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Abstract: This paper presents a distributed computational framework for stochastic convex op-
timization problems using the so-called scenario approach. Such a problem arises, for example,
in a large-scale network of interconnected linear systems with local and common uncertainties.
Due to the large number of required scenarios to approximate the stochasticity of these problems,
the stochastic optimization involves formulating a large-scale scenario program, which is in gen-
eral computationally demanding. We present two novel ideas in this paper to address this issue.
We first develop a technique to decompose the large-scale scenario program into distributed scenario
programs that exchange a certain number of scenarios with each other to compute local decisions
using the alternating direction method of multipliers (ADMM). We show the exactness of the de-
composition with a-priori probabilistic guarantees for the desired level of constraint fulfillment for
both local and common uncertainty sources. As our second contribution, we develop a so-called
soft communication scheme based on a set parametrization technique together with the notion
of probabilistically reliable sets to reduce the required communication between the subproblems.
We show how to incorporate the probabilistic reliability notion into existing results and provide new
guarantees for the desired level of constraint violations. Two different simulation studies of two types
of interconnected network, namely dynamically coupled and coupling constraints, are presented to
illustrate advantages of the proposed distributed framework.

Keywords: stochastic optimization; scenario convex program; distributed computation; distributed
stochastic systems; distributed scenario program; decentralized scenario program; plug-and-play
framework

1. Introduction

Stochastic optimization has attracted significant attention in the recent control liter-
ature, due to its ability to provide an alternative, often less conservative way to handle
uncertainty in dynamical systems. Stochastic optimization takes into account the stochastic
characteristics of the uncertainties and thereby the system constraints are treated in a
probabilistic sense, i.e., using chance constraints [1]. Using stochastic optimization in the
so-called model predictive control (MPC), one computes an optimal control sequence that
minimizes a given objective function subject to the uncertain system dynamics model and
chance constraints in a receding horizon fashion [2]. Chance constraints enable stochas-
tic optimization to offer an alternative approach to achieve a less conservative solution
compared to robust optimization [3], since it directly incorporates the trade-off between
constraint feasibility and performance of objective function.

Distributed optimization has been an active research area in recent decades, due to its
applicability to handle large-scale problems with constraints. In distributed optimization
one replaces large-scale problems stemming from centralized optimization with several
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smaller-scale problems that can be solved in parallel. These problems make use of informa-
tion from other subproblems to formulate a local optimization problem. In the presence of
uncertainties, however, the main challenge in the formulation of distributed optimization
is how one should exchange information through a communication scheme among sub-
problems (see, e.g., [4], and references therein). This highlights the necessity of developing
distributed strategies to cope with the uncertainties in subproblems while at the same time
minimizing information exchange through a communication framework.

To handle uncertainties in distributed setting, some approaches are based on robustifi-
cation [5]. Assuming that the uncertainty is bounded, a robust optimization problem is
solved, leading to a decision that satisfies the constraints for all admissible values of the
uncertainty. The resulting solution using such an approach tends to be conservative in
many cases. Tube-based robust optimization, see for example [6] and the references therein,
was considered in a decentralized setup (plug-and-play) in [7], and it has been recently
extended to distributed control systems [8] for a collection of linear stochastic subsystems
with independent dynamics.

1.1. Related Works

Although in [8] coupled chance constraints were considered separately at each sam-
pling time, in this paper we consider a chance constraint on the feasibility of trajectories
of dynamically coupled subsystems. Our approach is motivated by [7] to reduce the
conservativeness of the control design. Other representative approaches for stochastic
optimization of a single stochastic system include affine parametrization of the control
policy [9], the randomized (scenario) approach [10–13], and the combined randomized
and robust approach [14–16]. None of these approaches, to the best of our knowledge,
have been considered in a distributed control setting.

This paper aims to develop a systematic approach to distributed stochastic optimiza-
tion using the scenario-based technique. Scenario optimization approximates stochastic
problem via the so-called scenario (sample) approach [17], and if the underlying optimiza-
tion problem is convex with respect to the decision variables, finite sample guarantees can
be provided. Following such an approach, the computation time for a realistic large-scale
problem of interest becomes prohibitive, because the number of samples to be extracted
tends to be high, and consequently leads to many constraints in the resulting optimiza-
tion problem.

To overcome the computational burden caused by the large number of constraints,
in [18,19] a heuristic sample-based approach was used in an iterative distributed fashion via
dual decomposition such that all subsystems collaboratively optimize a global performance
index. In another interesting work [20], a multi-agent consensus algorithm was presented to
achieve consensus on a common value of the decision vector subject to random constraints
such that a probabilistic bound on the tails of the consensus violation was also established.
However, in most of the aforementioned references the aim to reduce communication
among subsystems, which we refer to as agents, has not been addressed.

1.2. Contributions

Our work in this paper differs from the above references in two important aspects
which have not been, to the best of our knowledge, considered in the literature. We develop
two different distributed scenario optimization frameworks. In the first version, each agent
generates its own scenarios of the local uncertainty sources, and takes into consideration
an estimation of the neighboring possible state trajectories, such that using the so-called
alternating direction method of multipliers (ADMM), all the agents start to improve their
local estimation until they agree on the consistency of exchange scenarios in the proposed
distributed setting. In the second version, we develop a new set-based communication
setup together with the notion of probabilistically reliable information to reduce the com-
munications between agents required by the proposed first version of distributed scenario
optimization framework. To quantify the error introduced by such a new communication
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scheme, we incorporate the probabilistic reliability notion into existing results and provide
new guarantees for the desired level of constraint violations. To summarize the main
contributions of this paper are as follows:

(a) By reformulating a centralized scenario optimization problem into a decomposable
scenario program, we first present the exactness of decomposition and then, quantify the
level of robustness of resulting solutions by providing new a-priori probabilistic guarantees
for the desired level of constraint fulfillment under some mild conditions.

(b) To solve the proposed decomposable scenario program, we develop a so-called
distributed scenario exchange scheme between subproblems (neighboring agents) using
the alternating direction method of multipliers (ADMM). Such a new scheme is used
to provide a distributed scenario optimization framework to handle two types of large-
scale network problems in control literature, namely dynamically coupled and coupling
constraints network of agents.

(c) To reduce the communication in the proposed distributed setting, we develop a
novel inter-agent soft communication scheme based on a set parametrization technique to-
gether with the notion of probabilistically reliable set to reduce the required communication
between the subproblems. We show how to incorporate the probabilistic reliability notion
into existing results and provide new guarantees for the desired level of constraint viola-
tions.

