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Abstract: The common approach to model occupants behaviors in buildings is deterministic and con-
sists of assumptions based on predefined fixed schedules or rules. In contrast with the deterministic
models, stochastic and agent based (AB) models are the most powerful and suitable methods for
modeling complex systems as the human behavior. In this paper, a co-simulation architecture is pro-
posed with the aim of modeling the occupant behavior in buildings by a stochastic-AB approach and
implementing an intelligent Building Energy Management System (BEMS). In particular, optimized
control logics are designed for smart passive cooling by controlling natural ventilation and solar
shading systems to guarantee the thermal comfort conditions and maintain energy performance.
Moreover, the effects of occupant actions on indoor thermal comfort are also taken into account.
This study shows how the integration of automation systems and passive techniques increases the
potentialities of passive cooling in buildings, integrating or replacing the conventional efficiency
strategies.

Keywords: occupant behavior; building energy management system; passive cooling; particle swarm
optimization

1. Introduction

In recent years, moving towards a Nearly Zero Energy Building (NZEB) target, in-
creasing attention has been paid to the development of innovative strategies and technol-
ogy solutions for the energy efficiency of building components and Heating, Ventilation,
Air Conditioning (HVAC) systems [1].

NZEB standard requires a sophisticated dynamic control of the building-HVAC system
to minimize the wastes that can be generated by an incorrect management by users [2,3].
In particular, occupants are considered as one of the major source of microclimate alteration
in building environment, being “passive agents” that generates sensible and latent energy
emissions and pollutants. Moreover, they can be considered as “active agents” interacting
with the building systems e.g., by activating thermostats and artificial lighting, opening,
closing and shading windows, etc. [4]. Hence, the modeling of occupant behaviors should
take into account the effects of users actions in buildings. In Kim [5] an optimal occu-
pant behavior is established that can simultaneously reduce total energy consumption
and improve the Indoor Environmental Quality (IEQ), using an energy simulation and
optimization tool.

Furthermore, even though the occupants actions in the building have a significant
impact on the energy consumption and the indoor environment, only recent studies focus
on this topic, modeling and simulating occupant actions by stochastic models. In [6,7] the
modeling of occupant behaviors is performed in a realistic way by means of an Agent-
Based (AB) approach, where the occupant actions are ruled by Predicted Mean Vote (PMV)
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analysis. Other papers, like [8–11] analyze individual occupant behavior by means of
statistical models, analyzing questionnaires surveys and monitoring campaigns for several
years. In contrast to the deterministic methods, stochastic and AB models are the most
powerful and suitable methods for modeling the complex human behavior [7,12].

Despite the increasing attention to the development of strategies and innovative
technology solutions for the energy efficiency of building components and HVAC sys-
tems [13–16] few studies analyze the building-HVAC integrated system management.
Building Energy Management Systems (BEMSs) are generally devoted to the control of
active systems, such as the HVAC systems ([17–19]). For example, the authors in [20]
design an intelligent controller for determining the optimal ventilation rate, guaranteeing
the required indoor CO2 concentration and minimizing energy consumption. In addition,
the authors in [21] propose a complex predictive control system to guarantee the thermal
comfort and Indoor Air Quality (IAQ) by using HVAC systems and natural ventilation.
Sun et al. [22] present an integrated control system aiming at the minimization of the total
energy costs. Differently from [20–22], in this study, passive strategies are studied with
the goal of reducing thermal discomfort conditions according to adaptive thermal comfort
theory [23].

One of the research areas on building automation, in rapid development, concerns
the harmonization between the concepts of intelligent building and bioclimatic building.
This topic comes out from the integration of active and automation systems with passive
systems, in order to make the building-HVAC system able to adapt to internal and external
changes. From this point of view, some studies [24–26] show that it is possible to achieve
a significant reduction of energy consumption through the adoption of natural ventila-
tion strategies as an alternative to Air Conditioning (AC) systems. The use of building
automation systems is progressivly diffusing and it reserves potential of great interest both
in residential and office buildings [27]. The work in [28] presents the effects of efficient
exterior shades for a mixed residential and office building: external shades are designed to
significantly reduce the cooling loads.

The aim of this paper is proposing a methodology for passive cooling such as natural
ventilation and solar shading for indoor thermal comfort in buildings, based on stochastic
occupant behavior. Moreover the case study refers to a building located in warm climate
and only cooling conditions are evaluated. Even if no mechanical ventilation, such as
ventilating ducts or fans, is employed, we consider the additional use of the AC system
in the case that the passive cooling strategies are not enough to guarantee the thermal
comfort. The control procedure is implemented by a BEMS that opens/closes windows
and blinds on the basis of optimized decision variables. The paper starts by the results
of investigations carried out by the authors in previous studies [29–31]. In the aforemen-
tioned studies, natural ventilation control strategies for passive cooling are proposed and
thermal comfort analysis and energy needs for cooling are evaluated only on the most
discomfortable room. Moreover, the occupant behavior impacting the control decision
is evaluated in a deterministic way by predefined schedules. Indeed, the understanding
of occupant behavior in buildings results often simplified, leading to inaccurate expecta-
tions of building energy performance. The human dimension, especially regarding the
occupant interaction with the building-HVAC system, is often neglected. In most cases,
it causes a significant discrepancy between the expected use of energy and the real energy
consumptions in buildings.

In this context, one of the contributions of this work is to consider and simulate the
human behavior in buildings as a stochastic phenomenon that has a certain probability
of occurrence depending on specific conditions. In particular, the occupant behavior is
evaluated through three possible actions concerning the opening/closing of windows
and blinds and the switching on/off the AC system. Each of the considered action can
occur with a specific probability that depends on the environmental conditions. As far
as we know, this is the first time that the passive cooling strategies are analyzed also
considering the impact of the human stochastic actions for controlling windows, blinds
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and AC system that are modeled and integrated in a complex building co-simulation
architecture implemented by different tools.

