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Abstract: In order to reduce the electricity consumption in our homes, a first step is to make the user
aware of it. Raising such awareness, however, demands to pinpoint users of specific appliances that
unnecessarily consume electricity. A retrofittable and scalable way to provide appliance-specific
consumption is provided by Non-Intrusive Load Monitoring methods. These methods use a single
electricity meter to record the aggregated consumption of all appliances and disaggregate it into the
consumption of each individual appliance using advanced algorithms usually utilizing machine-
learning approaches. Since these approaches are often supervised, labelled ground-truth data need
to be collected in advance. Labeling on-phases of devices is already a tedious process, but, if further
information about internal device states is required (e.g., intensity of an HVAC), manual post-
processing quickly becomes infeasible. We propose a novel data collection and labeling framework
for Non-Intrusive Load Monitoring. The framework is comprised of the hardware and software
required to record and (semi-automatically) label the data. The hardware setup includes a smart-
meter device to record aggregated consumption data and multiple socket meters to record appliance
level data. Labeling is performed in a semi-automatic post-processing step guided by a graphical user
interface, which reduced the labeling effort by 72% compared to a manual approach. We evaluated
our framework and present the FIRED dataset. The dataset features uninterrupted, time synced
aggregated, and individual device voltage and current waveforms with distinct state transition labels
for a total of 101 days.

Keywords: data annotation; non-intrusive load monitoring; semi-automatic labeling; smart meter

1. Introduction

The United Nations has outlined 17 Sustainable Development Goals [1] for 2030.
Related to the production and consumption of electric energy are three of them: stop global
warming by clean energy in sustainable cities.

One important step to achieve these goals is to reduce the electricity consumption in
our homes. In the residential domain, energy monitoring and ’eco-feedback’ techniques
have proven to help by raising the awareness of an unnecessary electricity consumption
of a particular device. In addition, these techniques can be combined with demand-side
flexibility to schedule their usage, so that mostly renewable energy is used. Ehrhardt-
Martinez et al. [2] found that per device consumption feedback can achieve high energy
savings when provided frequently. More specifically, according to this meta-study, real-
time aggregated electricity consumption feedback can preserve around 8.6 % of electricity
on average. If the feedback is provided appliance-wise, they spotted that the savings are up
to an average of 13.7 %. These savings are achieved by simply raising the user awareness.
The actual savings might even be increased, if the feedback system is combined with a
smart home agent. Smart home agents can learn user behavior, adapt knowledge of other
agents, and can either directly control smart appliances to save electricity or recommend
specific energy saving strategies to the user.
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There are mainly two possibilities to obtain the device specific electricity consumption
of certain devices in a home. (1) Each device is equipped with a dedicated electricity meter—
known as Intrusive Load Monitoring (ILM). (2) A single electricity meter is installed that
measures the composite load of all appliances. Specially designed and often individually
trained algorithms disaggregate this aggregated load into the load of each individual
consumer. This approach is known as Non-Intrusive Load Monitoring (NILM) and is said
to be more feasible (compared to ILM) as it only requires a single smart electricity meter.

In many countries, the standard electricity meter (Ferrari meter) has already been
exchanged by a smart electricity meter. For instance, the roll-out of smart meters in
Germany began with heavy consumers (>6000 kW h per year) by the beginning of 2020 [3].
Smart meters are promoted to bring features like device level electricity feedback to our
homes by using NILM.

NILM research already started in 1992 when a first NILM prototype was introduced
by G.W. Hart [4,5]. Recent promotion of smart meters, associated research fundings
(e.g., SINTEG [6]), and emerging machine learning algorithms accelerated research in
this field. Even if the concept is already known for 35 years, Armel et al. [7] stated that
”disaggregation may be the lynch-pin to realizing large-scale, cost-effective energy savings
in residential and commercial buildings.” Over the last three decades, various NILM
algorithms have been developed by researchers. These can be roughly categorized into (1)
event-based algorithms which relate signal state changes to appliance state changes (such
as [4] or [8]) and (2) event-less algorithms which estimate an overall system state using
techniques such as Factorial Hidden Markov Models [9,10].

To train, evaluate, and compare these algorithms, public available datasets are used.
Even though a lot of datasets have been published such as REDD [9], UK-Dale [11],
BLOND [12], and many more (see [10] for a comprehensive overview), they can only
hardly be used to compare different disaggregation techniques because of a low sampling
frequency which does not allow to test event-based approaches or because of missing or
incorrect ground truth information. Besides these, no datasets—except BLUED [13] to some
extent—includes labels of internal appliance state changes (e.g., changing the channel of a
television). Unfortunately, such information is of particular interest for event-based NILM
approaches and electricity-based human activity recognition systems such as [14,15].

Retrospectively generating fine grain labels is not possible for datasets that have
already been recorded years ago and hardly possible while generating new datasets. It
would require the residents to manually log every action in the home (e.g., every key-press
of the television remote) with precise timestamps. In other domains such as activity recog-
nition, the problem of generating ground truth data is typically addressed by recording a
video contemporaneous to e.g., accelerometer signals. The labeling step is then performed
manually afterwards by going through the video on a frame by frame basis. This technique
could hardly be applied to electricity datasets as: (1) electricity datasets typically cover a
long time period of several weeks or months, (2) privacy concerns if all rooms or residents
are equipped with a camera, and (3) internal or automatic state changes of appliances (like
the cooling cycle of the fridge) can not be identified via video.

Therefore, we propose a hardware and software framework to generate and label data
for NILM that feature fine-grained labels based on intrusive meters, additional sensors,
and a smart labeling tool. The system allows to record time synced data of a home’s
electrical input (aggregated data) and nearly all individual consumers. Furthermore,
smart appliances are incorporated to log their states. For devices that do not expose their
states (e.g., old TVs), custom logging devices are used such as infrared sniffers. A post-
conducted, semi-automatic algorithm identifies appliance steady states and state changes
in the individual appliance data and applies preliminary labels to the data. Therewith,
the overall labeling effort is reduced significantly to a human supervision step.

This report summarizes two publications [16,17] and extends them by (1) including
more related work, (2) an in depth explanation of the used hardware and software compo-
nents bundled into the proposed expandable framework, and (3) a deeper evaluation of
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the FIRED dataset that has also been extended to include more recording days and high
quality event labels.

The remainder of the paper is structured as follows: Section 1.1 describes how others
have recorded and labeled NILM datasets. In Section 2, we identify remaining challenges to
record NILM datasets and describe the hardware and software of our proposed framework.
We successfully utilized the framework to generate and label the FIRED [17] dataset which
we present in Section 3. Finally, a discussion of the FIRED dataset and our observations
with our framework concludes the paper in Sections 4 and 5.

1.1. Related Work

As interest in evaluating and comparing electricity related algorithms has increased
over the recent decade, several datasets and the hardware used to record them have
been published. Some of these datasets which have been recorded either in residential or
industrial environments are briefly discussed in the following.

The Reference Energy Disaggregation Dataset (REDD) was introduced by Kolter et al.
in 2011 [9]. The authors used a custom-built meter to record the whole house electricity
consumption of six different homes in the US. NI-9239 (National Instruments) analog to
digital converters were used to measure the mains’ voltage and SCT-013 (YHDC) split core
current transformers to measure current in a secure and non-intrusive way. The readings
were acquired by a recording laptop at 16.5 kHz with an ADC resolution of 24 bit. High
frequency mains’ data of the complete recording duration is, however, only available as
compressed files generated with a custom lossy compression. Socket and sub-circuit-level
data are only available as unevenly sampled low frequency data of approximately 1/3 Hz.
Furthermore, these data show gaps of several days.

