.11 7.9 mol 5.1 × 10−2

(150 ◦C)
NA

J. Mater. Chem.
2011, 21,

2187–2193

[51] PBI-TGIC/SPANi
composite membrane

triglycidylisocyanurate
(TGIC)/sulfonated

polyaniline
(SPANi)/H2SO4

21 NA

1.3 × 10−1

(180 ◦C, 100%
RH); 1.8 ×

10−2 (180 ◦C,
0% RH)

NA J. Membr. Sci. 2018,
549, 660–669

[52]
crosslinked metal

oxide containing PBI
composite membrane

sulfonated TiO2
particles/H3PO4

8 392 wt% 9.8 × 10−2

(160 ◦C)
0.356 J. Membr. Sci. 2018,

560, 11–20

[53] side-chain PBI
membrane PPA 34.3 12.15 wt% 1.1 × 10−1

(80 ◦C)
NA J. Membr. Sci. 2018,

546, 15–21

[54]
PA-doped

crossedlinked PBI-OO
membranes

H3PO4 11 266 wt% 2.6 × 10−1

(160 ◦C)
0.452 J. Membr. Sci. 2017,

544, 416–424

[55] pyridine-containing
PBI membrane H3PO4 12.3 250 wt%

8.3 × 10−2

(160◦C),
1.1 × 10−2

(25 ◦C)

0.460 J. Membr. Sci. 2016,
502, 29–36

[56] PBI containing bulky
substituents

teteraamines and
4,4′-oxybis

(benzoicacid)
8.7 245 wt% 8.8 × 10−2

(160 ◦C)
0.636 J. Membr. Sci. 2016,

513, 270–279

[57]
PA-doped

PBI/PBI-EPA blend
membrane

H3PO4 59.4 260 wt% 6.8 × 10−2

(160 ◦C)
0.527 J. Membr. Sci. 2015,

491, 10–21

[58]
hydroxyl pyridine

containing PBI
membrane

H3PO4 4.6 72 wt% 1.02 × 10−1

(180 ◦C)
0.57 J. Membr. Sci. 2013,

446, 318–325

[59]
PBI-functionalized

SiO2 composite
membrane

H3PO4 98 385 wt% 5.0 × 10−2

(160 ◦C)
0.65 J. Membr. Sci. 2012,

403–404, 1–7
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Table 1. Cont.

Ref.
No. Polymer Acid/Alkaline Agent

Mechanical
Strength

(MPa)

Doping
Level (wt%)

or (mol)

Proton
Conductivity
(σ, S·cm−1)

Power
Density
W·cm−2

Ref.

[60]
PBI/1H-imidazole-4-
sulfonic acid hybrid

membrane

1H-imidazole-4-
sulfonic

acid
33.8 8 mol 7.0 × 10−2

(160 ◦C)
NA J. Membr. Sci. 2012,

399–400, 11–15

[61] PBI-clay composite
membrane H3PO4 105 12 mol 1.2 × 10−1

(150 ◦C)
0.23 J. Membr. Sci. 2011,

383, 78–87

[62] PA-doped PBI
membrane PPA 176 17.2 mol 5.3 × 10−2

(180 ◦C)
NA J. Membr. Sci. 2010,

347, 69–74

[63]
crosslinked PBI

containing branching
structure

H3PO4

78.4
(undoped),

16.9 (doped)
197.1 wt% 3.8 × 10−2

(180 ◦C)
0.404 J. Power Sources

2018, 389, 222–229

[64]
dimensionallystable

PA-doped PBI
membrane

PPMA
111.5

(undoped);
10 (doped)

24.6 mol 2.17 × 10−1

(200 ◦C)
0.32 J. Power Sources

2016, 336, 391–400

[65]
Poly (2,

5-benzimidazole)
(AB-PBI) membrane

H3PO4 NA 6 mol NA 0.305 J. Power Sources
2014, 270, 627–633

[66]
phenylindane-
containing PBI

membrane
PPA 76 (undoped),

10 (doped) 10 mol 6.1 × 10−2

(180 ◦C)
0.36 J. Power Sources

2013, 243, 796–804

[67] ionic liquid doped
PBI membrane

1-H-3-
methylimidazolium

bis (trifluoromethane-
sulfonyl)

imide

NA NA 1.86 × 10−3

(190 ◦C)
0.039 J. Power Sources

2013, 222, 202–209

[27] PVA-PBI polymer
blend membrane KOH 40 35 wt% 1.03 × 10−1

(90 ◦C)
0.076 Renewable Energy

2018, 127, 883–895

[68] polybenzimidazolium
halides

isophthalic acid/a,a’-
dibromo-p-xylene NA NA

5.8 × 10−2

(60 ◦C), 2.9 ×
10−2 (26 ◦C)

0.015
Macromol. Mater.
Eng. 2011, 296,

899–908

[29] phosphoric
acid-doped PBI H3PO4 NA 5 mol 2.0 × 10−2

(150 ◦C)
0.25 J. Electrochem. Soc.