Then, the thermal comfort is evaluated by the Long-term Percentage of Dissatisfied
(LPD) index defined in [32,33] and the occupant behaviors are modeled by a stochastic-
AB approach.

Comparing the methods presented in the related literature to design
BEMS [18,20–22,34–36], we point out that generally the BEMS aims to minimize the energy
needs with low attention on occupants comfort and interaction. In particular, the novelty
of this paper can be summarized as follows:

• With particular reference to the summer season, an intelligent BEMS is designed in
order to minimize indoor thermal discomfort and energy needs using passive cooling
strategies such as natural ventilation and solar shading, through windows and blinds
opening/closing.

• The control actions are determined by an optimization procedure based on a co-
simulation architecture that integrates optimization tools, building, HVAC, air flows
and day-lighting simulation models and occupant interactions.

• The occupant behaviors are modeled and simulated by a stochastic-AB approach that
combines for the first time the stochastic control actions of windows, blinds and AC
system implementing these actions in a building co-simulation architecture.

The rest of the paper is organized as follows. Section 2 introduces the building energy
and thermal management problem and Section 3 describes the Co-Simulation architecture.
In addition, Section 4 presents the occupant behavior model and Section 5 proposes the
BEMS control strategy. In Section 6 the case study and the simulation results are presented
and Section 7 reports conclusions and future perspectives.

2. The Building Energy and Thermal Management Problem

Modern buildings are facing the challenge to become smart buildings, where intelli-
gent control systems needs to interact with occupants and to adapt to their needs in order
to guarantee the comfort, minimizing the energy consumption.

In particular, thermal and visual comfort are very important for building occupants.
In this context, this paper aims at designing a management architecture to deal with
stochastic occupant behavior in buildings, optimizing BEMS control rules in order to reduce
thermal discomfort conditions and minimizing the use of energy consuming systems such
as HVAC.

To this purpose, the proposed architecture should include a resilient and intelligent
BEMS able to manage the comfort of the users, according to the adaptive thermal comfort
theory, by favouring the use of passive solutions [23].

In this work, the management architecture takes into account the occupant interactions
with the building-HVAC system in an AB approach. In detail, the agent (i.e., the occupant)
can autonomously open/close windows and solar shading systems and activate the AC for
cooling (no interaction among agents is considered).

In the stochastic AB approach, the interactions of a single autonomous agent with
the building system are driven by the thermal stimuli and based on the adaptive thermal
comfort theory [23]. Indoor and outdoor temperatures are considered as driven factors,
although there are other parameters like CO2 concentration, wind speed and direction,
RH and rainfall that influence the occupant behavior in a building [8,10,37].

On the other hand, the BEMS is designed to optimize the natural ventilation and
solar radiation control, managing the interactions with the users and avoiding conflicts.
In particular, BEMS control logics are designed to minimize thermal discomfort, by inter-
acting with an optimizer. The building energy and thermal performances are evaluated
on the basis of the LPD index [32,33]. We assume the so-called “adaptive approach” [23]
to evalutate the thermal comfort conditions in buildings, which states that “if a change
occurs such as to produce discomfort, people react in ways which tend to restore their
comfort”. Recent studies [38,39] highlighted that in mixed-mode buildings the adaptive
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comfort theory fits better than the static theory (based on PMV and PPD indices) when the
inhabitants use AC only in peak conditions, i.e., the natural ventilation does not guarantee
the thermal comfort. In particular, the LPD index assumes real values in the range [0, 1]
and quantifies predicted thermal discomfort in a specified time period in the building
rooms/zones, according to the following equation:

LPD =
∑θ

t=1 ∑Z
z=1 rz ∗ LDz

∑θ
t=1 ∑Z

z=1 rz
(1)

where

• t is the time step of the considered time period;
• θ is the last time step of the considered time period;
• z is the generic zone of the building;
• Z is the total number of zones;
• rz is the occupancy rate of zone z at time t;
• LDz is the Likelihood of Dissatisfied (LD) inside zone z at time t.

It is remarked that LPD = 1 means maximum discomfort, LPD = 0 means no dis-
comfort.

The LD is an analytical function that estimates “the severity of the deviations from
the thermal comfort conditions, given certain outdoor and indoor conditions at specified
time and space location” [32]. The LD index is computed as follows:

LDz =
e0.008∗∆T2+0.406∗∆T−3.050

1 + e0.008∗∆T2+0.406∗∆T−3.050
(2)

where ∆T = Tin − Tc is the absolute value of the difference between the indoor operative
temperature and the optimal comfort temperature calculated accordingly to EN 16798,
at time t [23].

3. The Co-Simulation Architecture

The proposed co-simulation architecture is shown in Figure 1. Five main model
components, realized by means of different tools, and their interactions are depicted:

• the building and HVAC model that includes the air flow network (TRNSYS, Type 56), [40];
• the day-lighting model (DAYSIM);
• the Particle Swarm Optimization (PSO) module (MATLAB);
• the BEMS actuation module (TRNSYS);
• the occupant behavior model (TRNSYS).

In particular, as it is shown in Figure 1, the building-HVAC system includes all the
building and HVAC features. It is realized by TRNSYS v.17, which is a tool for simulating
the energy flows in buildings, taking into account the weather and indoor conditions,
the indoor loads and the HVAC systems.

TRNSYS is based on an architecture that is modular and flexible and the Dynamic-Link
Library (DLL) allows the creation of new component models. In particular, TRNSYS is
composed by two parts: (1) the engine (kernel), able to process the input data and files,
simulate the system, determine the system convergence, and plot the variables; (2) an
extensive library that includes the components commonly found in electric and thermal
systems, and other routines to manage weather and time-dependent data.