The UK Domestic Appliance-Level Electricity dataset (UK-DALE) introduced by
Kelly et al. in 2015 [11] covers the whole house electricity demand of five homes in the
UK. In particular, three of the houses (1, 2, and 5) have been recorded at a sampling rate of
16 kHz. The aggregated power consumption was recorded with off-the-shelf USB sound
cards with stereo line input. AC-AC transformers were used to scale down the voltage,
while split core current transformers were used to measure current. The recording duration
of house 1 was up to 1629 days resulting in the longest whole house recording known
to us. Appliance level data was sampled using off-the-shelf 433 MHz electricity meter
plugs (Eco Manager Transmitter Plugs developed by Current Cost) paired with a custom
self-developed base station. Devices directly connected to the mains are metered using
current clamp meters (Current Cost transmitter) that are sampled using the same custom
base station. The data of these devices were sampled with a low sampling rate of around
1/6 Hz and contains several gaps too.

The Electricity Consumption and Occupancy (ECO) dataset was introduced by Beckel
et al. in 2014 [18]. The authors leverage the communication interface of an off-the-shelf
smart electricity meter (E750 from Landis + Gyr) to read out the aggregated consumption
of six homes in Switzerland. The consumption data include different electricity related
metrics such as active power, RMS voltage, and current as well as the phase shifts of
all three supply legs. Furthermore, 6–10 Plugwise smart plugs have been deployed per
house to record individual appliance active power measurements of selected appliances
at around 1 Hz (the actual sampling rate varied due to a sequential readout, but the data
have been resampled to 1 Hz). Home occupancy information is also available recorded
by tablet computers and passive infrared sensors. The low sampling rate, dropouts, and
low individual appliance coverage makes it difficult to use the dataset to evaluate event-
based NILM and activity recognition approaches, as multiple events may happen between
two samples.

The Almanac of Minutely Power dataset (AMPds) was introduced by Makonin et al. [19]
in 2013. It features electricity, water, and gas readings at one minute resolution of a residen-
tial building in Canada. They used an off-the-shelf Powerscout18 meter (DENT Instruments)
to record the whole house consumption and the consumption of individual circuits over a
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time period of two years. Data from the same house is also available at 1 Hz resolution in
the Rainforest Automation Energy (RAE) Dataset [20] introduced by the same authors in
2018. The RAE dataset covers 72 days of electricity data without any power events marked.

In the non-residential domain, Kriechbaumer et al. proposed the Building-Level Office
eNvironment Dataset (BLOND) in 2018 [12]. They recorded aggregated and device level
data of an office building in Germany over a time period of around 260 days. The authors
used custom-built hardware for both aggregated and individual appliance readings. At an
aggregated level, they used Hall effect current transformers and AC-AC transformers
to record the 3-phase power grid with up to 250 kHz. Individual appliances have been
recorded using the same principle (AC-AC transformer + Hall effect current transformers)
embedded into off the shelf power strips with up to 50 kHz. Their dataset is split into two
measurement series. BLOND-50 features 50 kHz aggregated and 6.4 kHz device level data
over 213 days and BLOND-250 features 250 kHz aggregated and 50 kHz device level data
over 50 days. For both sets, the 1 Hz apparent power has been derived from the voltage
and current waveforms. However, downloading the dataset requires storing ≈40 TB of
data. Moreover, the authors have not used their recording system to generate a residential
dataset yet.

These datasets have successfully been used to evaluate different event-less NILM
algorithms (e.g., in [10,18]). Event-based NILM methods, however, require information
about all appliance events in order to evaluate the detection and classification of these
events. Such information is not available in the presented datasets. The lack of datasets
for event-based NILM algorithms has already been explored by Pareira et al. in [21]. They
proposed a post-conducted labelling approach which can be applied to the individual
device data of a dataset. Their method uses an automatic event detector based on the log
likelihood ratio to recognize events in the power signal. They evaluated the detector using
the REDD [9] and AMPds [19] datasets. It achieved F1 scores of 84.52 % for REDD and
94.87 % for AMPds. The detector results highly depend on the quality of the data and set
parameters. Therefore, a supervision is still required.

The Building-Level fUlly-labeled dataset for Electricity Disaggregation (BLUED) in-
troduced by Anderson et al. [13] in 2012 was specifically recorded with event-detection in
mind. The authors recorded voltage and current measurements with a resolution of 16 bit
and a sampling rate of 12 kHz. Significant appliance transients were labeled manually
and using additional sensors and switchable sockets. However, no individual appliance
electricity measurements are available in this dataset.

We identified different shortcomings of existing datasets: (1) Larger time periods in
which no data or only a part of the data are available (REDD, ECO, UK-DALE). (2) Rela-
tive low sampling rate for appliance level data (REDD, UK-DALE, ECO, AMPds) or no
appliance level data at all (BLUED). (3) Missing information about the time and type of
appliance events (REDD, ECO, UK-DALE, BLOND, AMPds). (4) Unknown number and
type of devices which are not monitored individually (ECO, UK-DALE, BLUED, AMPds).
(5) No standard procedure to load the data or explore the dataset.

2. Materials and Methods

The shortcomings of existing datasets have been expressed in Section 1.1. In order
to overcome these shortcomings, we define a set of challenges that need to be addressed
when recording datasets to evaluate load monitoring or other electricity related algorithms
in the residential domain. In particular, event-based NILM algorithms and event detection
algorithms cannot be evaluated using the existing datasets, as they lack ground truth
information (time and type) of events. The challenges have been summarized in Table 1.
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Table 1. Challenges that need to be addressed when recording datasets for Non-Intrusive Load Monitoring.

ID Challenge

C1 Simultaneous recordings of a home’s aggregated electricity consumption and the consumption of the individual
appliances. The individual data can be used to validate the appliance estimates of NILM algorithms. Furthermore, it can
be explored how semi-supervised hybrid NILM algorithms such as [22] can benefit from individual appliance data.

C2 High sampling rates of the aggregated and individual appliance data. This allows for the extraction of high frequency fea-
tures from the individual waveforms which might further improve traditional NILM algorithms. Kriechbaumer et al. [12]
focused on recording a dataset with a very high sampling rate but, therefore, require to download ≈75 GB of data per
day. To not sacrifice usability, a trade-off between high sampling rates and file size needs to be examined.

C3 Continuous data recording for multiple days is crucial to understand and explore different consumption behavior based
on the time-of-day or day-of-week.

C4 High quality dataset labels to evaluate event-based NILM and event detection algorithms. These labels should consist
of a timestamp describing when the event occurred, the device responsible for the event and a textual description of the
event.

C5 High temporal accuracy of the data and its labels is required. Labels should always reflect the associated change in the
signal. This requires that the data streams are in sync and do not drift apart.

C6 Usability is one of the most underrated factors of a dataset. However, researchers should be able to explore and utilize a
dataset in a quick and easy way.

Based on the stated challenges, we have developed a framework to record and label
NILM datasets. The overall flow of this framework is shown in Figure 1. It consists of an ag-
gregated electricity meter (Smart Meter) which records high frequency voltage and current
waveforms at the aggregated level, and multiple distributed meters which record voltage
and current waveforms of individual appliances. Further sensors can be added to measure
other quantities (e.g., temperature or movement). The current and voltage waveforms as
well as the sensor data are collected by a recording PC and stored in multimedia containers.
Other electricity related metrics such as active and reactive power are derived from the raw
current and voltage waveforms. These power data is stored with different sampling rates
and is used to generate data labels semi-automatically. A post-processing step extracts
events and assigns labels to these events. Both events and labels are refined by a human
using a graphic user interface (GUI) resulting in a final set of label files. Each part of the
framework is explained in more detail in the remainder of this section.

open fridge

Extract Events Refinement

.mkv.mkv.mkv

Raw Data

Extract Power

.mkv.mkv.mkv
.srt.srt.srt

Resample

50 Hz Power

.mkv

1 Hz Power Labels

GUI

Smart Meter

Distributed  
Meters

…

Additional  
Sensors

TCP

PC

Figure 1. Overall flow of the presented framework to record advanced NILM datasets.