(d) Using the so-called soft communication scheme, we present a distributed frame-
work such that the neighboring agents just need to communication a set together with
the level of reliability of the set. Each agent then solves a local robust-communication sce-
nario program at each sampling time. We also establish a practical plug-and-play (PnP)
distributed framework that considers network changes by agents which want to join or
leave the network.

The structure of this paper is as follows. Section 2 describes a problem formulation
leading to a large-scale scenario optimization problem. In Section 3, we first reformulate the
large-scale scenario problem into a decomposable scenario problem. In Section 4, we then
provide the results on equivalent relations and analyze robustness of the obtained solutions
using the proposed distributed scenario exchange scheme. Section 5 introduces a novel
inter-agent communication scheme between the subproblems, namely soft communications,
and then proceeds to quantify the robustness of the proposed schemes. Using the pro-
posed soft communication scheme, in Section 6 we establish a practical PnP distributed
framework. Section 7 presents two different simulation studies, whereas in Section 8,
we conclude this paper with some remarks and future work.

2. Problem Formulation

Without loss of generality, this section presents a mathematical problem formulation
in the context of advanced control problem, namely stochastic model predictive control
(SMPC), leading to a large-scale scenario optimization problem at each time step. Please
note that in this paper we focus on the large-scale scenario problem instance from the
optimization point of view and derive probabilistic guarantees for constraint fulfillment
in a distributed setting. Analyzing the closed-loop asymptotic behavior of SMPC (e.g.,
stability and recursive feasibility) are not in the scope of this paper.

Consider a discrete-time uncertain linear system with additive disturbance in a com-
pact form as follows:

xk+1 = A(δk)xk + B(δk)uk + C(δk)wk , (1)

with a given initial condition x0 ∈ Rn. Here k ∈ T := {0, 1, · · · , T − 1} denotes the
time instance, xk ∈ X ⊂ Rn and uk ∈ U ⊂ Rm correspond to the state and control
input, respectively, and wk ∈ Rp represents an additive disturbance. The system matrices
A(δk) ∈ Rn×n and B(δk) ∈ Rn×m as well as C(δk) ∈ Rn×p are random, since they are
known functions of an uncertain variable δk that influences the system parameters at each
time step k. It is important to mention that given the initial measured state variable x0,
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the predicted future states are modeled using (1) at each sampling time k. For avoiding
crowded notation, when there is no ambiguity, in the rest of the paper we will drop the
conventional index for the predicted time steps, i.e., k + `|k, and simply use k + `. We also
define T+ := {1, · · · , T} to denote the future predicted time steps.

Throughout this paper, there are three technical assumptions. Assumption 1 is a
classical assumption where we define the probability spaces associated with the random
variables and highlight the fact that in this paper we only require the availability of a
“sufficient number” of samples of such random variables. Using such samples to formulate
an optimization problem, Assumption 2 is given as a technical requirement to be able to
use a so-called randomization technique and to guarantee a nonempty feasibility domain
of such an optimization problem. Assumption 3 is focused on the structure of large-scale
system dynamics of interest to be able to explore and exploit its structure for decomposition
into an interconnection of smaller subsystems.

Assumption 1. Random variables w := {wk}k∈T and δ := {δk}k∈T are defined on probability
spaces (W ,B(W),Pw) and (∆,B(∆),Pδ), respectively. w and δ are two independent random pro-
cesses, where Pw and Pδ are two different probability measures defined overW and ∆, respectively,
and B(·) denotes a Borel σ-algebra. The support setsW and ∆ of w and δ, respectively, together
with their probability measures Pw and Pδ are entirely generic. In fact,W , ∆ and Pw, Pδ do not
need to be known explicitly. Instead, the only requirement is availability of a “sufficient number” of
samples, which will become concrete in later parts of the paper. Such samples can be for instance
obtained by a model learned from available historical data [21].

The system in (1) is subject to constraints on the system state trajectories and control
input. Consider the state and control input constraint sets to be compact convex in the
following form

X := {x ∈ Rn : G x ≤ g}, U := {u ∈ Rm : H u ≤ h}, (2)

where G ∈ Rq×n, g ∈ Rq, and H ∈ Rr×m, h ∈ Rr. Keeping the state inside a feasible set
X ⊂ Rn for the entire prediction horizon may be too conservative and result in loss of
performance. In particular, this is the case when the best performance is achieved close to
the boundary of X , and thus, constraint violations will be unavoidable due to the fact that
the system parameters in (1) are imperfect and uncertain. To tackle such a problem, we will
consider chance constraints on the state trajectories to avoid violation of the state variable
constraints probabilistically even if the disturbance w or uncertainty δ has unbounded
support. Notice that a robust problem formulation [3] cannot cope with problems having
an unbounded disturbance set.

Following the traditional MPC approach to find a stabilizing full-information con-
troller that leads to admissible control inputs u := {uk}k∈T and satisfies the state con-
straints, one can rely on the standard assumption of the existence of a suitable pre-
stabilizing control law, see, e.g., (Proposition 1, [7]). Based on [9], one can also employ a
so-called parametrized feedback policy and split the control input to cope with the state
prediction under uncertainties: uk = Kxk + vk with vk ∈ Rm as a free correction input
variable to compensate for disturbances and K is a given pre-stabilizing feedback gain for
the nominal (uncertain-free) system (1).

The control objective is to minimize a cumulative quadratic stage cost of a finite
horizon cost J(·) : Rn ×Rm → R that is defined as follows:

J(x, u) = E
[

T−1

∑
k=0

(
x>k Qxk + u>k Ruk

)
+ x>T PxT

]
, (3)
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with Q ∈ Rn×n
�0 , and R ∈ Rm×m

�0 . Consider x := {xk}k∈T , (A, Q
1
2 ) to be detectable and P to

be the solution of the discrete-time Lyapunov equation:

E[ Acl(δk)
>PAcl(δk) ] + Q + K>RK− P � 0 , (4)

for the closed-loop system with Acl(δk) = A(δk) + B(δk)K. Each stage cost term is taken in
expectation E[·], since the argument xk is a random variable. Using v = {vk}k∈T , consider
now the following stochastic control (optimization) problem:

min
v∈RTm

J(x, u) (5a)

s.t. xk+1 = A(δk)xk + B(δk)uk + C(δk)wk , (5b)

P[ xk+` ∈ X , ` ∈ T+ ] ≥ 1− ε , (5c)

uk = Kxk + vk ∈ U , ∀k ∈ T , (5d)

where x0 is initialized based on the measured current state, and ε ∈ (0, 1) is the admissible
state constraint violation parameter of the large-scale system (1). The state trajectory
xk+` , ∀` ∈ T+, has a dependency on the random variables w and δ, and thus, the chance
constraint can be interpreted as follows: the probability of violating the state constraint
at the future time step ` ∈ T+ is restricted to ε, given that the state of the system in (1) is
measurable at each time step k ∈ T . Even though U and X are compact convex sets, due to
the chance constraint on the state trajectory, the feasible set of the optimization problem
in (5) is a non-convex set, in general.