The graphic user interface is Simulation Studio, where building envelope and HVAC
components can be used to model the system. Figure 2 depicts the building-HVAC inte-
grated system. The type 56 block integrates the building model and the TRNFLOW tool
that is used to provide the multi-zone air flow model. Furthermore, complex computations
are possible in TRNSYS thanks to the calculator blocks.
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Moreover, with TRNSYS is possible to simulate the occupant behavior i.e., manu-
ally closing/opening the windows and the blinds and activating the AC system. No-
tably, the outdoor and indoor air temperatures affect the occupant behavior in buildings:
the individuals turn the HVAC on/off, open/close windows and open/close blinds de-
pending on the outdoor and indoor temperatures. In addition, the BEMS module is
activated according to indoor temperature and interacts with an optimization module that
minimizes the LPD index. It is remarked that, in this paper, the BEMS action is auxiliary
and the humans act independently based on the personal comfort sensation.

Figure 1. The co-simulation architecture.

The optimization module implements the Particle Swarm Optimization (PSO) algo-
rithm [41,42]. The PSO is a metaheuristic algorithm based on the simulation of the birds
flocking behavior. With respect to other evolutionary algorithms, the PSO algorithm is
preferrable for the following reasons: it is efficient, robust, proper to handle non-linear
problems and generally needs less function evaluations than genetic algorithms. At the
same time, the PSO leads to better results than other comparable algorithms or at least to
results of the same quality. In the PSO the particles are placed in the search space and are
candidate solutions with respect to the optimization problem. More in detail, in the swarm,
each particle is composed of three vectors of dimension D (search space dimension): The
current position xi, the previous best position pi, and the velocity vi. Each particle of the
swarm evaluates the objective function at its current location xi as a possible solution of
the problem. If xi improves the previous positions, according to the objective function
evaluation, then the coordinates of xi are stored in the vector pi. Moreover, the resulting
best function is stored in the variable pbesti, for comparison on later iterations. Therefore,
each particle has the objective of finding better positions and updating the vectors pi and
pbesti, accordingly. Afterwards, the PSO solve Equations (3) and (4) to iteratively update
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the velocity vi of each particle and determines the new positions xpi, also based on the best
global location (gbest):

vi(k + 1) = wvi(k) + c1r(k)1 [pbesti(k)− xpi(k)] + c2r(k)2 [gbest(k)− xpi(k)] (3)

xpi(k + 1) = xpi(k) + vi(k + 1) (4)

where w is the inertia weight, k is the iteration number, c1 and c2 are the cognitive and social
weight, respectively, r1 and r2 are vectors of random numbers sampled from a uniform
distribution in the range [0, 1].

Finally, a day-lighting model is realized by DAYSIM tool to check that indoor average
illuminance (a.i.) is higher than the minimum threshold of 200 lux [23].

Figure 2. TRNSYS Simulation studio GUI.

4. Modeling Occupant Behavior by Stochastic-AB Approach

In this section the occupant behaviors are modelled and evaluated starting from the
probability of making actions defined by field studies in the related literature [43–45].
In particular, the equation-based modelling approach is used to simulate occupant behav-
iors in buildings. We consider naturally ventilated buildings where mechanical systems
such as ventilating ducts or fans are not used. However, we assume that the AC system is
only activated when an auxiliary action is needed in the case of the passive cooling strate-
gies are not enough to guarantee the thermal comfort. More precisely, the implemented
occupant behaviors include the following actions:

• opening/closing windows;
• opening/closing blinds;
• tuning on/off the AC.

On the basis of the results in [43–45], the occupant behaviors are governed by the following
variables:

• B1 = Tin − Tout, difference between indoor temperature and outdoor temperature;
• B2 = RHin, indoor relative humidity;
• B3, wind speed;
• B4, solar radiation incident on window;
• B5, indoor CO2 concentration;
• B6, solar altitude.
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The sign of the variables indicates the direction of correlation, positive or negative.

4.1. Window Control by Occupants

We recall that paper [43] is the only study that presents an inhabitant behavior model
taking into account several variables that can affect the window operations in living
rooms of residential buildings. Here we implement the occupants window control model
presented in [43]. In particular, the multivariate logistic regression is deployed to evaluate
how the outdoor and indoor variables affect the occupant actions for the windows control.
In order to determine the probability for windows opening and closing a set of coefficients
are evaluated with different values for the two actions. Table 1 shows the coefficients ai,k
associated to each variable Bi for i = 1, . . . , 5, where k = o refers to windows opening and
k = c refers to windows closing. In particular, the probabilities of window opening (k = o)
or closing (k = c), at time t, are obtained by the following logistic regression formula:

pw,k =
e(a1,k∗B1+···+a5,k∗B5)

1 + e(a1,k∗B1+···+a5,k∗B5)
. (5)

Table 1. Coefficients of the multivariate logistic regression model for window human control.

a1,k a2,k a3,k a4,k a5,k

win. open. (k = o) 7.772 0.048 −0.063 −0.038 0.002
win. clos. (k = c) 1.090 −0.031 0.029 −0.459 0.001

4.2. Blind Control by Occupants

The study of Zhang [44] statistically shows that the solar altitude and radiation are
the most influencing factors to predict lowering and/or raising behaviors performed by
occupants on blinds. We adopt the Zhang model based on the logit analysis to compute the
probability of blind opening and closing actions. In particular, solar altitude and radiation
are the two variables that have the strongest correlation with the blind action.

Therefore, the probability for blinds opening and closing are defined and treated
separately on the basis of the cited variables. Hence, the probabilities of blind opening
(k = o) or closing (k = c), at time t, on the basis of the solar radiation are obtained by the
following logistic regression formula:

pb1,k =
e(a4,k+b4,k B4)

1 + e(a4,k+b4,k B4)
. (6)

Analogously, the probabilities of blind opening (k = o) or closing (k = c), at time t,
on the basis of the solar altitude are obtained by:

pb2,k =
e(a6,k+b6,k B6)

1 + e(a6,k+b6,k B6)
. (7)

Note that Table 2 shows the coefficients a4,k, a6,k, b4,k and b6,k reported in formulas (6)
and (7) and the relative standard error values.