2.1. Smart Meter

Aggregated data are recorded using a custom-built measurement system referenced
as the SmartMeter from now on. The system was introduced by Völker et al. in [23,24].
A schematic wiring diagram of the smart meter can be seen in Figure 2. It shows the
required connections to the power grid. As the analog to digital converter (ADC) requires
input voltage levels of 2 V maximum, we use a voltage dividers with a ratio of 1:1000 to
scale down the mains voltage levels. Likewise, we use current transformers (YHDC SCT-013
with a ratio of 1:2000) to convert the home’s current consumption into a voltage signal that
can be measured by the ADC. Using the split-core variant of the current transformer allows
us to measure current in the most non-intrusive way. The home’s scaled voltage levels and
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current consumptions are sampled at up to 32 kHz using the ADE9000 ADC from Analog
Devices [25]. The ADC can handle seven input signals at a resolution of 24 bit and a signal-
to-noise ratio of 96 dB. It further has an internal Digital Signal Processor (DSP) to calculate
attributes like active or apparent power as well as electrical energy. The sampled data is
retrieved by an ESP32 microcontroller (Espressif Systems) over an isolated SPI interface.
The microcontroller converts the raw fixed point data to 32 bit float values representing the
actual voltage and current measurements (in Volt and Milliampere, respectively). The data
can be sent to a sink via either a USB Serial, a TCP or a UDP connection. An external flash
memory allows for buffering the data on short network disconnections. We used 8 MB
in the installed system which can hold up to ≈ 41 s of data at a sampling rate of 8 kHz.
Furthermore, a Real Time Clock (RTC) is used to sync the sampling rate of the installed
ADC (see Section 3.3.4). An Ethernet connection adds a reliable cable connection to the
measurement system using the LAN8720 chip (Microchip Technology) with an ordinary RJ-
45 connector. It is also possible to use WiFi communication, as the ESP32 comes with WiFi
on-board. However, in our findings, Ethernet is more reliable in a fuse box environment
and should be preferred.

kWh

4 pol 
RCD

Figure 2. Schematic of the SmartMeter wiring for a three-phase power supply inside the fuse box.

The measurement system is encapsulated in a fire proof DIN housing. This allows
the system to be installed at a DIN rail inside the fuse box (as shown on the left side
of Figure 6).

2.2. Distributed Meters

Individual appliances can be recorded using a set of PowerMeters (see right side of
Figure 6). PowerMeters are custom-built smart plugs designed to measure current and
voltage waveforms of individual appliances. The plugs were introduced by Völker et al.
in [22,23]. Their general system architecture is nearly identical to the architecture of the
SmartMeter. A PowerMeter scales down the power outlet’s voltage by a factor of 1:580
using a voltage divider and the current drawn by the connected appliance using a 3 mΩ

shunt resistor. The analog signals are sampled using a STPM32 ADC from STMicroelectron-
ics [26]. The ADC can sample at up to 7.875 kHz with 24 bit resolution and has an internal
DSP. The DSP again allows for calculating other electricity metrics directly inside the smart
plug. Data from the ADC is collected by the same ESP32 microcontroller used inside the
SmartMeter. 4 MB external flash storage allows for being resilient against ≈ 250 s network
dropouts at a sampling rate of 2 kHz. Each distributed meter also includes an RTC for
clock synchronization. Data is sent over WiFi, as a wireless solution should be preferred
over a wired interface in such a distributed setup. The cost of a single PowerMeter is
comparatively low with approximately e35.

The power consumption of each PowerMeter itself is quite low (0.56 W) and compares
to the smart plugs used to record other NILM datasets e.g., Plugwise as used in [11] (0.5 W).
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2.3. Additional Sensors

The framework allows for recording arbitrary sensor values or additional appliance
information together with the electricity measurements using an MQTT-API. MQTT [27]
provides a standardized publish–subscribe messaging system and has emerged to one of
the standard protocols in the world of IoT. If an instance wants to share some information,
it can send a message for a given topic. If other instances are interested in this information,
they can subscribe to the specific topic. Each new message published under a certain topic is
relayed by the MQTT broker to all instances subscribed to this topic. MQTT builds on top
of the TCP network protocol which guarantees the successful transmission of data.

The recording PC (see Figure 1) hosts a central MQTT broker. A small Python script
listens for incoming messages under a general topic recording and will handle storing the
incoming data into CSV files. If a sensor should be added to the recording infrastructure,
it simply needs to connect to the broker and send its data on a unique sub-topic (e.g.,
recording/livingroom_temp). Data must follow the JSON format. Each JSON key corresponds
to a header entry in the resulting CSV file. A timestamp is added by the Python script for
each entry if the key ”ts” is not present in the data. An example for a valid message of a
temperature sensor is recording/livingroom_temp {”value”: 20.5}.

We further highlight three examples of how additional appliance states or sensors can
be added:

• Smart lighting:
Many light bulbs are nowadays substituted with smart light bulbs. Most of these
can be controlled via a ZigBee gateway. Such a gateway can be incorporated to
pass information if a light bulb changes its state, dimm state, or color. We have
implemented a Python script which interfaces with such a gateway to log the state
changes of all light bulbs connected to the gateway using our MQTT-API. This allows
for deriving power consumption estimates without intrusively metering each light
individually and provides further room occupancy information.

• Sensors:
We show an example flow of how a custom sensor can be developed using the
provided MQTT-API in Figure 3. The ESP32 has WiFi built-in and provides certain
inter-system interfaces such as SPI, I2C, or UART. This allows for rapid prototyping
different sensors like temperature or occupancy.

• Bridges:
The same system overview as shown in Figure 3 can be used to develop different
gateways. As an example, we developed a 433 MHz gateway that logs state changes
of switchable sockets, wall switches, or remote button presses of devices that are
equipped with 433 MHz. We further implemented an infrared sniffer that logs all
commands received from off-the-shelf remotes to MQTT. This helps to capture inter-
actions with televisions, HiFi systems, and air conditioners.

MQTT-APIExample System Architecture

ESP32 MQTT 
Broker

Sensor Interface 
e.g. SPI, I2C (data preprocessing)

sub-
topic 
.csv

python 
mqttLogger.py

Parsed  
Data

Topic: 
recording/
subtopic 
Payload:

JSON

{;}

Figure 3. Example of extending the recording system by logging additional sensor data using the MQTT-API.

The Python script further publishes recording information each 600 s under the topic
recordingInfo. The information includes the current recording state, the number of meters
active, and the average power of each meter since the last message.
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2.4. Extracting Events

Evaluating event-based NILM algorithms requires having ground truth data for all
events in the dataset. The authors of the UK-Dale [11] dataset therefore recorded appliance
turn on/off events for house 1 using switchable sockets. If the user pressed the button on
such a switchable socket. The current timestamp, device, and state of the socket is logged.
We particularly see three drawbacks of such an approach: (1) Devices that are hardwired
to the mains like the stove or lighting cannot be equipped with such a socket. (2) Only
on/off events can be logged. Most of our household appliances are multi state devices that
have more than just a binary state on or off. (3) Devices that change their state without user
interactions can not be labeled (e.g., a kettle turns off automatically if the water is boiling).

We build on the idea of a post-conducted labelling approach introduced by Pereira et al.
in [21] and developed a semi-automatic labeling algorithm that consists of three steps:
event detection, unique event identification, and high variance filtering.