1995, 142, 121–123

[69] alkali doped PBI
membrane KOH NA NA 1.84 × 10−2

(25 ◦C)
0.061 J. Power Sources.

2008, 182, 95–99

[70] alkali doped PBI
membrane KOH NA NA 4.92 × 10−2

(90 ◦C)
0.112

Int. J. Hydrogen
Energy. 2013, 38,

10602–10606

[71] alkali doped PBI
membrane KOH NA NA 2.3 × 10−2

(60 ◦C)
0.016

J. Power Sources.
2011, 196,
3244–3248

[72] sulfonated PBI
membranes H2SO4 1198 NA 8 × 10−2

(120 ◦C)
NA J. Membr. Sci. 2008,

314, 247–256

[73]
sulfonated thermal

treatment PBI
membranes

H2SO4 NA NA 2.4 × 10−5

(20 ◦C)
NA Desalination 2002,

147, 183–189

[74] sulfonated PBI
membranes H2SO4 NA NA 7.5 × 10−5

(160 ◦C)
NA J. Membr. Sci. 2001,

188, 71–78
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Table 1. Cont.

Ref.
No. Polymer Acid/Alkaline Agent

Mechanical
Strength

(MPa)

Doping
Level (wt%)

or (mol)

Proton
Conductivity
(σ, S·cm−1)

Power
Density
W·cm−2

Ref.

[75]
sulfuric and

phosphoric acid
doped PBI

H2SO4/H3PO4 NA NA 4 × 10−3 NA J. Mater. Chem.
1999, 9, 3045–3049

[76] sulfonated ABPBI
with phosphoric acid H2SO4 NA 49 wt% 3.5 × 10−2

(185 ◦C)
NA

Electrochim. Acta.
2004, 49,

4461–4466

[28]
sulfonated PBI

membranes compared
to Nafion

H2SO4 NA 75 wt% 5.4 × 10−2 NA Solid State Ionics
1997, 97, 323–331
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In high-temperature PEMFCs, high concentration of phosphoric acid is required
to provide the high proton mobility within the PEMs. As the phosphoric acid-doping
level increases, large amount of liquid phosphoric acid on the electrolyte–electrode in-
terface and within the electrodes delays or even blocks gas transport and impedes the
electrode reactions by phosphate anion adsorption on Pt catalyst layers. Such situation
raises two outstanding issues. The first is how the distribution of phosphoric acid influ-
ences the performance of PEMFCs; the second is how to optimize the assemblies of the
PEMs and electrodes [45]. Hence, new strategies to design MEAs are highly desirable.
Conventionally, phosphoric acid-free approaches were required to assemble highly acid-
doped membranes and gas diffusion electrodes. Alternative strategies were reported to
combine dried membranes or catalyst-coated membranes with phosphoric acid-complexed
gas diffusion electrodes in order to simplify the MEAs in PEMFCs [15,77]. To elucidate the
optimal phosphoric acid impregnation strategies and the effect of phosphoric acid on the
performance of PEMFCs, Wannek et al. [45] conducted comprehensive studies on high-
temperature PEMFCs assembled by phosphoric acid-doped PBI membranes. Their study
indicated that redistribution of phosphoric acid in PEMFCs is a rather quick process, im-
plying that at the beginning few minutes of cell operation, the amount of phosphoric acid
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transferred to the PBI membrane is high and results in the high initial proton conductivity.
A dynamic equilibrium of phosphoric acid distribution is established after a few hours.
As a result, the distribution of phosphoric acid in the steady state and the fuel cell perfor-
mance were found to be independent of the way to introducing phosphoric acid into the
PBI membranes.

In addition to phosphoric acid-doped PBI membranes, Asensio et al. [49] reported
that poly(2,5-benzimidazole)(AB-PBI) membranes could be prepared by casting methane-
sulfonic acid (MSA) and then impregnated in a phosphoric acid bath for 3 days. To obtain a
similar acid doping level of 75 wt%, AB-PBI membranes need the phosphoric acid concen-
tration lower than that of poly [2,2′-(m-phenylen)-5,5′ bibenzimidazol] (m-PBI). It took only
a few minutes for AB-PBI membranes to absorb nearly all of the allowable phosphoric acid.
To remove the water absorbed from the acid solutions, the acid-doped AB-PBI membranes
were dried at 100 ◦C. As shown in Figure 5, the highest proton conductivity for acid-doped
AB-PBI membranes was 0.062 S·cm−1 at 150 ◦C and 30% RH. The proton conductivity was
found to increase with increasing either temperature or RH. The authors also found both
acid-doped AB-PBI and m-PBI membranes to carry the similar proton conductivity and
performance in the fabricated PEMFCs, leading to a preferable alternative to PBI.