Table 2. Coefficients of the multivariate logistic regression model for blind human control.

a4,k (Std.error) b4,k (Std.error) a6,k (Std.error) b6,k (Std.error)

blind open. −3.330 (0.035) 0.003 (0.001) −3.446 (0.049) 0.019 (0.001)
(k = o)

blind clos. −3.170 (0.034) 0.002 (0.001) −3.424 (0.049) 0.018 (0.001)
(k = c)
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4.3. Air Conditioner Activation by Occupants

The AC system is activated by occupants when feeling hot. The stochastic function
proposed in [37,45,46] is used to describe the probability of activating AC as a function of
indoor air temperature.

It is remarked that when the room is unoccupied, the AC is always off. The probability
to turn on/off the AC (pAC) depends on the indoor air temperature: The more the indoor
air temperature is high, the more the probability to turn on the AC is high. The probability
pAC is defined as follows:

pAC = 1− e
−(Tin−Tu)8

L (8)

where:

• Tu is the temperature upper bound, assumed equal to the overheating temperature
according to EN16798, i.e., Tu = Tc + 3 ◦C; furthermore we set Tl = Tc − 3 ◦C as lower
bound;

• L represents the difference between the upper and lower bounds (Tu − Tl), assumed
equal to 6, obtained considering the comfort range according to the adaptive thermal
comfort theory, i.e., Tl < Tin < Tu.

4.4. The Occupant Behavior Model

The thermal comfort status of zone z at time t is described by the variable Yz ∈ {0, 1}:
Yz = 1 means that there are thermal discomfort conditions in zone z according to EN 16798,
Yz = 0 means that the temperature of zone z is comfortable and no action is necessary.
More in detail, thermal comfort conditions are defined as follows:

Yz =

{
1, if Tin > Tu

0, otherwise.
(9)

Furthermore, if the AC is on, it is assumed that the occupant closes the window to
avoid the warm air inlet.

In each room, Tin is calculated and if thermal discomfort is detected (Yz(t) = 1), then
the occupant can react in different ways operating on windows, blinds and AC system. It is
worth noting that there is no a fixed order of occurrence for occupant actions on windows,
blinds and AC system. More specifically, the occupant actions will occur according to the
steps of Algorithm Algorithm 1 that is executed at each time window of 15 min.

At Step 2 the set of probabilities Sp = {pw,o, pw,c, pb1,o, pb1,c, pb2,o, pb2,c, pAC} are com-
puted and a real number pr ∈ [0, 1] is generated at random, with uniform probability,
at each time step. In order to determine if the occupant actions on windows, blinds and AC
take place or not in the next 15 min, the value of pr is compared to Equation (5), (6) and (8),
respectively. Afterwards, at STEP 3 the highest probability p∗ of Sp is selected. In STEPs
4, 5, 6, 7, 8, 9 and 10 Algorithm 1 identifies the highest probability p∗ and verifies that it
is greater than the random generated number pr. If it is true, the action associated with
the identified probability is performed by the occupant, else no action is taken. Moreover,
if the highest probability is p∗ = pAC, then at Step 10 pAC is compared with pr: if pAC ≥ pr
then the AC is turned on else it is turned off. We point out that each action is performed if
it is possible: for instance the window can be opened if it is closed at the beginning of the
considered time window. It should be assumed that the aforementioned probabilities of ac-
tions by occupants are only possible when there is occupancy in the rooms. If no occupancy
is detected, the BEMS optimizes the operation of windows and blinds by maximizing the
potential of passive cooling for natural ventilation and solar radiation.
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Algorithm 1 Occupant behavior.

5. The BEMS Control Strategy

This section presents the BEMS control strategy that is based on the optimization of
windows, blinds and AC activation by minimizing thermal discomfort conditions. Hence,
the windows and blinds are opened and closed by the BEMS at suitable time interval,
when particular indoor thermal conditions are detected, by avoiding, if it is possible,
the activation of the high-consumption AC system.

5.1. Windows Control Strategy

The decision real variables δ1 [◦C] and δ2 [◦C] are introduced to control the activation
of windows in order to minimize thermal discomfort conditions.

In detail, the window opening is defined by the following control variable:

x(t) =

{
1, if Tin > Tc + δ1 and Tin + δ2 < Tout < Tin

0, otherwise
(10)

where x(t) = 1 corresponds to windows opening and x(t) = 0 means that no action will
be done by BEMS. Once the window is open, it will be closed by BEMS when the indoor
temperature is lower than Tl .

The values of the variables δ1 and δ2 are determined by solving the following opti-
mization problem:

Fobj = minδ1,δ2LPD(δ1, δ2) (11)

with:

• δ1 ∈ R and δ1 ∈ [−10 ◦C, 10 ◦C];
• δ2 ∈ R and δ2 ∈ [−10 ◦C, 0 ◦C];

The PSO algorithm is applied to minimize the objective function LPD(δ1, δ2). The cur-
rent position of particles is a two-elements vector xpi(k) = [δ1(k)δ2(k)]T formed by the
values that δ1 and δ2 assume at the iteration k. The range values of δ1 and δ2 are defined
so that indoor temperature is in the comfort range at time t.