2.4.1. Event Detection

The event detector utilizes the Log-Likelihood Ratio (LLR) test introduced by
Pereira et al. in [21]. It has been enhanced by adaptive thresholding by Völker et al.
in [23]. The detector calculates the likelihood (L(i)) that an event has happened at sample i
by using a detection window over the power signal (S(i)). The detection window splits
into two sub-windows, the pre-event window [a, i[, and the post-event window [i, b]. L(i)
calculates as

L(i) = ln

(
σ[a,i[

σ[i,b]

)
+

(
S(i)− µ[a,i[

)2

2 · σ2
[a,i[

−

(
S(i)− µ[i,b]

)2

2 · σ2
[i,b]

, (1)

where σ[a,i[, σ[i,b], µ[a,i[ and µ[i,b] are the standard deviations and means of the pre-event
and post-event window, respectively. This signal is cleaned using an adaptive threshold
(thresi). If the change of the mean value between the pre- and post-event drops below this
threshold, L(i) is forced to zero using

L(i) =

{
L(i), if

∣∣∣µ[a,i[ − µ[i,b]

∣∣∣ > thresi

0, otherwise
. (2)

thresi is defined as

thresi = thresmin + m · µ[a,i[, (3)

with thresmin being the minimum power change of interest and m a linear coefficient.
This coefficient causes a linear increase of thresi with the current power drawn (power

of the pre-event window). Typically, the variance in the power signal is proportional to
the amount of power drawn. This effect is caused by increasing noise in the appliance or
the analog frontend of the electricity meter. If a fixed small threshold thresi is set, a large
number of false events may occur at regions where more power is drawn. If a fixed high
threshold is set, low power events may be missed. Pereira et al. used a relative large
threshold of 30 W [28] which does not allow for detecting state changes of low power
devices such as battery chargers or lights. We use the linearly increasing threshold as it
adapts to possible larger fluctuations, preventing false events and missed events.

If an event is detected at sample i, the likelihood will also be non-zero around that
sample as a mean change is still observable in close proximity to the event depending on
pre-event and post-event window sizes. The exact sample at which the event occurred is
identified using a voting window. This window is applied to the signal L. Inside the window,
only the maximum of the absolute value of L is kept. We further restrict the minimum
distance between two events with an additional parameter l.
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This algorithm has six adjustable parameters: the duration of pre-event, post-event,
and voting window, the minimum detection threshold thresmin, the linear coefficient m,
and the minimum distance between two events l. A user should specifically adjust the
parameters thresmin and l according to prior knowledge of the data: a low threshold
thresmin is required if events with small mean changes are expected, and a short l should
be chosen if events can happen close in time. Values that seem to work quite well across
different devices are: pre-event window = 1 s, post-event window = 1.5 s, voting window =
2 s, thresmin = 3 W, m = 0.005 and l = 1 s.

2.4.2. Unique Event Identification

To further simplify the labeling effort, we try to identify similar events of the appliance
to label them accordingly. We therefore utilize the fact that most of our home appliances
draw different but constant power before and after an event (e.g., the kettle after switched
on) which represent constant states of the home appliance (e.g., off and on for the kettle).
Depending on its complexity, an appliance can easily have more than ten unique states
(e.g., a dishwasher).

The data is split at each event and the mean power demand between these splits is
calculated. Unique mean values (representing unique appliance states) are then identified
using hierarchical clustering with a distance threshold determined by thresmin. Each cluster
is given a textual ID which is used to assign labels to each event (S0, S1, . . ., as shown in
Figure 11). As some appliances show a higher rush-in power followed by a power settling
due to moving parts in the appliance, we remove the 10 % of the highest and lowest values
before calculating the mean value.

2.4.3. High Variance Filtering

Appliances such as PCs or televisions draw variable power depending on the current
context (i.e., calculations of the PC, content of a television). This causes a large number
of false events using the LLR test. To filter these false events, we first identify regions
in the signal that show such high variance and afterwards remove all events found in
those regions. We therefore calculate the mean (µ(i)) and variance (σ(i)) of a sliding
window. If σ(i) is larger than n · µ(i), the window is marked. If the length of consecutively
marked windows exceeds a certain length (w), all events in these windows are removed.
The parameters n and w can be adjusted. Values which show good results were found
empirically as w = 4 s and n = 0.005.

By using the event extraction algorithm, an appliance power signal can be pre-labeled.
Each found event is marked and a unique label is assigned. The extensive task of labeling
can therewith be reduced to supervision and inspection: Remaining falsely classified events
(FP) need to be removed, events not found (FN) need to be added, and each unique state
label should be changed to a meaningful label representing the state of the appliance.

2.5. Human Supervision

To combine the presented automatic event labeling (Section 2.4) with a simple graphic
based human supervision, we have developed the Annoticity inspection and labeling tool.
The tool is introduced by Völker et al. in [16]. Annoticity is implemented as an interactive
web application. Its workflow is depicted in Figure 4. The tool allows for uploading
your own data in the Matroska multimedia (MKV) [29] or CSV format. A user can further
select data form several existing datasets such as REDD [9], ECO [18], BLOND [12], UK-
DALE [11], or FIRED [17].

Annoticity is split into a server backend and client frontend. The backend loads the
data and prepares it for visualisation. Data is down-sampled to a reasonable sampling
rate according to the current time-span selected by the user. Furthermore, the automatic
labeling algorithm presented in Section 2.4 can be performed, and file downloads (labels or
data) are provided.
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The graphical user interface of the client frontend is shown in Figure 5. After either
uploading a file or selecting a device of an available dataset, the user can visually inspect
the data. All available measures (e.g., active and reactive power) can be selected. Zooming
into the data reveals more information as it leads to a data download at a higher sampling
rate. The user can further execute the automatic labeling algorithm resulting in an initial set
of labels. Each label consists of a start time and a textual description representing the event
or the state after the event. The initial set can be adjusted by the user. Labels can be added,
removed, or its text can be modified. If the user is only interested in the events’ timestamps,
all text can be removed. Furthermore, it is possible to modify all labels with the same text
in one step. The frontend also allows for adjusting the parameters of the automatic labeling
algorithm explained in Section 2.4. The final set of labels can be stored either as plain CSV,
ASS, or SRT files or embedded into a MKV container with the original data.

Server SideClient Side

open fridge

User Annotation and Inspection
Parameter

Datasets

D
ata

Labels + Format
Data Download

Store Request

Automatic Labeling
Labels

File Creator

Label Upload
Labels

Label Preprocessing

Data (+ Labels)
Data Fetching

Data Selection/ 
Upload

REDD

BLOND

FIRED

ECO

UK-DALE

Figure 4. Flow of the Annoticity labeling tool. Data fetching, automatic labeling, and file creation are performed on the server
side, while labeling and user interaction is performed on the client side (modified from [16]).
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use dataset or upload data

select available data 
(house, meter, day)

available measures

add, remove or change labels

zoom day

change parameter of automatic labelling 

download labels and data

Figure 5. The graphical user interface of the Annoticity inspection and labeling tool. The fridge events were generated and
clustered automatically. Each text description (off, compressor on, and door open) was only set once by the user. All other
occurrences were labeled accordingly (modified from [16]).

3. Results

We utilized the framework explained in Section 2 to record and label the Fully-labeled
hIgh-fRequency Electricity Disaggregation (FIRED) dataset which was first introduced by
Völker et al. in [17]. Version 2 of the FIRED dataset extends its time period to 101 days.
The data includes aggregated three phase current and voltage measurements sampled at
8 kHz as well as 21 time synced individual appliance measurements sampled at 2 kHz from
a residential apartment in Germany. Furthermore, it includes sensor readings such as room
temperatures and additional state information of certain appliances and each light bulb in
the apartment. Annoticity has been used to fully label all state changes of the sub-metered
appliances over a time period of two weeks.

The FIRED dataset was collected at an apartment building constructed in 2017 with
seven apartments on four floors. Data was collected from a three-room apartment with
79 m2 of space (open combined kitchen and living room, bedroom, child’s room partly used
as office, hallway, bathroom, and storage room). The apartment is inhabited by two adults
and one child. The building is heated via a district heating and most rooms are equipped
with air filters with built-in recuperators. According to the building’s energy certificate, it
requires a primary energy consumption of 12 kWh/(m2a). The apartment’s power grid
is a three-phase 50 Hz system consisting of L1, L2, L3, and neutral (N) wires. L1–L3 has a
phase shift of 120°. Access to the apartment’s electrical system is given through a fuse box
located in the hallway. All lights installed in the apartment are off-the-shelf smart light
bulbs with a built-in ZigBee module. This allows the lights to be turned on or off via a
smartphone application, voice assistant, or regular wall-light-switch. It further allowed to
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log all state changes during the recording of the dataset as explained in Section 2.3. The
washing machine, dryer, and freezer are located in the basement of the building and are
not part of the recording.