To handle the chance constraint (5c), we recall a scenario-based approximation [22].
wk and δk at each sampling time k ∈ T are not necessarily independent and identically
distributed (i.i.d.). In particular, they may have time-varying distributions and/or be
correlated in time. We assume that a “sufficient number” of i.i.d. samples of the disturbance
w ∈ W and δ ∈ ∆ can be obtained either empirically or by a random number generator.
We denote the sets of given finite samples (scenarios) with Sw := {w1, · · · , wS} ∈ WS and
Sδ := {δ1, · · · , δS} ∈ ∆S, respectively. Following the approach in [23], we approximate the
expected value of the objective function empirically by averaging the value of its argument
for some number of different scenarios, which plays a tuning parameter role. Using S̄ as
the tuning parameter, consider S̄ number of different scenarios of w and δ to build

S̄w,δ =
{
(ws, δs) : ws ∈ W , δs ∈ ∆ , s = 1, · · · , S̄

}
,

which has the cardinality |S̄w,δ| = S̄. We then approximate the cost function empirically
as follows:

J(x, u) = E(w,δ)

[
T−1

∑
k=0

V(xk(wk, δk), uk)

]
≈ 1

S̄ ∑
(ws ,δs)∈S̄w,δ

T−1

∑
k=0

V(xk(ws
k, δs

k), uk) ,

where V(xk(w, δk), uk) represents a compact notation of the objective function (xk(wk,
δk)
>Qxk(wk, δk) + u>k Ruk) + xT(wk, δk)

>PxT(wk, δk). Notice that xk(wk, δk) indicates the
dependency of the state variables on the random variables.

We are now in a position to formulate an approximated version of the proposed
stochastic optimization problem in (5) using the following finite horizon scenario program:

min
v∈RTm

J(x, u) (6a)

s.t. xs
k+1 = A(δs

k)xs
k + B(δs

k)u
s
k + C(δs

k)w
s
k , (6b)

xs
k+` ∈ X , ` ∈ T+ , ∀ws ∈ Sw , ∀δs ∈ Sδ , (6c)

us
k = Kxs

k + vk ∈ U , ∀k ∈ T , (6d)
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where superscript s indicates a particular sample realization. The solution of (6) is the
optimal control input sequence v∗ = {v∗k , · · · , v∗k+T−1}. Based on the MPC paradigm,
the current input is implemented as uk := Kxk + v∗k and we proceed in a receding horizon
fashion. This means that the problem (6) is solved at each time step k by using the current
measurement of the state xk. Please note that new scenarios are needed to be generated at
each sampling time k ∈ N+. It is important to note that the proposed large-scale scenario
optimization problem (6) should be feasible and its feasibility domain must be a nonempty
domain. This is a technical requirement (Assumption 1, [17]) to be able to use such a
randomization technique. In case of infeasible solution, we need to generate new set of
scenarios and resolve the problem.

Assumption 2. The proposed large-scale scenario optimization problem (6) is feasible and its
feasibility domain has a nonempty domain.

Following Assumption 2 and based on the Weierstrass’ theorem (Proposition A.8, [24]),
the proposed large-scale scenario program (6) admits at least one optimal solution, and there-
fore the Slater’s constraint qualification [25] holds for the proposed problem formulations.
The key features of the optimization problem (6) are as follows: (1) there is no need to know
the probability measures Pw and Pδ explicitly, only the capability of obtaining random
scenarios is enough, (2) formal results to quantify the level of approximations are available.
In particular, the results follow the so-called scenario approach [17], which allows the
binding a-priori of the violation probability of the obtained solution via (6).

In the following theorem, we restate the explicit theoretical bound of (Theorem 1, [17]),
which measures the finite scenarios behavior of (6).

Theorem 1. Let ε , β ∈ (0, 1) and S ≥ N(ε, β, Tm), where

N(ε, β, Tm) := min

{
N ∈ N

∣∣∣ Tm−1

∑
i=0

(
N
i

)
εi(1− ε)N−i ≤ β

}
.

If the optimizer of problem (6) v∗ ∈ RTm is applied to the discrete-time dynamical system (1) for
a finite horizon of length T, then, with at least confidence 1− β, the original constraint (5c) is
satisfied for all k ∈ T with probability more than 1− ε.

It was shown in [17] that the above bound is tight. The interpretation of Theorem 1
is as follows: when applying v∗ in a finite horizon control problem, the probability of
constraint violation of the state trajectory remains below ε with confidence 1− β:

PS
[
Sw ∈ WS,Sδ ∈ ∆S : Vio(v∗) ≤ ε

]
≥ 1− β ,

with Vio(v∗) := P[w ∈ W , δ ∈ ∆ : xk+` = Acl(δk)xk + B(δk)v∗k + C(δk)wk /∈ X , ` ∈
T+
∣∣ xk = x0 ] , where Acl(δk) = A(δk) + B(δk)K. It is worth mentioning that while the

proposed constraint on the control input (6d) is also met in a probabilistic sense for all
prediction time steps, except at the initial time step, due to the feedback parametrization and
the nature of the scenario approach that appears in the proposed optimization problem (6).
At the initial time step such a constraint (6d) is deterministic, and the superscript s can be
dropped, as there is only one measured current state xk. This holds for all the following
proposed formulations.

3. Decomposed Problem Reformulation

Consider a partitioning of the system dynamics (1) through a decomposition into N
subsystems and let N = {1, 2, · · · , N} be the set of subsystem indices. The state variables
xk, control input signals uk and the additive disturbance wk can be considered to be
xk = coli∈N (xi,k), uk = coli∈N (ui,k) and wk = coli∈N (wi,k), respectively, where xi,k ∈ Rni ,
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ui,k ∈ Rmi , wi,k ∈ Rpi , and ∑i∈N ni = n, ∑i∈N mi = m, ∑i∈N pi = p. The following
assumption is important to be able to partition the system parameters.