Several studies focused on the convergence analysis of the classic PSO and its variants.
In particular, paper [47] suggests to set the PSO coefficients as w = 0.7298, c1 = c2 = 1.49618
in order to lead the PSO algorithm to convergence behavior. Moreover, according to [48–50],
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these settings ensure the best tradeoff between exploration and exploitation and a good con-
vergence rate. Therefore, it is a common choice to set the three aforementioned parameters
in order to have at least local convergence [48]. In addition, it is proved that small popula-
tion size should be avoided and setting the size of the population equal to about 20 particles
prevent stagnation of the PSO algorithm with each of the test functions [47]. Hence, af-
ter an experimental simulation campaign, we come to the conclusion that a population of
20 particles provides an effective convergence in the considered optimization problem.

Moreover, we performed a large set of tests to determine the stop criterion based
on the number of M ∈ N+ consecutive iterations that provide the same value of the
best location gbest. The results show that after M = 5 consecutive iterations the objective
function Fobj = gbest reaches a stationary value (optimal values of [δ1, δ2]).

5.2. Blinds Control Strategy

The second control action of the BEMS is the blinds control that is defined by the
following real control variable:

y(t) =

{
β, if Tin > Tc + δ1 and Tin + δ2 < Tout < Tin

0, otherwise
(12)

where β = {0.25, 0.5, 0.75, 1} is the shading factor representing the ratio between the shaded
windowed area and the windowed area and β = 1 means total shading. If conditions (12)
are not satisfied, then y(t) = 0 and no action will be done by the BEMS. This control on the
blinds can be activated only during the daytime hours (from 6 a.m. to 5 p.m.) and when
the incident solar radiation is higher than 150 W/m2.

Moreover, the shading activation and β value are determined by applying Algorithm 2
that is described in the following. At Step 2 the thermal comfort conditions are checked
and if thermal discomfort is detected then the total shading is applied y(t) = 1 by Step 3,
otherwise Algorithm 2 goes to an end. At Step 4, the a.i. level is checked in order to regulate
the value of β: if the minimum a.i. level is not guaranteed and y(t) 6= 0, Algorithm 2 goes
to Step 5, otherwise ends. Afterwards, at Step 5, y(t) is decreased by 0.25, to decrease
the shading level of 25%. Finally, Algorithm 2 goes back to Step 4 until the condition of
minimum a.i. level is not met and y(t) 6= 0, otherwise ends.

Algorithm 2 Blinds control actions.

5.3. BEMS Control Actions

Table 3 reports the BEMS control actions of windows and blinds. More precisely,
the PSO module receives the indoor temperatures from the BEMS and computes the values
of δ1 and δ2 to minimize the LPD index (see Figure 3). Such values are then sent back
to the BEMS that implements the control strategy of windows and blinds (10) and (12).
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Iteratively, the PSO algorithm evaluates the two decision variables δ1 and δ2. The control
of AC system is defined by the following control variable:

z(t) =

{
1, if Tin > Tu

0, otherwise
(13)

where z(t) = 1 corresponds to AC activation and z(t) = 0 means that no action will be
done by the BEMS. In detail, if thermal discomfort is detected, then the BEMS operates on
windows, blinds and AC in function of the room occupancy, as described in Tables 3 and 4.

Figure 3. The Control System Architecture.

Table 3. Control logics of window, blind and Air Conditioning (AC) applied by Building Energy
Management System (BEMS) if occupancy is detected.

Status Condition

1. window
Tin(t) > Tc(t) + δ1

x(t) = 1 Tin(t) + δ2 < Tout(t) < Tin(t)
x(t) = 0 otherwise

2. blind
Tin(t) > Tc(t) + δ1

y(t) = β Tin(t) + δ2 < Tout(t) < Tin(t)
y(t) = 0 otherwise

3. AC z(t) = 1 Tin(t) > Tu(t)
z(t) = 0 otherwise

Table 4. Control logics of window and blind by BEMS if no occupancy is detected.

Status Condition

1. blind
Tin(t) > Tc(t) + δ1

y(t) = 1 Tin(t) + δ2 < Tout(t) < Tin(t)
y(t) = 0 otherwise

2. window
Tin(t) > Tc(t) + δ1

x(t) = 1 Tin(t) + δ2 < Tout(t) < Tin(t)
x(t) = 0 otherwise

More precisely, if occupancy is detected, the BEMS operates at first on windows and
then on blinds to emphasize the free cooling positive effects (see Table 3). If thermal
discomfort conditions are still detected, it turns on the AC. When the BEMS activates the
AC, the windows are automatically closed to avoid energy wastes. If no occupancy is
detected (see Table 4), the BEMS operates at first on blinds by totally shading the window
to avoid solar radiation inlet and then open the windows. In this case, no action will be
performed on the AC as no occupant is present.
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5.4. Occupant-BEMS Interaction

Finally, the control system procedure is specified as depicted in Figure 3, and the inter-
action among occupant and BEMS is described and modeled by a flow-chart diagram (see
Figure 4). In presence of thermal discomfort situations according to Table 3, the following
two scenarios (named a and b) are possible (see Figure 4).

(a) If room occupancy is detected, two cases can occurr: (i) the occupant agrees with
the BEMS activation, (ii) the occupant does not agree with the BEMS activation. To simulate
this behavior, we assume that the occupant agrees if the LPD index is greater than 0.4.
The value LPD = 0.4 comes out from the analysis of simulations performed to evaluate the
interaction human–BEMS. In particular, we perform a simulation campaign, considering
different values of the LPD index in each simulation: LPD = 0.2, LPD = 0.4, LPD = 0.6 and
LPD = 0.8. It results that if LPD > 0.4, then the user is not able to maintain the comfort
and, therefore, the BEMS action is needed and the user consensus is given to the BEMS.
The BEMS starts the automatic procedure and interacts with PSO module to optimize
δ1 and δ2. After that, the BEMS commands the Building-HVAC system to open/close
windows and blinds to minimize the thermal discomfort, guaranteeing visual comfort.
If thermal discomfort is still detected, the BEMS activates the AC. On the contrary, the BEMS
waits for 15 min and, if thermal discomfort is still detected, the process is repeated.