A SmartMeter (see Section 2.1) was installed in the apartment’s fuse box. Split core
current transformers were attached to the three incoming supply legs. For voltage measure-
ments, L1, L2, L3, and N were connected in parallel. The meter is supplied with power by
an additional L1 leg that is secured by a separate 16 A fuse. The final installation is shown
in Figure 6 (left).

We further deployed 21 PowerMeters (see Section 2.2) in the apartment and connected
them to WiFi. We further checked that the WiFi signal quality (RSSI) of each PowerMeter
exceeded −60 dBm to be certain that data could be sent flawlessly. Some devices like the
oven and the exhaust hood were directly connected to the mains. To measure those appli-
ances, we connected a special version of our PowerMeters with screw terminals. Figure 6
(right) shows two PowerMeters connected to the espresso machine and coffee grinder.

Modern households can easily include more than 40 appliances (68 in the FIRED
household). Many of these devices are only plugged in occasionally and sometimes at
a different socket than before. Therefore, connecting a continuously sensing meter to
each appliance is infeasible. Instead, we connected devices of the same category (e.g.,
routers) or devices which are only used simultaneously (e.g., monitor and PC) to the same
PowerMeter. Devices which are only plugged in occasionally and typically not at the same
time (e.g., mixer or vacuum cleaner) were connected to a dedicated PowerMeter (pm11).
If an appliance was connected or disconnected, a corresponding entry was manually
added to a log file. This means that, even if the socket was continuously sampling data,
the appliance connected to it changed.

Moreover, temperature and humidity sensors were installed in most of the rooms,
a ZigBee logger was set up, and both a 433 MHz and an infrared bridge were installed (as
described in Section 2.3).

To properly connect all individual sensors to a central recording PC, the apartment
was equipped with four WiFi access points. The power consumption of the recording
PC and access points were recorded individually and also contribute to the apartment’s
aggregated consumption. The recording PC gathered the data of all electricity meters
and sensors, stored these into files frequently, and pushed the files to a cloud server for
persistent storage.

■SmartMeter

■Current Transformer

■L1,L2,L3 Voltage

■Power Supply

■Network Cable

■PowerMeter13

■PowerMeter15

Figure 6. (Left) SmartMeter installed in the apartment’s fuse box. (Right) PowerMeters with ID 13
and 15 connected to the coffee grinder and the espresso machine.
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3.1. Data Records

The provided data include voltage and current measurements at high sampling rates
taken from the aggregated mains’ signal and 21 individual sockets. Furthermore, FIRED
contains per day and device summary files with derived power measurements to get a
quick insight into the data. The root directory of the dataset contains folders with the raw
and summary data. The data are stored as multiple MKV container into sub-folders named
powermeter<ID> and smartmeter001, respectively. We used multimedia containers to store
the data, as we previously explored their benefits in [30]. While being optimized for audio
or video streams, these containers allow for storing regularly sampled sensor data as time
synced audio streams. Text based labels can further be stored as subtitle streams in the
same file. The FIRED data of each metering device are stored as a single WavPack [31]
encoded audio stream inside the multimedia container. Each stream has multiple channels
for the voltage and current signals. As stated in [30], WavPack allows for a lossless
compression while maintaining high compression rates for time series data. In particular,
we achieved a compression ratio of 1.46 for the voltage and current measurements using
WavPack (only 1.42 could be achieved with hdf5 [32], which has been used e.g., for UK-
DALE [11] and BLOND [12]). We also store different Metadata for each of the streams
including the start timestamp (with microseconds resolution), the particular meter used,
the sampling frequency, codec information, the name of the measured attributes, and the
stream’s duration. Therewith, each file is self descriptive and can be used without prior
knowledge. File size and, therewith, file loading times are kept reasonable by splitting
all files at regular time intervals. The local time of the first sample is appended to each
filename as <year>_<month>_<day>__<hour>_<min>_<sec>.

Table 2 shows the mapping of the recorded appliance to the used PowerMeter (ID).
For more information about the appliance, its brand and model are shown with its power
rating (P) according to the device manufacturer as well as the average P and maximum
power Pmax observed during recording. Φ shows the live wire (L1, L2 or L3) to which the
PowerMeter was connected. A complete list of all appliances in the apartment is part of
the dataset. It contains additional information and website links for each appliance.

3.1.1. Voltage and Current Data

All PowerMeters sampled the current and voltage waveforms at a rate of 2 kHz.
While in theory data can be sampled and sent at up to ≈8 kHz using our PowerMeters,
the available WiFi bandwidth limits the amount of data that can be sent simultaneously by
all meters. Therefore, we chose a sampling rate of 2 kHz as a trade-off between reliability
and temporal data resolution (see Section 3.3.3 for more information). The SmartMeter
recorded voltage and current waveforms of L1, L2, and L3 with a sampling rate of 8 kHz.
The ADC installed in the SmartMeter allows for sampling these waveforms with a rate of
up to 32 kHz, but, again, we preferred a higher reliability over a better time resolution. This
is in line with Armel et al. [7] who stated that sampling rates between 15 kHz to 40 kHz will
not improve the performance of NILM algorithms as higher frequency signal components
are distracted by noise in real buildings.

Each file contains 600 s of data stored into a single audio stream inside the multimedia
container. For the aggregated data, each audio stream has six channels (v_l1, i_l1, v_l2,
i_l2, v_l3, i_l3) representing the current and voltage waveforms for the three supply legs.
The audio streams for the individual appliance data contain two channels (v,i). The number
of samples in each file should match the time distance to the next file. If this is not the case,
no data is available for this particular meter during this time period. This occurred during
a reliability reset each day at midnight and rarely for single meters due to occasional data
loss as depicted in Section 3.3.3.

Data pre-processing is typically not required, as both the SmartMeter and all Pow-
erMeters calculate the physical quantities (Volt for voltage and Milliampere for current
measurements) from the raw ADC samples.
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Table 2. Appliances recorded via PowerMeters. ID represents the identifier of the PowerMeter used
for recording. For PowerMeter11, the connected appliance changed during recording. P is the power
according to the device manufacturer, Φ is the Live Wire the device is connected to (L1, L2 or L3), Pmax

is the maximum average power drawn for the duration of one second and P is the per day average
power seen during the recording. The unit of all power measurements is Watts.