Inorganic nanomaterials (e.g., carbon nanotubes (CNTs), graphene oxides, silica
nanoparticles, and clay nanoparticles) into PBI membranes were reported to improve
the acid-doping level and proton conductivity of PBI membranes [12,47,61,78]. The in-
corporated inorganic nanomaterials also influence the mechanical and thermal properties
of the resulting PBI membranes [79]. Üregen et al. [47] prepared phosphoric acid-doped
PBI/graphene-oxide nanocomposite membranes for use in PEMFCs. Figure 6 shows the
graphene oxides dispersed uniformly in the PBI polymer matrix. The even distribution
can be attributed to the rich oxygen-containing functional groups, which can facilitate the
interfacial regions with the PBI via covalent or noncovalent structures [80,81]. With the
addition of graphene oxides at 2 wt% and an acid-doping level of 13, the PBI membranes
exhibited the highest proton conductivity of 0.1704 S·cm−1, resulting in the high power
density of 0.38 W·cm−2. The high proton conductivity and resulting superior fuel cell
performance can be attributed to the chemical interactions between PBI and graphene
oxides and the rich oxygen-containing functional groups of graphene oxides.
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Figure 5. Typical scanning electron microscopy (SEM) micrographs of (a) top surface of a pure PBI
membrane and (b–d) cross sections of PBI/graphene-oxide nanocomposite membranes at varying
magnifications from low to high. Reprint with permission [47]; 2004, Elsevier.
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Sulfonated graphene oxides have been used to enhance the proton conductivity
of PBI membranes and PEMFC performance [82]. Similar to the PBI/graphene oxides,
the PBI/sulfonated graphene oxides have homogeneous structures through the cross
section of the membrane (Figure 7A,B). Doped only with low phosphoric acid content,
the PBI/sulfonated graphene oxides exhibited high proton conductivity of 0.052 S·cm−1 at
175 ◦C, two times higher than that of PBI/graphene oxides and PBI membranes. These re-
sults suggest that a low phosphoric acid-doping level reduced the free acid in the PBI
membranes, which avoided water loss and proton conductivity loss. Because of the high
proton conductivity, the PBI/sulfonated graphene-oxide nanocomposite membranes in
the PEMFCs produced a peak power density of 600 mW·cm−2 at 175 ◦C and H2/O2
atmospheric pressure (Figure 7C).
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Figure 6. SEM micrographs of the cross section of (A) PBI/graphene oxides and (B) PBI/sulfonated
graphene-oxide nanocomposite membranes after phosphoric acid-doping; (C) polarization and
power density curves of a PEMFC operated at 175 ◦C and H2/O2 atmospheric pressure. Reprinted
with permission [82], 2011, Royal Society of Chemistry.

As demands on PEMFCs are increasing, an ideal electrolyte polymer membrane re-
quires not only high proton conductivity, but also durable mechanical properties [61,83].
To meet the demands of PEMFCs, Plackett et al. [61] fabricated homogeneous and trans-
parent PBI/laponite clay nanocomposite membranes. With addition of modified laponite
clay nanoparticles into PBI, the resulting nanocomposite membranes were then directly
placed in an 80–85 wt% phosphoric acid solution at 50 ◦C for 20 h. As a result, the acid-
doped PBI/clay nanocomposite membranes carried the high acid-doping levels of >8,
indicating the excess of phosphoric acid in the nanocomposite membranes. The excess
of phosphoric acid and the incorporated clay nanoparticles in the PBI membranes led
to the high proton conductivity of 0.12 S/cm at the acid-doping level of 12, tempera-
ture of 150 ◦C, and 12% RH. In addition, without phosphoric acid doping, all PBI/clay
nanocomposite membranes containing respectively 10 wt%, 15 wt%, and 20 wt% of clay
nanoparticles exhibited high tensile strength in the range of 90 to 120 MPa and elongation
of 3% to 5%. After phosphoric acid doping, the tensile strength of the PBI/clay nanocom-
posite membranes significantly decreased to the range of 4 to 8 MPa, but the elongation
at break increased up to 231.8% at 150 ◦C and ambient humidity. Another advantage of
the use of laponite clay nanoparticles for composite membranes is their low hydrogen
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permeability. Compared to the pristine PBI membranes, the PBI/clay nanocomposite
membranes possessed much lower hydrogen permeability ranging from 0.6 × 10−10 to
1.2 × 10−10 mol·cm−1·s−1·bar−1.