(b) If no occupancy is detected, the BEMS directly starts the automatic procedure by
only implementing passive strategies (if AC is on, it turned off by the BEMS; if the AC is
off no action is taken).

In consequence of occupant and BEMS actions, indoor environmental conditions
change and are checked iteratively until comfort conditions are satisfied.

Figure 4. The Human–BEMS interaction.

6. Case Study

This section presents a case study to show the effectiveness of the proposed architec-
ture and strategies applied to a residential building. In particular, several simulations have
been performed on a 12 GB RAM, i5 core CPU machine equipped with all the needed tools.
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6.1. Building Description and Usage Schedules Specification

The building is located in Southern Italy (Bari—Italy, 41.09◦N, 16.44◦ E, 6 m above
sea level). It has a surface area of about 100 m2 and is situated at the intermediate floor
(Figure 5). Figure 6 shows the three dimensional model of the building. The main thermal
characteristics of the building opaque envelope and of the windows are indicated in
Tables 5 and 6, respectively. These data are taken from the construction documents of the
building. We consider a tilt-turn window, with possible automated bottom-hinged opening.
Moreover, automated PVC roller shutters are considered as blinds.

The indoor thermal loads are scheduled as follows: artificial lighting activation
time (4 p.m.–8 p.m.); electric appliances activation time (9 a.m.–1 p.m.; 3 p.m.– 8 p.m.).
In addition, Table 7 shows the scheduled daily occupancy of each room, in function of the
forecasted occupancy. It is remarked that the proposed schedules are active from Monday
to Friday. Moreover, an activity level of 70 W/m2 that is a metabolic activity of 1.2 met is
set as occupancy gains, according to [51].

Table 5. Thermal characteristics of building envelope.

U-Value Surface Mass Decrement Thermal Periodic
(W/m2K) (kg/m2) Factor Lag (h) Trasmit.

(W/m2K)

Ceiling 0.47 382 0.1 12 0.033
floor

External 0.31 296 0.08 16 0.026
wall

Partition 0.51 311 0.1 13 0.034
wall

Figure 5. The residential building plant.
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Figure 6. The tri-dimensional model of the building. South-East and North-West view.

Table 6. Thermal and optical properties of windows.

Glass Type U-Value Solar Heat Visual
(W/m2K) Gain Coeff. Transmission

Window 1.7 0.62 0.75
(insul.glass low-Ar)

Table 7. Scheduled daily occupancy of each room.

Room Occupacy Daily Time Slots

Room 1-2-3 9 a.m.–1 p.m.; 3 p.m.–8 p.m.
Dining room 7 a.m.–9 a.m.; 1 p.m.–3 p.m.; 8 p.m.–10 p.m.
Living room 9 a.m.–10 a.m.; 4 p.m.–5 p.m.; 9 p.m.–12 a.m.

6.2. Simulated Cases

This section presents different simulation scenarios in order to assess the benefits of
the designed architecture on the building thermal comfort and energy consumption by
applying the proposed control strategy.

In particular, four cases are considered, where the occupant behaviors models are
evaluated by stochastic-AB approach. More in detail, the four cases are specified as follows:

• Case 1: The AC is off, BEMS is not activated and only the occupant can change the
status of windows and blinds, as described in Section 4;

• Case 2: The AC is off and BEMS is activated for controlling windows and blinds,
and the interaction occupant-BEMS is managed according to Section 5.4;

• Case 3: The AC can be turned on, the BEMS is not activated and only the occupant
can change the status of windows, blinds and AC, as described in Section 4;

• Case 4: The AC can be turned on and BEMS is activated for controlling windows,
blinds and AC, as described in Section 5. The interaction occupant-BEMS is managed
according to the procedure of Section 5.4.

Table 8 shows the four evaluated cases by summarizing the considered assumptions.
In particular, “Y” (i.e., Yes) and “N” (i.e., not) terms identify the actions that can or can not
be performed by occupants or BEMS.

More in detail, in Cases 1 and 2, where the AC system is off, the thermal comfort is
evaluated by computing the LPD index in order to assess the benefits of BEMS control
logics. In Case 3 and Case 4, where the AC system can be activated by the occupants
(Case 3) or by the optimized BEMS control action (Case 4), the energy consumptions
for cooling are evaluated. Therefore, since occupant models are stochastic and depend
on random numbers, a simulation campaign is performed to take into account different
occupant actions and the BEMS control. In particular, in Case 1 and Case 3, the occupant
behavior is simulated in the period June–July for 35 times (i.e., the results do not change
significantly when a number of simulations greater than 35 is chosen). In Case 2, for each
of the 35 simulated occupant behaviors we perform a set of 40 simulations to evaluate the
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BEMS control action on the indoor thermal condition. Then, during the 40 simulations,
the values of δ1 and δ2 can vary according to the PSO optimization, while the occupant
behavior does not change. The results reported for Case 2 are obtained by applying the
optimal pair (δ1,δ2) provided by the 40 simulations. In Case 4, by considering the 35
optimal values (δ1,δ2) obtained in Case 2, we perform 35 simulations to evaluate the AC
energy consumption in the period June–July.

Table 8. Simulated Cases.

Case AC
BEMS OCCUPANT

Window Blind AC Window Blind AC

Case 1 N N N N Y Y N
Case 2 N Y Y N Y Y N
Case 3 Y N N N Y Y Y
Case 4 Y Y Y Y Y Y Y

6.3. Results

The stocahistc occupant behaviors models on window, blind and AC is showed
in Figures 7–9. In particular, the statistical distribution of the aforementioned actions
are depicted. The red lines respresent the trend lines of each probability distributions.
In particular, the following outcomes are pointed out:

• the probability of window opening increases for higher values of the difference be-
tween the indoor and outdoor temperature (Figure 7);

• the probability of blind closing increases for higher solar radiation values (Figure 8);
• the probability of AC activation increases for higher values of indoor temperatures

with respect to those for window opening and blind closing. In detail, the window
opening and blind closing actions are possible if Tin > 20 ◦C, while the AC is activated
if Tin > 26 ◦C (Figure 9).