Assumption 3. The control input and the additive disturbance of the subsystems are decoupled,
e.g., ui,k and wi,k only affect subsystem i ∈ N for all k ∈ T . Consider the state and control input
constraint sets X and U of large-scale system dynamics (1) as defined in (2) to be X = ∏i∈N Xi,
and U = ∏i∈N Ui such that Xi and Ui for all subsystems i ∈ N can be in the following form:

Xi := {x ∈ Rmi : Gix ≤ gi}, Ui := {u ∈ Rpi : Hiu ≤ hi},

where G = diagi∈N (Gi), H = diagi∈N (Hi), g = coli∈N (gi) and h = coli∈N (hi). Also consider
the objective function of each subsystem i ∈ N in the following form:

Ji(xi, ui) := E
[

T−1

∑
k=0

(
x>i,kQixi,k + u>k Riui,k

)
+ x>i,T Pixi,T

]
,

where Qi ∈ Rni×ni
�0 , Ri ∈ Rmi×mi

�0 such that Q = diagi∈N (Qi), and R = diagi∈N (Ri). Please
note that xi = colk∈T (xi,k) and ui = colk∈T (ui,k) such that x = coli∈N (xi) and u = coli∈N (ui).

It is important to note that under Assumption 3 there are no direct coupling con-
straints between each subsystem i ∈ N and its neighboring subsystems j ∈ Ni. Instead,
the subsystem i ∈ N is dynamically coupled with all its neighboring subsystems j ∈ Ni as
it is presented in (8).

We refer to the additive disturbance wi,k as a local uncertainty source of each sub-
system i ∈ N , since it is assumed that it affects only the subsystem i ∈ N . Motivated
by an application to Smart Thermal Grids (STGs) in [26] where a network of agents is
interconnected via an uncertain common resource pool between neighbors, we consider the
uncertain variable δk as a common uncertainty source between all subsystems i ∈ N . Such
a STG application will also be presented in Section 7.2 as a second case study. Observe the
fact that every common uncertain phenomenon can be considered to be a local uncertain
variable, e.g., the outside weather condition for neighboring buildings. Therefore, we also
consider having δk = coli∈N (δi,k) and refer to both random variables wi,k and δi,k as local
uncertainty sources.

We are now able to decompose the large-scale system matrices B(δk) = diagi∈N (Bi(δi,k))
∈ Rn×m, C(δk) = diagi∈N (Ci(δi,k)) ∈ Rn×p, and consider A(δk) ∈ Rn×n in the follow-
ing form:

A(δk) =

 A11(δ1,k) · · · A1N(δ1,k)
...

. . .
...

AN1(δN,k) · · · ANN(δN,k)

 ,

where Aij(δi,k) ∈ Rni×nj , Bi(δi,k) ∈ Rni×mi , and Ci(δi,k) ∈ Rni×pi . Define the set of neigh-
boring subsystems of subsystem i as follows:

Ni =
{

j ∈ N\{i}
∣∣ Aij(δi,k) 6= 0

}
, (7)

where 0 denotes a matrix of all zeros with proper dimension. Please note that if subsystems
are decoupled, they remain decoupled regardless of the uncertainties δi,k for all i ∈ N .
Consider now a large-scale network that consists of N interconnected subsystems, and each
subsystem can be described by an uncertain discrete-time linear time-invariant system
with additive disturbance of the form{

xi,k+1 = Aii(δi,k)xi,k + Bi(δi,k)ui,k + qi,k

qi,k = ∑j∈Ni
Aij(δi,k)xj,k + Ci(δi,k)wi,k

. (8)
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Following Assumption 3, one can consider a linear feedback gain matrix Ki for each
subsystem i ∈ N such that K = diagi∈N (Ki). Using Ki in each subsystem, we assume that
there exists Pi for each subsystem i ∈ N such that P = diagi∈N (Pi) preserves the condition
in (4).

Define σi := cols∈{1,··· ,Si}(σ
s
i ) such that σs

i := colj∈Ni (z
s
ij), where zs

ij = colk∈T (zs
ij,k) ∈

RTnj , to be auxiliary decision variables, and using vi = colk∈T (vi,k) ∈ RTmi such that
v = coli∈N (vi), we are now able to reformulate the optimization problem in (6) into the
following decomposable finite horizon scenario program:

min
{σi ,vi}i∈N

∑
i∈N

Ji(xi, ui) (9a)

s.t. xs
i,k+1 = Aii(δ

s
i,k)xs

i,k + Bi(δ
s
i,k)u

s
i,k + qs

i,k , (9b)

qs
i,k = ∑j∈Ni

Aij(δ
s
i,k)z

s
ij,k + Ci(δ

s
i,k)w

s
i,k, (9c)

zs
ij,k = xs

j,k , ∀xs
j ∈ Sxj , ∀j ∈ Ni , (9d)

xs
i,k+` ∈ Xi, ` ∈ T+, ∀ws

i ∈ Swi , ∀δs
i ∈ Sδi , (9e)

us
i,k = Kixs

i,k + vi,k ∈ Ui , ∀k ∈ T , ∀i ∈ N (9f)

where wi = colk∈T (wi,k) ∈ Wi and δi = colk∈T (δi,k) ∈ ∆i such that W = ∏i∈N Wi and
∆ = ∏i∈N ∆i. The sets Swi := {w1

i , · · · , wSi
i } ∈ W

Si
i and Sδi := {δ1

i , · · · , δ
Si
i } ∈ ∆Si

i denote
sets of given finite samples (scenarios) of disturbance and uncertainties in each subsystem
i ∈ N , such that Sw = ∏i∈N Swi and Sδ = ∏i∈N Sδi . It is important to highlight that the
proposed optimization problem in (9) is decomposable into N subproblems with coupling
only through the equality constraints (9d) between neighboring agents. The auxiliary
variables zs

ij,k are defined between agent i ∈ N and its neighboring agent j ∈ Nj to
represent the local estimation of each scenario information of the neighbor’s state variable
xs

j = colk∈T (xs
j,k) ∈ X

T
j := Xj at each sampling time k ∈ T . By taking into consideration

that the interaction dynamics model Aij(δ
s
i,k) by each neighboring agent j ∈ Ni is available

for agent i ∈ N , the only information that subsystem i ∈ N needs is a set of scenarios
of the state variable Sxj := {x1

j , · · · , xSi
j } ∈ XSi

j at each sampling time k ∈ T from all its
neighboring agents j ∈ Ni. Please note that the cardinality of Sxj is Si, which is assigned by
the agent i ∈ N for all neighboring agents j ∈ Ni, and should be sent by the neighboring
agents at each sampling time k ∈ T , and this is known as the hard communication scheme
between the neighboring agents.