To improve the high-temperature performance of PEMFCs, Özdemir et al. [48] pre-
pared PBI based nanocomposite membranes incorporated with inorganic fillers as the
conductive material additive. The proton conductivities of the nanocomposites based on
three types of inorganic nanoparticle fillers—i.e., TiO2, SiO2, and ZrP—were compared.
The compatibility of these fillers with PBI matrix plays an important role in the mechanical
and thermal properties as well as the proton conductivity of the resulting nanocomposite
membranes. As shown in Figure 8, SiO2 nanoparticles were well-dispersed in the PBI
matrix to form a relatively homogeneous structure. Yet, both ZrP and TiO2 nanoparticles
were observed on the cross-section areas, indicating nonhomogeneous structures formed in
the PBI matrix, especially for TiO2 nanoparticles with clear sedimentation. Compared to the
pristine PBI membranes, the tensile strength and elongation of PBI based nanocomposite
membranes reinforced with 5 wt% ZrP nanoparticles only decreased slightly. In addition,
the PBI/TiO2 nanocomposite membranes exhibited the lowest tensile strength of 85.6 MPa
and the lowest elongation of 34% due to the nonhomogeneous distribution of the TiO2
nanoparticles in PBI matrix. These PBI nanocomposite membranes were immersed directly
in 85 wt% phosphoric acid solution for 264 h. The PBI/ZrP nanocomposite membranes
after acid treatment exhibited a high acid-doping level of 15.4, leading to the highest
proton conductivity of 0.2 S·cm−1 at 180 ◦C (Figure 8). The proton conductivity of the
PBI/ZrP nanocomposite membranes is much higher than that of all other membranes in
the temperature range of 140–180 ◦C as the result of different interactions between PBI and
these conductive nanoparticle fillers.
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Figure 8. SEM micrographs of (a) PBI membrane, (b) PBI/SiO2 nanocomposite membrane, (c) PBI/ZrP nanocompos-
ite membrane, (d) PBI/TiO2 nanocomposite membrane, and (e) proton conductivities of PBI and PBI nanocomposite
membranes. Reprinted with permission [48], 2007, Elsevier.

Mack et al. [65] studied the effects of doping time and temperature on the proton
conductivity of phosphoric acid-doped PBI membranes and their fuel cell performance.
They found that the doping level of PBI membranes increased with doping time at all given
temperatures (Figure 9A). Both doping time and temperature played important roles in the
proton conductivity of doped PBI membranes (Figure 9B). Short acid-doping times results in
low doping level and nonuniform acid distribution across the PBI membranes, which leads
to the low fuel cell performance (Figure 9C). As the acid-doping level increases, the amount
of phosphoric acid increases from the surface to the middle of the PBI membranes and more
imidazole groups of PBI in the center of the membranes are contacted with the phosphoric
acid. Mack et al. [65] suggested that a sufficient amount of phosphoric acid could be
optimized by controlling the acid-doping time and temperature (Figure 9D). In addition to
the acid-doping level, acid distribution inside the PBI membranes is also crucial in order to
achieve the high proton conductivity and fuel cell performance.
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Figure 9. (A) Scheme of an AB-PBI membrane immersed in phosphoric acid (right) and the increase of
acid-doping level of AB-PBI membranes with doping time; (B) ex situ proton conductivity of AB-PBI
membranes after acid doping for 1, 3, and 6 h, respectively; (C) cell performance depending on doping
time of AB-PBI membranes doped at 120 ◦C; (D) cell performance depending on doping temperature of
AB-PBI membranes doped for 6 h. Reprinted with permission [65], 2014, Elsevier.
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4. Sulfuric Acid-Doped and Sulfonated PBI Membranes for Fuel Cells

In addition to phosphoric acid-doped PBI membranes, sulfuric acid-doped and sul-
fonated PBI membranes have been developed recently because of their high proton con-
ductivities, which are less dependent on doping level. Glipa et al. [75] have reported
that sulfuric acid can be loaded in PBI membranes to form a PBI-sulfuric acid complex
membrane (Figure 10).
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Figure 10. Schematic configuration of sulfuric acid-protonated PBI structures.