Figure 7. Distribution probability of window opening by the occupant.
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Figure 8. Distribution probability of blind closing by the occupant.

Figure 9. Distribution probability of AC activation by the occupant.

By the analysis of the LPD index in Cases 1 and 2 of Figure 10, a significant reduction
of total discomfort conditions results from Case 1 to Case 2. In Case 1, the LPD index
varies from 0.41 to 0.55, while in Case 2 it is between 0.25 and 0.38 due to the BEMS actions.
Note that the average LPD index value decreases of about 33% in Case 2. In particular,
the LPD index values of Case 2 are obtained by the PSO optimal values (δ1, δ2) for each
of the 35 simulations. As example, referring to simulation 1 of Figure 10, Figure 11 shows
how the LPD index varies in Case 2 as consequence of the optimization procedure: The
optimal values (δ1, δ2) that determine the minimum values of the LPD index are obtained
at iterations 22, 25, 30, 32, 36–40. In simulation 1 of Case 2 the optimal values of δ1 and
δ2 that minimize the thermal discomfort conditions are the following: δ1 = −2.37 ◦C and
δ2 = −5.75 ◦C. In order to compare the effects of the actions performed by the occupants
and/or by BEMS on LPD index, Figures 12 and 13 show the number of actions performed
for the windows opening and the blinds closing, respectively, by the occupants in Case 1
and both by occupants and by BEMS in Case 2. It results that the BEMS improves the
thermal comfort by allowing the reduction of the occupant actions that can negatively
affect the indoor conditions. The BEMS actions replace the actions made by the occupants,
and comparing Cases 1 and 2, a significant reduction of actions by occupant occurs.
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Figure 10. LPD index in Cases 1 and 2.

Figure 11. LPD index in Case 2 at simulation nr.1.

Figure 12. Number of actions of window opening for Cases 1 and 2.
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Figure 13. Number of actions of blinds closing for Cases 1 and 2.

In accordance with thermal comfort analysis outcomes, the BEMS control allows a
significant decreasing of the energy needs for cooling: in Cases 3 and 4, the average energy
for cooling is about 55 kWh/m2 and 32 kWh/m2, respectively. In particular, as shown
in Figure 14 an optimal pair (δ1,δ2) corresponds to each of the 35 simulations in Case 4.
Therefore, by comparing Cases 3 and 4 results, the proposed passive strategies for natural
ventilation and solar shading lead to an average energy consumption reduction by 42%.

Furthermore, Figure 15 show the number of AC activation by the occupant and the
BEMS in the simulations. In particular, the proposed BEMS allows a significant reduction
of the occupant actions, by optimizing the activation times. In particular, it results how the
BEMS replaces the user actions and the possible negative effects of occupant. The obtained
results demonstrate the validity of the proposed co-simulation architecture that is able to
take into account the unpredictable occupant behaviors in different operating conditions.
Indeed the occupant behaviors actions can be compensated by the control actions of the
intelligent BEMS allowing at significantly reduce thermal discomfort and the use of active
cooling system.

Figure 14. Energy needs for cooling in Cases 3 and 4.
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Figure 15. Number of actions for AC activation in Cases 3 and 4.

6.4. Discussion

Towards the NZEB standard, this work focuses on resilient and intelligent BEMSs able
to adapt to the human action randomness and maintain high level of thermal and energy
performance. In order to better evaluate the occupant behavior in buildings, and thus
its implication on energy and thermal performance, an intelligent BEMS is proposed to
maintain the energy performance at the desired level despite the different operations by
occupants, climate and environmental conditions. Aiming at energy conservation and
thermal comfort, the paper analyzes the occupants role since it is a key issue for building-
HVAC design optimization, performance evaluation, and building energy simulation.

In particular, differently from the work [52] that analyzes five different climate condi-
tions, in this paper the performed analysis focuses on summer season where there is high
interaction of occupants with the building components (adjusting windows, blinds status,
thermostat set-point). On the contrary, in winter season, typically the occupants have less
interaction with the building components [53].

In addition, while [52] evaluates the influence of solar reflectance and renewable
energies on residential heating and cooling demand in sustainable architecture, this work
proposes the application of passive cooling strategies via an intelligent BEMS by taking
into account the stochastic occupant behavior. In particular, the stochastic approach allows
evaluating the effects of the occupants interaction with the building. As a result, it is
necessary to integrate the building automation systems to balance the effect of the non-
optimized occupant actions, minimizing the use of high-consumption systems.

Moreover, while [54] adopt only Matlab Simulink to design the building thermal model
and a BEMS aims at minimizing the energy costs and reducing the peak load by adjusting
the operation time of the HVAC system, we propose a complex co-simulation architecture
integrating three different tools: TRNSYS that is suitable to accurately model the building,
the envelope and thermodynamical systems including the HVAC system; MATLAB to
implement the optimal BEMS control actions on passive systems to guarantee the thermal
comfort; DAYSIM for the day-lighting modeling. In addition, the authors in [54] do not
investigate the use of passive cooling strategies as well as in [35,55]. In [55], they study
how the policy measures can improve the building-level energy efficiency compared to
a smart BEMS with dynamic temperature set points. Among the policy measures no
passive strategies for heating/cooling are analyzed for thermal comfort. In [35], a Multiple
Power-Based Building Energy Management System (MPBEMS) is proposed for the energy
management, by controlling the power consumption equipment of the building.