ID Connected Appliance Brand Model P Φ Pmax P

08 Baby Heat Lamp Reer FeelWell 600 2 611.93 0.30

09 Fridge IKEA HUTTRA 1000 3 1138.79 18.02

10 Smartphone Charger #1 - 2 Port USB 10 3 12.74 1.68

11 Changing Device 3 1898.71 3.10

12 Smartphone Charger #2 - 4 Port USB 25 1 27.86 2.77

13 Coffee Grinder Graef Cm800 128 3 206.89 0.17

14 Smart Speaker Apple HomePod 15 3 3.60 0.23

15 Espresso Machine Rocket Appartamento 1200 3 1230.62 29.82

16 Kettle Aigostar Adam 30GOM 2200 3 1958.76 2.89

17 Hairdryer Remington D3190 2200 1 1934.85 1.00

18

Router #1 Apple Airport Extreme A1521 10.3

1 27.97 19.34Router #2 Telekom Speedport Smart 1 10

Telephone Gigaset A400 1

19 Printer EPSON Stylus SX435W 15 1 21.45 0.16

20

Office PC Apple Mac Mini A1993 85

2 236.08 59.49

27” Display Apple Thunderbolt display 200

Speaker Logitech Z2300 240

Smartphone Charger #3 Apple MD813ZM/A 5

Access Point #2 Apple Airport Express A1264 8

21 Media PC Apple Mac Mini A1347 85 3 45.38 12.98

22
HiFi System Onkyo TX-SR507 160

3 85.86 15.27
Subwoofer Onkyo SKW-501E 105

23 Television Samsung UE48JU6450 64 3 150.96 12.31

24 Light+Driver IKEA - 40 3 36.56 1.75

25 Oven IKEA MIRAKULÖS 3480 3 2491.03 9.69

26 Access Point #3 Apple Airport Express A1392 2.2 3 2.67 2.21

27
Router #3 Netgear R6250 30

1 56.91 15.74
Recording PC Intel NUC8v5PNK 60

28 Fume Extractor IKEA WINDIG 250 3 249.26 1.11

The provided voltage and current data without any pre-processing can be seen in
Figure 7. Plots 1–3 show data of the SmartMeter while plots 4 and 5 show the simultaneous
measurements of two additional PowerMeters. The figure does not only highlight the high
temporal resolution of the data but also the achieved clock synchronization. The rush-in
current shown in the PowerMeter data (Figure 7 plot 4) matches the rush-in current seen in
L3 of the SmartMeter (Figure 7 plot 3). A time shift between the measurement devices of
around 10 ms can be observed. Even after 16 h of continuous recording, the offset between
the SmartMeter and PowerMeters is below one mains cycle, highlighting the effectiveness
of the realized clock synchronization (see Section 3.3.4).
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Figure 7. Voltage (red) and current (blue) waveforms of the SmartMeter, powermeter15 and power-
meter27. The recording was taken on 9 June 2020 at around 4:00 p.m. The same appliance switch-on
event of the espresso machine is visible in the recording of L3 of the smartmeter and of powermeter15.

3.1.2. Power Data

The power data was derived from the voltage (V) and current (I) waveforms. We
calculated active, reactive, and apparent power from the raw voltage and current data
of all recording devices. The data is stored as a single file for each day of the recording.
The formulas used to calculate the individual powers based on the mains frequency
fl = 50 Hz are shown in (4), (5), and (6), respectively:

P(n) = 1
N ·∑

N−1
i=0 V(i) · I(i) (4)

S(n) = IRMS(n) ·VRMS(n) (5)

Q(n) =
√

S(n)2 − P(n)2 (6)

P, Q, and S are calculated for each non-overlapping window n. The length of the window
is N = fs

fl
. fs is the sampling rate of the voltage and current measurements. For the 8 kHz,

SmartMeter data N is 8000 Hz
50 Hz = 160. IRMS and VRMS are calculated as follows:

IRMS(n) =
√

1
N ·∑

N−1
i=0 I(i)2 (7)

VRMS(n) =
√

1
N ·∑

N−1
i=0 V(i)2 (8)

Since data of commercial smart meters have a sampling frequency of 1 Hz to 0.01 Hz,
an additional 1 Hz version of the power data is provided.

The 50 Hz and 1 Hz power are stored for each meter individually and contain one day
of data. Times for which the power could not be calculated as no voltage and current data
being available are marked with a power of constant zero to maintain an equidistant time
period between samples.

Figure 8 shows the single day apparent power consumption of the apartment. The
contribution of the six appliances which consumed the most power on this day is shown
as individual colored blocks. All other appliances are summed and plotted as Others.
The aggregated power consumption of the SmartMeter is shown as mains. Ideally, the su-
perposition of the apparent power of all individual meters should match the aggregated
apparent power. Nevertheless, a small margin can be observed in Figure 8. This gap is
caused by hard-wired appliances such as lights and the ventilation system, which are not
individually monitored (see Section 3.3.2 for more information).
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3.1.3. Logs

The annotation folder contains 33 tab-separated CSV files. The first column of each file
represents the timestamp associated with the event or sensor reading. We divide these files
into three categories:

• Smart lights:
State changes of each light in the apartment is logged. The filenames of these logs
have the form:

light__<room>__<deviceName>__<deviceModel>.csv
room is the room the light is installed in, deviceName represents how this light is used
(e.g., ceiling light) and deviceModel matches the light model name. The file’s second
column represents the state of the light (on or off ), the third column is the light’s
intensity (0 % to 100 %) while the last column represents the light’s hex color. If setting
different colors is not supported by the light, the column only shows None values.
As individual measurements of the apartment’s lighting have shown, the installed
smart lights consume constant apparent power linearly increasing with the light’s
intensity (dimm setting). As information of the lights’ state and dimm setting is
available for the complete recording duration, this information can be used to estimate
the power consumption of each light.
The smart light logs of two days are shown in Figure 9. The hallway ceiling light
consists of three light bulbs and is triggered by a passive infrared sensor. Hence, all
three light bulbs are turned on if a resident walks through the hallway, which can be
seen in Figure 9 throughout the days.

• Sensor readings:
The readings of temperature and humidity sensors are stored in files following the
name scheme:

sensor__<room>__<sensorType>.csv
sensorType is either hum or temp for humidity or temperature readings. Each file’s
second column represents the sensor reading. Temperature readings are stored in
degrees Celsius and humidity readings in %, respectively. All values have floating
point precision. Samples are not acquired equidistantly, as the sensors only send new
values if they have changed.

• Device info:
Certain smart devices or bridges as explained in Section 2.3 allow for capturing events
of devices in the apartment, e.g., pressing a certain key of the television remote. These
events are logged in files with the following name format:

device__<room>__<deviceName>__<deviceModel>.csv
Each file’s second column gives information about the current device state or hap-
pened event. The file of the HiFi system, for instance, includes key-presses such as
power or vol_up. Figure 10 shows the logs for the television, the HiFi system, and the
espresso machine.
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Figure 8. The power consumption of the apartment over one full day (2nd July 2020). The power is
down-sampled to one sample every 3 s. The black line indicates the power consumption recorded by
the SmartMeter. The contribution of the six top-most consumers is shown as stacked colored blocks.
The consumption of the remaining individually metered appliances are aggregated and shown as
the blue block Others. A slight offset between the SmartMeter and the accumulated power of all
PowerMeters can be seen.
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Figure 9. Two days of light usage information (16th–17th June 2020). The time of day is shown on
the x-axis while the particular light is shown on the y-axis. If a light was used, a black box is shown
during this period. The box is filled with the set color value and dimm setting.
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Figure 10. Three days of device logs (19th–22nd June 2020). The data of the espresso machine shows
the numbers of espressos made, while the data of the HiFi system and television show key-presses
on the remote. The television content is provided by a connected media PC.
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3.1.4. Data Labeling

We used the Annoticity labeling tool to fully label all events that happened within two
weeks of the FIRED data (22nd July 2020–4th August 2020). The automatic labeling tool
was used to generate an initial set of labels. This set was modified by visually inspecting
the data. We removed false events, added missing events, and assigned a distinct and
descriptive label to each appliance state. The labels were stored as CSV files and are part
of the dataset. During labeling, we also stored the initial set of labels obtained by the
automatic labeling algorithm to evaluate the algorithm’s performance. Figure 11 shows
both the initial set of labels and the final labeled data of the ’espresso machine’.

Figure 11. The fully labeled data of the espresso machine (30th of July at 9:50 a.m.). The bottom
plot shows the initial labeling of the automatic labeling algorithm, while the top plot shows the final
labeling after human supervision. (The rightmost event has been missed by the algorithm.)

To evaluate the performance of the labeling tool (see Section 2.4), we compared its
result with the final set of manually labeled events. Evaluation was done in terms of True
Positives (TP) i.e., true events, False Positives (FP), i.e., falsely classified events and False
Negatives (FN), i.e., events not found by the tool. A TP is defined as a classified event
which is reflected within 2 s in the manually labeled data. According to that, a FN is an
event in the manually labeled data not found within 2 s during detection. An FP is a
classified event which is not present in the manually labeled data. The F1 score was used
to summarize these metrics into a single score. We fixed the algorithm’s parameters for all
appliances to simplify the evaluation: pre-event window length = 1 s, post-event window
length = 1.5 s, voting window length = 2 s, thresmin = 3 W, m = 0.005, and l = 2 s.