In the following proposition, we provide a connection between the proposed opti-
mization problem in (9) and the optimization problem in (6).

Proposition 1. Given Assumption 3 and the block-diagonal structure for the state-feedback con-
troller K = diagi∈N (Ki) for the large-scale system dynamics (1), the optimization problem in (9) is
an exact decomposition of the optimization problem in (6), such that the optimal objective value of
the decomposed problem (9) is equal to the optimal objective of the problem (6).

The proof is provided in the Appendix A.
An important key feature of the proposed decomposable scenario program in (9) com-

pared to the centralized scenario problem in (6) is as follows. Such a decomposition yields
a reduction of computation time complexity of the centralized scenario program compared
to the decomposable scenario program (9). This however requires more communication
between each subsystem, since at each time k ∈ T each agent i ∈ N should send to and
receive from all the neighboring agents j ∈ Ni a set of their state variable scenarios Sxi and
Sxj , respectively.



Energies 2021, 14, 23 9 of 26

Remark 1. The proposed constraint (9e) represents an approximation of the following chance
constraint on the state of each subsystem i ∈ N :

P[ xi,k+` ∈ Xi , ` ∈ T+ ] ≥ 1− εi , (10)

where εi ∈ (0, 1) is the admissible state constraint violation parameter of each subsystem (8).
One can also consider αi = 1− εi as the desired level of state feasibility parameter of each subsys-
tem (8).

The following theorem can be considered to be the main result of this section to
quantify the robustness of the solutions obtained by (9).

Theorem 2. Let εi, βi ∈ (0, 1) be chosen such that ε = ∑i∈N εi ∈ (0, 1), β = ∑i∈N βi ∈ (0, 1),
and Nsi ≥ N(εi, βi, Tmi) for all subsystem i ∈ N . If v∗ = coli∈N (v∗i ), the collection of the
optimizers of problem (9) for all subsystem i ∈ N , is applied to the discrete-time dynamical system
(1) for a finite horizon of length T, then, with at least confidence 1− β, the original constraint (5c)
is satisfied for all k ∈ T with probability more than 1− ε.

The proof is provided in the Appendix B.
The interpretation of Theorem 2 is as follows. In the proposed decomposable scenario

program (9), each subsystem i ∈ N can have a desired level of constraint violation εi and
a desired level of confidence level 1− βi. To keep the robustness level of the collection
of solutions in a probabilistic sense (5c) for the discrete-time dynamical system (1), these
choices have to follow a certain design rule, e.g., ε = ∑i∈N εi ∈ (0, 1) and β = ∑i∈N βi ∈
(0, 1). This yields a fixed ε , β for the large-scale system (1) and the individual εi , βi for
each subsystem i ∈ M. It is important to mention that to maintain the violation level
for the large-scale system with many partitions, i.e., |N | = N ↑ , the violation level of
individual agents needs to decrease, i.e., εi ↓ , which may lead to conservative results for
each subsystem, since the number of samples needs to increase, i.e., Si ↑. Addressing such
a limitation is subject of ongoing research work. The following corollary is a direct result of
Theorem 2.

Corollary 1. If the optimal solution v∗i for each agent i ∈ N obtained via the proposed decomposable
problem (9) is applied to the agent dynamical system (8) for a finite horizon of length T, then, with at
least confidence 1− βi, the original constraint (10) is satisfied for all k ∈ T with probability more
than 1− εi.

4. Distributed Scenario Optimization

In this section, we continue by developing a distributed framework using ADMM to
solve the proposed decomposable formulation in (9). It has been proven that ADMM for
this type of problem converges linearly [27]. We follow a similar approach as in [28,29]
to solve the decomposable problem (9) in a distributed manner by extending to the sce-
nario program. Define the local feasibility set denoted with Li for all agents i ∈ N :

Li :=
{
{σi , vi}

∣∣∣ us
i,k = Kixs

i,k + vi,k ∈ Ui, ∀k ∈ T ,

xs
i,k+1 = Aii(δ

s
i,k)xs

i,k + Bi(δ
s
i,k)u

s
i,k + qs

i,k,

qs
i,k = ∑j∈Ni

Aij(δ
s
i,k)z

s
ij,k + Ci(δ

s
i,k)w

s
i,k,

xs
i,k+` ∈ Xi, ` ∈ T+, ∀ws

i ∈ Swi , ∀δs
i ∈ Sδi

}
,

where all the system parameters together with the local scenario sets, Swi ,Sδi , are fixed and
available locally for each agent i ∈ N at each sampling time k ∈ T . We are now able to
define the augmented Lagrangian function as follows:
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L({σi , vi}i∈N ) := ∑
i∈N

(
Ji(xi, ui) + ILi ({σi, vi}) + ∑

j∈Ni

Si

∑
s=1

(µ

2

∥∥∥zs
ij − xs

j +
Λs

ij

µ

∥∥∥2

2
+

1
2µ

∥∥∥Λs
ij

∥∥∥2

2

))
,

where ILi ({σi, vi}) is a convex indicator function for the local constraint set Li that maps
to infinity if one of the constraints is violated, and to zero otherwise. Step size µ is a fixed
constant, and multipliers Λs

ij ∈ R
nj are introduced for every coupling constraint of each

scenario. The indicator function makes sure all local constraints are satisfied, and the
squared norm penalty term forces constraint (9d) to be satisfied.

We now describe the steps of the ADMM algorithm as follows:

(1) Update primal variables

The multipliers Λs
ij and the local estimation of neighboring state scenario zs

ij for all
scenarios s = 1, · · · , Si and for all the neighbors j ∈ Ni are fixed at their value of the
previous iteration. Consider the following minimization problem for all i ∈ N :

v(l+1)
i = arg min

vi

{
Ji(xi, ui) + ILi ({σ

(l)
i , vi}) + ∑

j∈Ni

Sj

∑
s=1

(µ

2

∥∥∥zs,(l)
ji − xs

i +
Λs,(l)

ji

µ

∥∥∥2

2

)}
. (11)

It is important to note that the augmented part of the aforementioned step in each agent
i ∈ N refers to the coupling constraints from the neighboring agent j ∈ Ni point of view
and zs,(l)

ji is the estimation of neighboring agent j ∈ Ni from the state variable scenario of
agent i ∈ N for all s ∈ {1, · · · , Sj}. Since the minimization is only in vi, all terms of Λs

ij
drop out. This results in |N | = N separate convex programs.