There are three primary ways to synthesize sulfonated PBI. The first is to chemically
modify the PBI backbone using sulfonating reagents (e.g., 4-bromomethylbenzene sul-
fonic acid sodium salt and alkanesultone) [28,84]. The second is to directly polymerize
sulfonated PBI with the sulfonated dicarboxylic acid monomers [49,74]. Although desired
sulfonated PBI structures and control of the degree of sulfonation can be achieved through
this method, it is difficult to synthesize the sulfonated monomers because most of the
sulfonated monomers are not commercially available. The third is post-sulfonation of PBI
through thermal annealing of sulfuric acid-doped PBI membranes at a high temperature
(450–475 ◦C) [85]. The post-sulfonation approach is quite simple, but it usually reduces the
mechanical properties of the resulting membranes and only a low degree of sulfonation
can be achieved after high-temperature treatment.

Recently, Xu et al. [30] reported the synthesis of sulfonated poly [2,2′-(p-oxydiphenylene)-
5,5′-bibenzimidazole] (SOPBI) through post-sulfonating reaction with a synthesized OPBI
polymer (Figure 11). Compared to direct polymerization, post-sulfonation of PBI is very useful
and facile process for preparing SOPBI with controllable degree of sulfonation. The post-
sulfonation process was conducted with sulfuric acid as the sulfonating reagent at 80 ◦C.
After post-sulfonation, SOPBI showed no significant degradation and a good solubility
in DMSO, and it maintained high thermal stability and excellent mechanical properties.
SOPBI also possessed the high proton conductivity of 0.15 S·cm−1 at 120 ◦C in water as well
as good water stability and radical oxidative stability. In addition, the proton conductivity of
sulfonated PBI membranes relied strongly on the degree of sulfonation, which increased with
increasing degree of sulfonation.
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Similar to phosphoric acid-doped PBI membranes, the sulfuric acid-loaded level in
PBI membranes is crucial to the proton conductivity and fuel cell performance. Studies by
Savadogo et al. [21] demonstrated that the proton conductivity of sulfuric acid-doped PBI
membranes was higher than that of phosphoric acid-doped PBI membranes. Under non-
humidified hydrogen/oxygen conditions, MEAs based on sulfuric acid-doped PBI mem-
branes exhibited a higher proton conductivity and thus higher fuel cell performance than
those based on Nafion® membranes. In addition, as reported by Glipa et al. [28], after im-
mersed in a sulfuric acid solution for 2–3 h, sulfuric acid-doped PBI membranes possessed a
high proton conductivity comparable to that of phosphoric acid-doped PBI membranes.

Wu and Scott [86] investigated the interplay among sulfuric acid-doping level, im-
mersion time, sulfuric acid concentration, and the operating temperature on the proton
conductivity of sulfuric acid-doped PBI membranes and fuel cell performance. In general,
the sulfuric acid-doping level in PBI membranes increased with increasing concentration of
sulfuric acid solutions and immersion time (Figure 12A). As shown in Figure 12B, proton
conductivity increases dramatically from about 0.02 to 0.112 S·cm−1 as the RH increases
from 9.7% to 38% at a given acid-doping level of 3.17. Enhanced proton conductivity corre-
sponds to improved fuel cell performance (Figure 12C,D). Yet, the maximum power density
decreases from 137 to 71 mW·cm−2 as the operating temperature increases from 80 to 120 ◦C.
This phenomenon is different from phosphoric acid-doped PBI membranes, based on which
the fuel cell performance increases with the operating temperature. This could be explained
by considering the resistance of the sulfuric acid-doped PBI membranes, which increases
in the catalyst layers with increasing temperature.
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It has been reported that phosphoric acid-doped sulfonated PBI membranes possessed
higher proton conductivity than the counterpart phosphoric acid-doped PBI membranes.
Mader and Benicewicz [33] synthesized the high-molecular-weight, highly phosphoric acid-
doped sulfonated PBI membranes using polycondensation of a sulfonated aromatic diacid
with an aromatic tetraamine (Figure 13). Advantages of this approach include limitation of
side reactions and control over the degree of sulfonation. Phosphoric acid-doped sulfonated
PBI membranes exhibited excellent proton conductivities up to 0.326 S·cm−1 when the tem-
perature increased to 180 ◦C. The proton conductivity increased with the acid-doping level
but did not show any further increase at the acid-doping levels higher than 39 mol phosphoric
acid/PBI. This is due likely to the failure of the acid-doped PBI membranes to hold a large
amount of acid molecules and still maintain the mechanical strength. These membranes
possessed the high acid loadings of >30 mol phosphoric acid/PBI. More importantly, the fuel
cells with the sulfonated PBI membranes had excellent performance with the maximum
voltage of 0.76 V at 0.2 A·cm−2 and 160 ◦C (Figure 14).
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5. Polymeric Acid-Doped PBI Membranes

Inorganic acid-doped PBI membranes have been extensively investigated as promis-
ing alternatives to high-temperature PEMs for PEMFCs. Yet, PBI membranes after acid
treatment typically suffered from their poor mechanical properties. Highly phosphoric acid-
doped PBI membranes require complex post-processes prior to use in fuel cells. To retain
the original mechanical properties of the pristine PBI membranes and eliminate the com-
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plex post-processes, polymeric acids have been widely used as an efficient condensation
agent for synthesis of high-temperature fuel cell PBI membranes [87].