We experienced that the labeling algorithm is performing fairly well for devices which
show distinct states in the power signal (such as the oven, kettle, or the espresso machine
shown in Figure 11). For devices that draw variable power in between states (such as a PC
or a coffee grinder), a large number of false events were triggered.

To put this into perspective, Section 3.1.4 shows the evaluation results split into two
groups: #1 represents appliances that show distinct states and #2 represents appliances which
draw variable power. Appliances for which no distinct events were labeled manually (e.g.,
network equipment) are omitted.

Section 3.1.4 indicates that most of the appliances present in residential homes (group
#1) can be labeled in a semi-automatic way. The Coffee Grinder and the HiFi System show
a comparable low performance with a high number of FP. This is due to higher variance
if the motor is active or music is playing and could have been avoided by using a higher
linear factor m or a higher threshold thresmin.

To get an overall estimate of how much the labeling effort can be reduced by using
the automatic labeling, we compared the raw number of clicks required to label the data
from scratch with the number of clicks required to supervise and modify the pre-labeled
set generated by the automatic labeling algorithm for group #1. In total, 4379 events were
labeled manually. If we omit the task of applying textual labels, labeling events would
still have required at least 4379 clicks. As shown in Table 3, for devices in group #1, the
labeling algorithm automatically placed 3232 events at the correct position. With 159 falsely
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classified events, 377 missing events, and the 770 missing labels of group #2 (which
would require manual labeling), 1306 clicks were required to remove false events and add
missing events. Therewith, the sheer amount of clicks was already reduced by 70.18% not
accounting for the support provided by the Annoticity tool while applying textual labels:

Reduction = 1− tadd ·MissedEvents + tdel · FalseEvents
tAdd · AllEvents

(9)

If we also accommodate the fact that it typically takes less time to remove a falsely
placed label (tdel) compared to manually adding a label from scratch (tadd), we can apply
Equation (9). Using tadd = 10 s and tdel = 5 s as a reasonable guess of this difference,
the reduction in labeling effort is actually 71.99% compared to a fully manual approach.
Considering that the parameters could have been manually adjusted and optimized for
each appliance, the actual reduction might be even higher.

Table 3. Results for the automatic labeling algorithm split into two appliance groups. In #1, appliances
are grouped which show distinct states in the power signal in which nearly constant power is drawn.
#2 groups appliances that draw variable power. Events marks the number of ground truth events
labeled manually.

Group Appliance Events TP FP FN F1

#1 Baby Heat Lamp 6 6 0 0 100.00
Fridge 1006 863 2 143 92.25
Coffee Grinder 348 250 114 98 70.22
Espresso Machine 1880 1760 0 120 96.70
Kettle 30 30 0 0 100.00
Hairdryer 18 17 0 1 97.14
Hifi System, Subwoofer 45 44 37 1 69.84
Television 79 65 4 14 87.84
Kitchen Spot Light 12 12 0 0 100.00
Oven 138 138 1 0 99.64
Fume Extractor 47 47 1 0 98.95

Sum 3609 3232 159 377 92.34

#2 Smartphone Charger #1 96 83 1491 13 9.94
Smartphone Charger #2 63 45 7999 18 1.11
Office Pc 583 410 85,367 173 0.95
Media Pc 28 10 26,632 18 0.07

Sum 770 548 121,489 222 0.89

3.2. Data Statistics

Overall, we collected 53,328 h of raw current and voltage waveforms using the pro-
posed framework. Figure 7 highlights the richness of the captured data for the SmartMeter
and the PowerMeter units. Figure 8 shows the apparent power extracted for each individ-
ual appliance. It further emphasizes the contribution of each appliance to the total power
consumption on this day.

According to [33], the average consumption of a comparable three person household
in Germany is 7.12 kW h per day. Evaluating the SmartMeter data of the FIRED dataset
results in an average electricity consumption of 6.06 kW h per day, which is slightly lower
compared to the average, but this is expected as the data does not contain the electricity
consumed by the washing machine, dryer, and freezer.
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Figure 12a shows the consumption of six appliances at the hour of day averaged
over the whole recording duration. This delivers a good indication for usage patterns.
For example, the ’espresso machine’ shows two distinct peaks, one in the morning at
around 9:00 a.m. (morning coffee) and one in the afternoon at 3:00 p.m. (coffee break).
In comparison, the ’router’ does not show any significant peak. It can also be seen that the
’office PC’ has a high standby consumption of around 35 W and is used mainly between
9:00 a.m. and 6:00 p.m. Figure 12b shows the distribution of power demand for the same
appliances. Some state information can already be derived from these plots. The ’hairdryer’
shows two distinct states representing two different temperature settings. The ’office PC’
shows three peaks. The peak around 35 W represents the already mentioned standby
consumption, the peak around 50 W represents the PC in its On state, and the 140 W peak
includes the On state of the 27-inch monitor connected to the same meter. The ’espresso
machine’ consumes a huge amount of power (1200 W) during its heating cycles but is
mostly idle (5 W) in between.
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Figure 12. Appliance usage over the complete recording duration. (a) shows the daily usage patterns
of the devices as the average power for each hour-of-day; (b) shows the histogram of the power
demands. A 2 W threshold was set to omit data in which no power is drawn.

3.3. Technical Validation

Measurements of the FIRED dataset are provided without applying any pre-processing
or filtering rather than the conversion to physical quantities. The recording framework
is equipped with different mechanisms to cope with real world effects such as network
dropouts or clock drifts, and the data integrity was analyzed in detail.

3.3.1. Calibration

We calibrated each meter in advance using an ENERGY-LOGGER 4000 [34] (with a
stated accuracy of 1%) as a reference. We used ten loads with different power consumption
ranging from 5 W to 2000 W and applied a linear calibration. The calibration parameters
of each meter were stored permanently in their non-volatile memory. We repeated the
calibration after the recording duration to see if aging affects have already occurred. Such
effects could not be identified.

3.3.2. Residual Power

The sum of all PowerMeters’ apparent power matches the apparent power recorded
by the SmartMeter with a slight offset (residual power). The residual power is the portion
of the total consumed power which is not metered by an individual meter, i.e., the portion
for which no ground truth data is available. Our goal was to minimize this portion in order
to provide reliable ground truth data that can be used by supervised machine learning
algorithms.

The residual power observed in the FIRED dataset (see Figure 8) is mainly due to non-
monitored, hard-wired devices in the apartment such as the lighting and the ventilation



Energies 2021, 14, 75 21 of 26

system but also due to the power consumption of the distributed meters. The individual
consumption of each light-bulb can be estimated with the log files which we provide
with our dataset. To show that this is feasible, we generated apparent power estimates
using these log files and the provided individual light recordings. The consumption of the
remaining unmonitored appliances (including the consumption of 21 PowerMeters) is the
base power consumption of the apartment. It can be estimated at times when lights are
turned off and the majority of appliances do not consume any power which is typically
during the night or in the case of owner absence. We calculated the base power PbaseLx for
each individual supply leg x ∈ [1, 2, 3] as

PMLx := { pm ∈ PM | phase of pm is x }, (10)

LLx := { l ∈ Lights | phase of l is x }, (11)

PbaseLx = P(SMLx)− ∑
pm∈PMLx

P(pm)− ∑
l∈LLx

P(l). (12)

SMLx is the SmartMeter data of live wire Lx, PM is the set of all PowerMeters, PMLx is the
set of PowerMeters that are connected to live wire Lx, Lights is the set of all lights, LLx is
the set of lights connected to Lx and P(X) is the extracted power trace of a meter or light X.
We assume that the base power is normally distributed and therewith remove all points in
PbaseLx that are further away than σ from the mean value and calculate PbaseLx as the mean
from the cleaned signal.

Figure 13 shows the apparent power consumption including the lighting and the
estimated base power with a remaining Root-Mean-Square Error (RMSE) of 17 V A.