(2) Update and exchange the set of state scenarios

The resulting primarily decision variables v(l+1)
i for all i ∈ N are used to first update

and then exchange the set of state scenarios. Please note that each agent only needs to
communicate the updated local state scenarios set to all its neighboring agents and receive
the updated set of all its neighboring state scenarios. Consider now the following steps
which we refer to as the Scenario Updating Steps (SUS) for a generic agent i ∈ N as follows:

xs,(l+1)
i,k+1 = Aii(δ

s
i,k)xs,(l+1)

i,k + Bi(δ
s
i,k)u

s,(l+1)
i,k + qs,(l)

i,k

qs,(l)
i,k = ∑j∈Ni

Aij(δ
s
i,k)z

s,(l)
ij,k + Ci(δ

s
i,k)w

s
i,k

us,(l+1)
i,k = Kix

s,(l+1)
i,k + v(l+1)

i,k , ∀k ∈ T
. (12)

By repeating SUS for all local scenarios, ∀ws
i ∈ Swi and ∀δs

i ∈ Sδi , the agent i ∈ N
should first update the set of its local state scenarios xs,(l+1)

i ∈ S (l+1)
xi and send it to all

its neighboring agents. Then, the agent i ∈ N should receive the updated set of all its
neighboring state scenarios S (l+1)

xj . It is important to note that the set of local scenarios, Swi

and Sδi , is fixed for all the SUS steps and iteration steps, i.e., l ∈ N+.

(3) Update and exchange the state estimation variables

Using the updated set of all neighboring state scenarios S (l+1)
xj and the updated primal

variables, consider the following projection problem for all i ∈ N :

σ
(l+1)
i = arg min

σi

{
ILi ({σi, v(l+1)

i }) + ∑
j∈Ni

Si

∑
s=1

(µ

2

∥∥∥zs
ij − xs,(l+1)

j +
Λs,(l)

ij

µ

∥∥∥2

2

)}
, (13)
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Since the projection is only in σi, all terms of Λs
ij drop out and this results in |N | = N

separate convex programs. Each agent i ∈ N should now send the updated local estimation
of the neighboring state variable zs,(l+1)

ij to its neighbor j ∈ Ni.

(4) Update and exchange the multiplier variables

The multipliers are updated as follows ∀i ∈ N , ∀j ∈ Ni, and s = 1, · · · , Si:

Λs,(l+1)
ij = Λs,(l)

ij + µ
(

zs,(l+1)
ij − xs,(l+1)

j

)
. (14)

Notice that no information exchange is needed for the update of the multiplier, since agents
receive the updated set of all their neighboring state scenarios xs,(l+1)

j ∈ S (l+1)
xj . As the final

step, each agent i ∈ N should receive the updated multiplier variable Λs,(l+1)
ji from all its

neighboring agents j ∈ Ni for all the scenarios s = 1, · · · , Sj.
In Algorithm 1, we summarize the proposed distributed scenario exchange framework

using ADMM algorithm to illustrate the calculation and communication steps for each
agent i ∈ N . Each agent needs to solve two small-scale scenario programs in Lines 4
and 8 at each iteration that can be considered to be the highest computational cost in the
proposed algorithm. In Line 5 each agent first updates S (l+1)

xi using SUS, which works
with only simple operations, e.g., addition, subtraction and scaling, and then, it broadcasts
and receives the updated local S (l+1)

xi and S (l+1)
xj to and from the neighbors, respectively.

Finally, each agent in Lines 9 and 11 broadcasts the updated local estimation from the
neighboring agents state variable scenarios and the related multipliers.

Algorithm 1 Distributed Scenario Exchange Algorithm

1: for all i ∈ N do

2: initialize: xi,0 ∈ Xi, l = 0, Λs,(l)
ij , zs,(l)

ij , zs,(l)
ji , ∀s ∈ {1, · · · , Si}, and ∀j ∈ Ni

3: while η
(l)
i > εdes

i using (15) do

4: Update v(l+1)
i using (11)

5: Update S (l+1)
xi using SUS procedure (12)

6: Broadcast S (l+1)
xi to all j ∈ Ni

7: Receive S (l+1)
xj from all j ∈ Ni

8: Update zs,(l+1)
ij using (13) for all j ∈ Ni and for all s ∈ {1, · · · , Si},

9: Broadcast zs,(l+1)
ij to all j ∈ Ni

10: Update Λs,(l+1)
ij using (14) for all j ∈ Ni and for all s ∈ {1, · · · , Si}

11: Broadcast Λs,(l+1)
ij to all j ∈ Ni and for all s ∈ {1, · · · , Si}

12: set l ← l + 1

13: output: v∗i = vl+1
i
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We define the agreement on the local estimation from the state variable scenario of the
neighbors zs

ij as the convergence criteria of the proposed ADMM algorithm for each agent
i ∈ N as follows:

η
(l)
i = ∑

j∈Ni

Si

∑
s=1

(
µ

2

∥∥∥zs,(l)
ij − xs,(l)

j

∥∥∥2

2

)
, (15)

and the overall convergence criteria is η(l) := ∑i∈N η
(l)
i . If the residual sequence

{
η(l)
}+∞

l=1
is sufficiently small, less than or equal to ∑i∈N εdes

i where εdes
i is the desired level of

convergence error for each agent i ∈ N , then all neighboring agents have reached a
consistent set of state variable scenarios. In light of Assumption 2, we can now provide
convergence of Algorithm 1 based on the results in [30].

Theorem 3. Assume that Slater’s condition [25] holds for the decomposable scenario optimization
problem (9), and consider the iterative steps given in Algorithm 1. Then the following statements hold:

• The residual sequence {η(k)}+∞
k=0 tends to 0 in a non-increasing way as l goes to +∞, and con-

sequently, for all j ∈ Nj , and each i ∈ N :

zs,(+∞)
ij = xs,(+∞)

j .

• The sequence {v(l)i }∀i∈N generated by Algorithm 1 converges to an optimal solution {v∗i }∀i∈N
of the decomposable scenario program (9) as l tends to +∞.

Proof. The theorem follows from [30] that studies the convergence of a standard ADMM
problem. The details are omitted for brevity.