Makoto et al. [88] demonstrated that polyphosphoric acid was highly hygroscopic
and could hydrolyze phosphoric acid upon absorption of water. Moreover, polymeric acid-
doped PBI was able to maintain the high proton conductivity at the operating temperatures
over 200 ◦C and also to exhibit low gas permeability as well as excellent oxidative and
thermal stabilities. Thus, polymeric acids can be used for synthesizing high-acid-doped
PBI membranes. Xiao et al. [14] synthesized PBI polymers using polyphosphoric acid as
both the polycondensation agent and the polymerization solvent, starting from tetraamino-
biphenyl and dicarboxylic acids (Figure 15). After polymerization, the PBI solutions in
polyphosphoric acid were directly cast into films at temperatures of 200–220 ◦C without
isolation or re-dissolution of polymers. During the hydrolysis of the solvent from polyphos-
phoric acid to phosphoric acid, a transition from the solution state to gel state was observed.
The resulting membranes with a desirable suite of physicochemical properties. The authors
also demonstrated that such acid-doped PBI membranes through polyphosphoric acid
possessed good mechanical properties. For example, at high phosphoric acid-doping
levels, the average tensile strength and elongation at break were up to 3.5 MPa and 390%,
respectively. As it is well-known, the proton conductivity of phosphoric acid-doped PBI
membranes is closely dependent upon the external humidity [89]. Nevertheless, to avoid
any external humidification is highly desired for high-temperature PEMFCs. The acid-
doped PBI membranes made by the sol–gel process (Figure 15) exhibited a high acid-doping
level of 32 mol of phosphoric acid per PBI repeat unit. Compared to conventional pro-
cesses, this approach greatly improved the proton conductivity of PBI membranes, such as
0.01 S·cm−1 at room temperature and 0.26 S·cm−1 at 200 ◦C (Figure 16). Furthermore,
the highest power output reached as high as 0.9 W·cm−2 at an ambient pressure with a
current density of 2.5 A·cm−2.

Similarly, Li and coworkers [66] reported a thermally stable and organosoluble
phenylindane-containing PBI membranes using polyphosphoric acid as both solvent and
dehydrating agent (Figure 17). Compared to the pristine PBI, introduction of phenylindane
acid into the PBI backbone disrupted close polymer chain packing, which not only greatly
improved the PBI’s solubility in polar aprotic solvents but also retained the good thermal
stability. The synthesized acid-doped phenylindane-PBI membranes with an acid-doping
level of 10.0 mol phosphoric acid per PBI repeat unit exhibited the highest proton conduc-
tivity of 0.061 S·cm−1 at 180 ◦C. For fuel cell measurements, the highest power density for
phenylindane-PBI membranes reached 0.36 W·cm−2 in H2/air at 180 ◦C when operated at
atmospheric pressure with dry gases, which is higher than that of phosphoric acid-doped
meta-PBI membranes under the similar testing conditions.
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Figure 16. Proton conductivities of acid-doped PBI membranes from different processes: Mem-
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To better understand the dependence of polyphosphoric acid upon the proton conduc-
tivity of PBI membranes, Leykin and coworkers [62] studied the interaction of polyphos-
phoric acid and PBI polymers with different chemical structures and found that absorption
of polyphosphoric acid on PBI membranes during acid-doping was attributed to the three-
stage isotherm sorption. Increase in concentration of the basic fragments in the repeating
units of PBI does not necessarily increase the amount of absorbed polyphosphoric acid after
doping. As a result of protonation of benzimidazole cycles, the developed positive charge
impairs the basicity of the neighboring cycles. The basicity of PBI can be enhanced by
introducing lengthy fragment-separating benzimidazole units in the main chain. Leaching
phosphoric acid from the doped PBIs was virtually independent of the basicity of the
polymers. To obtain doped PBI membranes with superior characteristics, two contradictory
issues should be addressed, i.e., the high concentration of polyphosphoric acid in mem-
branes and the good mechanical properties. Based on experimental results, acid-doped PBI
membranes carried the ultimate tensile strength of 221 MPa and the elongation at break of
62%; the proton conductivity ranging from 0.025 to 0.052 S·cm−1 was achieved at 180 ◦C.
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6. Electrospun PBI Nanofiber Membranes for PEMs