As remarked in [56], data analytics and simulation need to be integrated for improving
the applicability of data analytics and simulation tools. To this scope, in this paper, starting
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from the real studies of data analytics conducted in [43–45], we integrate these data in
the modeling of occupant behaviors to increase the accuracy, the implications for energy
performance and reduce the limited understanding and inappropriate over-simplification
of the occupant behaviors models. Finally, compared to [43–45] that take into account only
single occupant action for window, blind and AC control, we simulate and analyze the
combination of the three actions.

A comparison of the results obtained in this paper can be done with the works
of [30,31]. In these studies, natural ventilation control strategies for passive cooling are
proposed for thermal comfort and are evaluated without taking into account the unpre-
dictibility of occupant behaviors and they are tested only on the most discomfortable room.
In this paper, by considering the stochastic occupant behaviors, we obtained different
results by the optimization algorithm leading to an improved BEMS control action that
significantly reduces the discomfort conditions.

7. Conclusions

This paper proposes a co-simulation architecture that integrates an intelligent BEMS
to optimize the control of windows and blinds actions for guaranteeing thermal com-
fort through passive strategies. The proposed co-simulation architecture is based on five
main components, implemented through different tools. The building, the HVAC sys-
tem, the BEMS and the occupant behavior are modelled by TRNSYS. The day-lighting
model is evaluated by DAYSIM and the optimization strategy based on PSO is performed
in MATLAB.

More specifically, the main outcomes of this work can be resumed as follows: (i) the
proposed co-simulation architecture allows a consistent model of the building energy
and thermal characteristics, taking into account the occupant-BEMS interaction; (ii) the
designed approach evaluates the stochastic effect of the occupant actions on building
energy and thermal performances; (iii) the application of the optimized passive strategies,
i.e., natural ventilation and solar shading, allows a significant reduction of energy consump-
tion for cooling and at the same time guarantees high levels of thermal comfort; (iv) the
optimization strategies determine the optimal time intervals to close and open windows
and blinds with the aim of minimizing thermal discomfort conditions; (v) the BEMS action
does not conflict with human actions and the interaction human–BEMS shows that the
occupant actions on the buildings components are significantly reduced. It is demonstrated
that the application of suitable control logics increases the potentialities of passive cooling
in buildings, by integrating or replacing the conventional efficiency strategies.

Future developments will concern the modeling of multioccupant behaviors based on
complex agent-based oriented approach, by assuming different stimuli as driven forces
for occupant actions, considering the interaction of agents. In order to enhance high
performance of future buildings (nZEB), the BEMS control rules will be designed according
to the Internet of Energy paradigm by proposing a more complex architecture that can
handle real components. This new architecture will be tested in an equipped dwelling
aiming at minimizing energy consumption and guaranteeing adequate comfort conditions,
at the same time.
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Abbreviations
The following abbreviations are used in this manuscript:

AB Agent-Based
AC Air Conditioner
BAS Building Automation System
BEMS Building Energy Management System
DLL Dynamic-Link Library
HVAC Heating Ventilation and Air Conditioning
IAQ Indoor Air Quality
IEQ Indoor Environmental Quality
LD Likelihood of Dissatisfied
LPD Long term Percentage of Dissatisfied
NZEB Nearly Zero Energy Buildings
PMV Predicted Mean Vote
PSO Particle Swarm Optimization
RH Relative Humidity

Parameters

The following parameters are used in this manuscript:

• t, time step of the considered time period [h]
• θ, last time step of the considered time period [h]
• z, generic zone of the building [-]
• Z, total number of zones [-]
• w, inertia weight
• c1, cognitive weight
• c2, social weight
• r1,r2, random numbers with uniform distribution in [0; 1]
• pr, random real number from [0; 1] with uniform probability [-]
• β, shading factor [-]
• ai,k, coefficient associated to variable Bi for i = 1, . . . , 6 [-]
• b4,k, coefficient associated to variable B4
• b6,k, coefficient associated to variable B6.
• ∆Tin, absolute value of the difference between the indoor temperature and the optimal

comfort temperature calculated accordingly to EN 16798 [◦C]

Variables

The following variables are used in this manuscript:

• rz(t) is the occupancy rate of zone z at time t [−]
• LDz(t), Likelihood of Dissatisfied (LD) inside a zone z at time t [◦C]
• vi(k), velocity of particle i at iteration k
• xpi(k), position of particle i at iteration k
• pbesti(k), vector of best particle positions at iteration k
• gbest(k), best global location at iteration k
• Tin(t), indoor temperature at time t [◦C]
• Tc(t), comfort temperature at time t [◦C]
• Tout(t), outdoor temperature at time t [◦C]
• Tu(t), temperature upper bound at time t [◦C]
• Tl(t), temperature lower bound at time t [◦C]
• L(t), difference between the maximum and minimum comfort temperatures [◦C]
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• Yz(t), thermal comfort status of zone z at time t [−]
• x(t), windows opening/closing [−] at time t
• δ1(t), δ2(t) indoor temperature values at time t [◦C]
• B1(t) = Tin(t)− Tout(t), difference between indoor temperature and outdoor tempera-

ture at time t [◦C]
• B2(t) = RHin(t), indoor relative humidity at time t [%]
• B3(t), wind speed at time t [m/s]
• B4(t), solar radiation incident on window at time t [W/m2]
• B5(t), indoor CO2 concentration at time t [ppm]
• B6(t), solar altitude at time t [degrees]
• pw,k(t), probability of windows opening (k = o)/probability of windows closing

(k = c) at time t
• pb1,k(t), probability of blinds opening (k = o)/probability of blinds closing (k = c) at

time t based on the solar radiation
• pb2,k(t), probability of blinds opening (k = o)/probability of blinds closing (k = c) at

time t based on the solar altitude
• pAC(t), probability of turning on/off the AC system at time t.

Please note that, for the sake of simplicity, in the text the dependence by time t is
omitted for all the variables.
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