07-02 00
07-02 03

07-02 06
07-02 09

07-02 12
07-02 15

07-02 18
07-02 21

07-03 00

Time of day

0

500

1000

1500

2000

2500

Ap
pa

re
nt

 P
ow

er
 [W

]

mains
Base
Others
Fridge
Router #1, Router #2, Telephone
Television
Oven
Espresso Machine
Office Pc, 27" Display, Speaker,
Smartphone Charger #3, Access Point #2

Figure 13. The power consumption of the apartment over one full day (2nd July 2020). The power is
down-sampled to one sample every 3 s. The black line indicates the power consumption recorded by
the SmartMeter. The contribution of the six top-most consumers is shown as stacked colored blocks.
The consumption of all remaining appliances and the reconstructed consumption of the apartment’s
lighting are aggregated and shown as the blue block others. The black base block represents the
apartment’s base power estimated as 26.66 V A on average for this day.

3.3.3. Availability

The data availability over the complete recording duration was 99.96 %. The missing
data amounts to 1405 min and is mainly due to a reliability reset which we perform each
day at 12:00 a.m. accounting for approximately 20 s of missing data per meter and day.
Figure 14 shows the availability of each metering device over the complete recording
period. The reset each day at midnight can be clearly seen in the plot. Occasionally, due
to WiFi connection outages and an erroneous implementation of the TCP/IP stack on the
ESP micro-controller, some data packets can be lost. However, a packet only accounts
for less than 20 ms of data. Once detected, we replace missing samples with zeros to
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maintain the correct timestamps for all remaining samples. It is still possible to identify
these time periods as voltage, and current zero plateaus cannot occur in other situations.
PowerMeter14 and PowerMeter22 show this behavior more frequently compared to all other
meters. The reason might be an unstable WiFi condition as the RSSI values reported by
both meters were the lowest of all.
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Figure 14. Time periods when measurement data are available. Each individual meter is shown on
the y-axis (ID 08-28) while the time period of the complete recording is shown on the x-axis. Red
areas indicate gaps in the dataset. Please note that gaps are plotted with at least one pixel width for
better visibility and therewith appear significantly larger.

3.3.4. Clock Synchronization

In Section 2, we defined one challenge as “simultaneous recordings with high temporal
accuracy”. Our framework is comprised of numerous meters and sensors distributed across
the home. To maintain precise timestamps for the measured data and the event labels,
precise clock synchronization techniques are required.

We also observed non-negligible clock drifts in initial experiments originating from
clock inaccuracies of the used ADC and microcontroller which vary depending on the
meter and also over time for the same meter due to temperature and aging effects. To
remove these drifts, we equipped each metering device (aggregated meter and distributed
meters) with an RTC to synchronize the internal ADC clock. A NTP server in the recording
network is utilized to sync each microcontroller’s system time every 120 s. We calculate
the system time as the NTP response plus half the time it takes for the NTP request to be
answered by the server. Therewith, we can obtain the time from a NTP request which took
e.g., 10 ms with an accuracy of ±5 ms. Hence, the accuracy of each device’s system time
depends on the network latency, which is typically below 10 ms. As we can measure the
NTP response time, which is a good indication for the network latency, we only utilize
NTP requests with response times better than ±10 ms to sync the system time. If we detect
a time drift after an NTP synchronization, it is slowly reduced by removing or adding
samples. The used technique adds only a minor jitter to the data (1/samplingrate seconds
or 125 µs for 8 kHz data).

Figure 7 highlights the achieved clock synchronization. The figure shows the voltage
and current traces of PowerMeter15 and the SmartMeter. PowerMeter15 shows a rapid rise
in the current consumption due to a heating element in the connected espresso machine.
The corresponding increase can be also observed in the data of L3 of the SmartMeter. Both
signals are shifted by around 10 ms highlighting the achieved clock synchronization. Such
a time shift allows for syncing the voltage and current waveforms with sub-cycle precision.
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3.4. Data and Code Availability

The FIRED dataset is available under the creative common license from our servers.
The code which has been used to generate all plots in this work is provided as open source.
The code and further information on how to download the data can be found at: https:
//github.com/voelkerb/FIRED_dataset_helper.

4. Discussion

In this work, we proposed a set of challenges which need to be addressed to record
datasets which can be used to evaluate a wide variety of electricity related algorithms
(especially event-based NILM). These challenges are summarized in Table 1. We further
proposed a framework to record and label datasets which meet the defined challenges.
It is comprised of the required hardware and software components to record the data,
an algorithm to automatically find and label events in the recorded data and a tool to
visually inspect the data and adjust the labels.

Using the framework, we recorded and labeled the FIRED dataset which features
101 days of electricity measurements (C3) of a residential apartment in Germany. This is
significantly longer than most existing high frequency datasets such as REDD or BLUED.
Aggregated level data are available as 8 kHz voltage and current waveforms while individ-
ual appliance data are available at 2 kHz for 21 appliances (C1, C2). While the aggregated
sampling rate is matched or even exceeded by other datasets, we are currently unaware of
any other residential dataset which features high frequency individual appliance record-
ings. The data is further time synced with an accuracy of around 10 ms (C5) and shows a
coverage of 99.96 % over the complete recording time period (C3). Other datasets such as
REDD or UK-DALE show a significant amount of missing samples due to bad wireless com-
munication. Our framework also provides a 1 Hz and 50 Hz summary with derived active,
reactive, and apparent power measurements. All data is stored in Matroska multimedia
containers (C6) with included metadata information such as timestamps and measurands.
Additional CSV files are included in the dataset which provide information about the
apartments lighting states, room temperature, and device operation states (C4). Event
positions and state labels have been added for two weeks of the data in a semi-automatic
way using the presented Annoticity labeling tool (C4). No other dataset known to us
includes such information. The dataset itself and the tools to process it are provided as
open source (C6).

5. Conclusions

In summary, this work offers three main contributions to the community of smart
meter data analytics:

1. We defined a set of challenges that an electricity dataset needs to address so that it
can be used to evaluate a large set of electricity and smart meter related algorithms
such as event-based and event-less Non-Intrusive Load Monitoring.

2. We proposed an expandable framework comprised of the hardware and software
components required to record datasets that meet these challenges.

3. We introduced and evaluated a novel dataset to the community, which, compared to
other residential electricity datasets such as BLUED, REDD or UK-DALE, features
simultaneous high frequency recordings of the aggregated mains’ signal and of
individual household appliances as well as two weeks of fully labeled appliance
events.

The high sampling rates, the achieved clock synchronization, and the marked events
allow for using datasets that have been recorded using our framework (like FIRED) to
evaluate event-based and event-less NILM algorithms. Additional data like detailed textual
labels and additional sensor readings allow for developing disaggregation algorithms that
utilize multi-modal information. Offering simultaneous, high frequency aggregated and
individual appliance recordings will allow researchers to develop hybrid load monitoring

https://github.com/voelkerb/FIRED_dataset_helper
https://github.com/voelkerb/FIRED_dataset_helper
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systems which use individual appliance recordings in a semi-supervised fashion to aid the
laborious training process of supervised NILM systems.

Besides the mentioned advantages, the framework is currently optimized for use
in the residential domain as, e.g., plug level meters and WiFi are being used. While it
should be possible to move the overall concepts to the commercial or industrial domain,
such specialized environments may require additional adaption. Besides temperature and
humidity readings, other environmental information such as occupancy or light sensors
may be of interest and are theoretically supported by the framework but have not been
installed while generating the FIRED dataset. Further increasing the sampling rate of the
meters or the sheer number of meters is theoretically possible; however, in our findings,
it reduced the reliability of our framework mainly due to bandwidth problems. One
suggestion to overcome such a limitation in the future is to compress the data before it is
sent over the bandwidth limited WiFi channel.

We provide electricity datasets and the software and hardware to record these so that
researchers can set their focus on improving load monitoring and eco-feedback techniques.
These have shown tremendous potential in saving our earth’s energy resources.
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ILM Intrusive Load Monitoring
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RTC Real Time Clock
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