In the above, a variety of acid-doped PBI membranes for use as PEMs have been
produced mainly by the solution-casting technique. With recent development of the
low-cost top-down electrospinning technique for fabrication of various continuous poly-
mer nanofibers of broad polymers [90–95], electrospinning offers an alternative way for
producing highly porous PBI nanofiber mats for PEMs. The schematic setup of an elec-
trospinning process is shown in Figure 18, which consists of a spinneret connected to
a polymer-solution pump, a high-voltage direct current (DC) power supply, and a fiber
collector [96–99]. During a typical electrospinning process, a polymer-solution droplet is
initiated and deformed to form a Taylor cone under the action of the induced electrostatic
field. With increasing electrical field, the droplet is elongated until it overcomes its surface
tension to emit a thin jet. The jet is further stretched and thinned in the electrostatic field
until it loses stability in terms of vigorous jet whipping. After a variety of jet stabilities
accompanying with fast solvent evaporation, the extremely thinned jet is dried and col-
lected as a nonwoven nanofiber mat on the fiber collector. Figure 19 shows the typical
nonwoven PBI nanofiber produced by electrospinning [100]. Back to the beginning of
modern electrospinning in 1990s, Kim and Reneker [101] first produced continuous PBI
nanofibers with the diameter of ~160–300 nm by electrospinning based on a PBI/dimethyl
acetamide (DMAc) solution (with PBI and stabilizer LiCl mass concentrations of ~20 wt%
and ~4 wt%, respectively). The resulting nonwoven PBI nanofiber mat was rinsed with
a non-solvent (methanol) to remove the residual solvent (DMAc) and LiCl, followed by
washing in sulfuric acid that was diluted to 50 wt% with deionized water to stabilize
against shrinkage during heat treatment and to increase the mechanical strength. In recent
years, nonwoven electrospun PBI nanofiber mats have been under growing investigation
as promising PEMs for use in intermediate- and high-temperature PEMFCs [32,102–106].
For instance, the proton conductivity of phosphoric acid-doped nonwoven PBI nanofiber
membranes (composited with polybenzoxazine-PBz) can reach as high as 0.17 S·cm−1 at
160 ◦C under anhydrous condition [32]. In this study, the PBz was introduced to the PBI
nanofibers to serve as the crosslinking agent and also to enhance the formation of long
range proton-conductive channels in the PBI membranes. The highly porous nonwoven
PBI nanofiber mats with high specific surface area provided the advantage for fast, uniform
acid-doping since liquid acids could quickly fill into the pores and diffuse into the PBI
nanofibers, and the nanofibrous structures also provided ultrafast surface proton conduc-
tion. In addition, experimental results also showed that phytic acid-doped electrospun
PBI nanofiber membranes exhibited much higher proton conductivity than Nafion® at
low relative humidity [104]. To explore the mechanisms of proton conduct in acid-doped
PBI nanofibers, Ibaraki et al. [104] measured the proton conductivity along the parallel
and perpendicular directions of aligned PBI nanofiber membranes doped with phosphoric
acid. They found the proton conductivity along the parallel direction was obviously higher
than that along the perpendicular direction especially at low RHs (Figure 20). SEM-based
microstructural analysis indicated that the higher proton conductivity was attributed to
the proton hopping between phosphoric acid groups on the nanofiber surfaces. As a
matter of fact, phosphoric acid groups can be easily aggregated at the nanofiber surfaces,
which built up more effective proton conductive pathways along the fiber directions in
the PBI nanofiber membranes. Muthuraja et al. [105] performed the comparative study of
the proton conductivity of electrospun poly (aryl sulfone ether benzimidazole) (SO2-OPBI)
nanofiber membrane and its counterpart of dense solution-cast membranes, both of which
were doped with phosphoric acid. It was found that the nanofiber membranes possessed
a greatly increased proton conductivity (0.0667 S·cm−1 at 160 ◦C and a doping level of
338 wt%) compared to that of the dense solution-cast membranes (0.033 S·cm−1 at 160 ◦C
and a doping level of 221 wt%), while both membranes showed very good oxidative and
thermal stabilities. Clearly, the porous microstructures of PBI nanofiber mats provide more
surface area and microscale pores for doping more acids, and thus more effective proton
conduct pathways can be established. Recently Kallem et al. [106] systematically analyzed
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the methodology of nanofiber-based PEMs and proposed aligned electrospun nanofibers
for PEMFCs. Three types of conceptual nanofiber-based PEMs can be formulated, i.e.,
(a) proton conducting polymer supported by inert electrospun nanofibers, (b) inert polymer
embedded with electrospun proton-conducting nanofibers, and (c) proton conducting poly-
mer embedded with electrospun proton-conducting nanofibers. Acid-doped PBI nanofiber
membranes can be classified as type (c) as both acid-doped PBI nanofibers and acid be-
tween nanofibers are proton conductive, which shows the great opportunity for developing
high-performance PEMs for intermediate- and high-temperature PEMFCs. In addition,
recent study also showed the promising conditions for PBI nanofiber fabrication, such as re-
placing the commonly used organic solvent DMAc by environmentally friendly and cheap
ethanol/potassium hydroxide (ethanol/KOH) [107]. Expanding research investigations
are expected in the near future for controllable PBI nanofiber fabrication and applications
of PBI nanofiber PEMs for use in PEMFCs.