Remark 2. The proposed distributed scenario exchange algorithm uses a Gauss–Siedel update on
the primal variables and the set of state variable scenarios, after which the multiplier variables are
updated. Since either the primal or the set of state variable scenarios are fixed in the Gauss–Siedel
steps, the problem can be distributed for all the agents. The main advantage to distribute a large-scale
scenario optimization problem (6) is the ability of finding local solutions for each agent based on
the information received in the previous iteration. Such calculations can therefore be carried out in
parallel. Although an actual parallel implementation is outside the scope of this work, it is important
to mention that the proposed algorithm is amenable to such an implementation. ADMM algorithms
typically need a large number of iterations to converge to high accuracy, so the local agent problems
need to be solved many times before finding a good enough solution. Thus, the ADMM approach
without parallelization might not be the quickest method to solve the large-scale scenario program.
Such a distributed framework is advantageous especially when the global scenario optimization
problem is too large and cannot be solved within polynomial time due to the curse of dimensionality
or memory limitations and computational constraints.

We next present the overall steps needed to execute the proposed distributed scenario
optimization. Algorithm 2 summarizes all the steps such that after decomposing the large-
scale dynamical system (1) and determining the index sets of the neighboring agents, each
agent first starts to generate some scenarios of its local uncertainty sources to approximate
its cost function and achieve the feasibility of its chance constraint with high confidence
level following Theorem 2. Next, all the agents solve their own local problem using the
proposed distributed scenario exchange scheme (Algorithm 1) to obtain their local optimal
solution. To execute Algorithm 1, it is assumed that the feedback control gain matrices
Ki for all agents i ∈ N are given (4), and the coupling terms Aij(δi,k) are known between
each agent i ∈ N and its neighboring agents j ∈ Ni. Using the obtained solution via
Algorithm 1, each agent generates a new set of local state variable scenarios to send and
receive to and from all its neighboring agents, respectively. Finally, the first optimal control
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input is applied to the real system and the new state variables are measured, and proceed
in the classical receding horizon fashion.

Remark 3. The proposed decomposable scenario program in (9) is a general deterministic optimiza-
tion problem for each agent that are coupled via (9d). Therefore, the proposed technique to solve (9)
in Algorithm 1, namely the distributed scenario exchange scheme, can be easily considered to be a
general solution method to solve the agents’ problem with the nonempty intersection between their
local feasible sets. Such a case where agents are only coupled via coupling constraints has been
presented in Section 7.2 as a second case study.

Algorithm 2 Distributed Scenario Optimization (DSO)

1: Decompose the large-scale dynamical system (1) into N agents as the proposed form in (8)

2: Determine the index set of neighboring agents Ni for each agent i ∈ N

3: for all agent i ∈ N do

4: fix initial state xi,0 ∈ Xi, εi ∈ (0, 1), and βi ∈ (0, 1) such that ε = ∑i∈N εi ∈ (0, 1) , β =

∑i∈N βi ∈ (0, 1)

5: determine S̄i ∈ (0,+∞) to approximate the objective function, and Si following Theorem 2

to approximate

the chance constraint (10) in an equivalent sense

6: generate S̄i, Si scenarios of wi, δi to determine the sets of S̄wi ,δi and Swi , Sδi

7: solve the proposed optimization problem in (9) using the proposed distributed scenario

exchange

algorithm (Algorithm 1) and determine v∗i

8: generate Si scenarios of xi using SUS procedure (12) and taking into consideration v∗i and

Swi , Sδi

9: send the set Sxi to all neighboring agents j ∈ Ni

10: receive the sets Sxj from all neighboring agents j ∈ Ni

11: apply the first input of solution u∗i,k = Kixi,k + v∗i,k into the uncertain subsystem (8)

12: measure the state and substitute it as the initial state of the next step xi,0

13: set k← k + 1

14: go to Step (4)

5. Information Exchange Scheme

When the proposed distributed scenario optimization framework (Algorithm 2) is
applied to the large-scale scenario program (6), all neighboring agent j ∈ Ni of the agent
i ∈ N should send a set of scenarios of the state variable Sxj := {x1

j , · · · , xSi
j } ∈ XSi

j
to agent i at each sampling time k ∈ T following the proposed distributed scenario
exchange scheme in Algorithm 1. Based on ADMM in Algorithm 1, it may require a
large number of iterations to achieve an agreement between neighboring agents on the
consistency of exchange scenarios, which may also turn out to be too costly in terms of
required communication bandwidth. To address this shortcoming, we propose a set-based
information exchange scheme which is referred to as a soft communication protocol.
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We now describe the soft communication protocol in more detail. The neighboring
agent j ∈ Ni must first generate S̃j samples of xj in order to build the set Sxj . It is important
to notice that in the soft communication protocol the number S̃j of samples generated by
agent j may be different than the one needed by agent i, which is Si, as will be remarked
later. Let us then introduce Bj ⊂ Rnj as a bounded set containing all the elements of Sxj .
We assume for simplicity that Bj is an axis-aligned hyper-rectangular set [14]. This is not a
restrictive assumption and any convex set, e.g., ellipsoids and polytopes, could have been
chosen instead as described in [26]. We can define Bj := [−bj, bj] as an interval, where the
vector bj ∈ Rnj defines the hyper-rectangle bounds.

Consider now the following optimization problem that aims to determine the set Bj
with minimal volume: 

min
bj∈R

nj
‖bj‖1

s.t. xl
j ∈ [−bj, bj] , ∀xl

j ∈ Sxj

l = 1, · · · , S̃j

, (16)

where S̃j is the number of samples xj ∈ Sxj that neighboring agent j must take into account
in order to determine Bj. If we denote by B̃j = [−b̃j, b̃j] the optimal solution of (16)
computed by the neighbor agent j, then for implementing the soft communication protocol,
agent j needs to communicate only the vector b̃j along with the level of reliability α̃j to the
agent i.

Definition 1. A set B̃j is called α̃j−reliable if

P
[

xj ∈ Xj : xj /∈ [−b̃j, b̃j]
]
≤ 1− α̃j , (17)

and we refer to α̃j as the level of reliability of the set B̃j.

We now provide the following theorem to determine α̃j as the level of reliability of the
set B̃j.

Theorem 4. Fix β̃ j ∈ (0, 1) and let

α̃j = κ

√√√√ β̃ j

(S̃j
nj
)

. (18)

where κ = S̃j − nj is the degree of the root. We then have

PS̃j
{
{x1

j , · · · , x
S̃j
j } ∈ XS̃j

j : (19)

P
[

xj ∈ Xj : xj /∈ [−b̃j, b̃j]
]
≤ 1− α̃j

}
≥ 1− β̃ j .