Energies 2021, 14, x FOR PEER REVIEW 21 of 27 
 

 

 

Figure 18. Electrospinning process for continuous nanofiber fabrication: (a) schematic electrospinning setup, (b) Taylor 

cone (deformed droplet in electrostatic field), (c) stretched droplet in electrostatic field, (d) straight jet in a stable electro-

spinning process, and (e) nonwoven continuous polyacrylonitrile (PAN) nanofibers collected on a fiber collector. Re-

printed with permission [96], 2020, the American Institute of Physics. 

  

Figure 19. Low- and high-magnification (×1000 and ×20,000) SEM micrographs of as-electrospun continuous monolithic 

PBI nanofibers with diameters of ~250 nm. Reprinted with permission [100], 2020, Wiley. 

Figure 18. Electrospinning process for continuous nanofiber fabrication: (a) schematic electrospinning setup, (b) Taylor cone
(deformed droplet in electrostatic field), (c) stretched droplet in electrostatic field, (d) straight jet in a stable electrospinning
process, and (e) nonwoven continuous polyacrylonitrile (PAN) nanofibers collected on a fiber collector. Reprinted with
permission [96], 2020, the American Institute of Physics.
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7. Conclusions

PBI membranes have been under intensive investigation for over two decades for
use in high-temperature PEMFCs. Integration of acid-doped PBI membranes into fuel
cell devices is expected to grow rapidly. Compared to Nafion® and other membranes
based on hydrated polymers, the operating temperatures of acid-doped PBI membranes
are much higher, providing several advantages relating CO tolerance of catalyst layers,
etc. Replacement of Nafion® membranes is considered as one of the technical challenges
and opportunities for developing high-performance hydrogen fuel cells in the near future.
Substantial efforts have been dedicated to the investigation on PBI membranes, which has
led to breakthroughs for PEMFCs.

Focus has been made in this work on the mechanisms and technical approaches to
modifications of PBI membranes as well as design, synthesis, and performances of acid-
doped PBI membranes as PEMs. The literature review made in this study has confirmed
that acid-doped PBI membranes play a crucial role in high-temperature PEMs for hydrogen
fuel cells, with their capability of completely scrapping all humidification systems and high
tolerance to impure fuels, particularly for hydrogen reformed from methane. Phosphoric,
sulfuric, and polymeric acids have been considered as acid-doping agents for developing
high-performance PBI-based PEMs with improved proton conductivities. Significance of
controlling the dispersion and doping level of inorganic and organic acids on the proton
conductivities of PBI membranes has also been discussed. To optimize the proton conductiv-
ity, designs of feasible technical approaches for effective interaction of inorganic or organic
acids with PBI polymer structures are needed. In addition, advantages and drawbacks of
these acids for acid-doped PBI membranes for achieving high proton conductivities have
been addressed. Sulfonated PBI polymers have achieved similar proton conductivities
by direct polymerization. Beyond proton conductivity and electrochemical performance,
the mechanical properties of PBI membranes and relevant effects on acid-doping level
and reaction time on structure and morphology have been addressed. Recent intensive
research expands the already broad landscape of PBI membranes doped with a variety of
acids, which deepens and broadens our outstanding of these high-performance functional
membranes to greatly enhance the performance of PEMs. Finally, electrospinning technique
provides a low-cost method to produce highly porous PBI nanofiber membranes with well
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controlled thickness. These nanofibrous PBI membranes provide technical advantages for
fast and high-load acid doping to achieve high proton conductivity. It can be concluded
that the high-temperature PBIs provide a variety of technological opportunities to develop
high-performance polymer-based PEMs for use in intermediate- and high-temperature
PEMFCs for high-efficiency renewable energy conversion.
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