The proof is provided in the Appendix C.
Theorem 4 implies that given an hypothetical new sample xj ∈ Xj, agent j ∈ Ni

has a confidence of at least 1− β̃ j that the probability of xj ∈ B̃j = [−b̃j, b̃j] is at least
α̃j. Therefore, one can rely on B̃j up to α̃j probability. The number of samples S̃j in the
proposed formulation (16) is a design parameter chosen by the neighboring agent j ∈ Ni.
We however remark that one can also set a given α̃j as the desired level of reliability and
obtain from (18) the required number of samples S̃i.

When an agent i ∈ N and its neighbor j ∈ Ni adopt the soft communication scheme,
there is an important effect on the probabilistic feasibility of agent i, following Remark 1.
Such a scheme introduces some level of stochasticity on the probabilistic feasibility of
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agent i, due to the fact that the neighboring information is only probabilistically reliable.
This will affect the local probabilistic robustness guarantee of feasibility as discussed in
Theorem 2 and consequently in Theorem 1. To accommodate the level of reliability of
neighboring information, we need to marginalize a joint cumulative distribution function
(cdf) probability of xi and the generic sample xj ∈ Xj appearing in Theorem 4. We thus have
the following theorem, which can be regarded as the main theoretical result of this section.

Theorem 5. Given α̃j ∈ (0, 1) for all j ∈ Ni and a fixed αi = 1− εi ∈ (0, 1), the state trajectory
of a generic agent i ∈ N is probabilistically ᾱi–feasible for all wi ∈ Wi , δi ∈ ∆i, i.e.,

P[xi,k+` ∈ Xi , ` ∈ T+] ≥ ᾱi , (20)

where ᾱi = 1− 1−αi
α̃i

such that α̃i = ∏j∈Ni
(α̃j).

The proof is provided in the Appendix D.
Following the statement of Theorem 5, it is straightforward to observe that if for all

neighboring agents j ∈ Ni, α̃j → 1 then ᾱi → αi. This means that if the level of reliability of
the neighboring information is one, i.e., P

[
xj ∈ B̃j : ∀j ∈ Ni

]
= 1, then, the state feasibility

of agent i will have the same probabilistic level of robustness as the hard communication
scheme, i.e., P

[
xi ∈ Xi

]
≥ αi = 1 − εi . Combining this result with the statement of

Theorem 2, the proposed soft communication scheme introduces some level of stochasticity
on the feasibility of the large-scale system as in (5c). In particular, εi ∈ (0, 1) the level of
constraint violation in each agent i ∈ N will increase, since it is proportional with the
inverse of ∏j∈Ni

(α̃j) ∈ (0, 1), and therefore, ε = ∑i∈N εi ∈ (0, 1) will also increase. After
receiving the parametrization of B̃j and the level of reliability α̃j, agent i ∈ N should
immunize itself against all possible variation of xj ∈ B̃j by taking the worst-case of B̃j,
similar to the worst-case reformulation proposed in (Proposition 1, [16]). It is important to
notice that in this way, we decoupled the sample generation of agent j ∈ Ni from agent
i ∈ N .

6. Plug-and-Play Operational Framework

Using the soft communication scheme, each agent i ∈ N should first receive the
parametrization of B̃j from all its neighboring agents j ∈ Ni together with the level of
reliability α̃j. Then, all agents should immunize themselves against all possible variation of
xj ∈ B̃j. To this end, we formulate the following robust-communication scenario program for
each agent i ∈ N :

min
vi

Ji(xi, ui) (21a)

s.t. xs
i,k+1 = Aii(δ

s
i,k)xs

i,k + Bi(δ
s
i,k)u

s
i,k + qs

i,k , (21b)

xs
i,k+` ∈ Xi, ` ∈ T+, ∀ws

i ∈ Swi , ∀δs
i ∈ Sδi , (21c)

us
i,k = Kixs

i,k + vi,k ∈ Ui , ∀k ∈ T , (21d)qs
i,k = ∑

j∈Ni

Aij(δ
s
i,k)xs

j,k + Ci(δ
s
i,k)w

s
i,k

∀xs
j ∈ B̃j , ∀j ∈ Ni

. (21e)

It is important to highlight that we refer to the aforementioned formulation as the robust-
communication scenario program, since the communicated variable between neighboring
agents should be taken into consideration by the worst-case of B̃j. In this way, there is
no need for the many iterations of Algorithm 2, and instead, a robustification against
all possible variation of xj ∈ B̃j is used. It is also important to mention that another
feature of using the soft communication scheme is the relaxation of the condition on the
required number of scenarios, e.g., each agent i ∈ N requests Si number of scenarios
from all its neighboring agents j ∈ Ni, which may give rise to privacy concerns for the
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neighboring agents. The proposed problem (21), specifically the robust constraint (21e),
can be solved using a robust (worst-case) reformulation similar to (Proposition 1, [16])
and [7]. It is important to highlight that based on Assumption 2, the proposed optimization
problem (21) should be feasible and its feasibility domain has to be a nonempty domain.
In case of infeasible solution, each agent i ∈ N needs to generate new set of local scenarios,
Swi ,Sδi , and also needs to receive a new set xj ∈ B̃j from all its neighbors j ∈ Ni.

We summarize the proposed distributed scenario optimization using soft communica-
tion scheme in Algorithm 3. Similar to Algorithm 2, in Algorithm 3 it is also assumed that
the feedback control gain matrices Ki for all agents i ∈ N are given (4), and the coupling
terms Aij(δi,k) are known between each agent i ∈ N and its neighboring agents j ∈ Ni.
It is important to note that Step 5 of Algorithm 3, initializes B̃j of all neighboring agents
j ∈ Ni, which is only used for the initial iteration in Step 8, and then, at each iteration all
agents i ∈ N will send and receive B̃j from all its neighboring agents j ∈ Ni as in Steps 11
and 12, respectively.

We also summarize the steps that are needed for plug-in and plug-out operations of each
agent i ∈ N in Algorithm 4. Please note that in a plugged-in or plugged-out operation all
agents i ∈ N have to update their εi with βi to respect the condition in Theorem 2 as in (4) to
achieve the desired level of constraint feasibility for the large-scale system (1). One can also
redesign Ki to potentially improve the local control performance of each agent i ∈ N .

Algorithm 3 DSO using Soft Communication Scheme

1: Decompose the large-scale dynamical system (1) into N agents as the proposed form in (8)

2: Determine the index set of neighboring agents Ni for each agent i ∈ N

3: for all i ∈ N do

4: fix initial state xi,0 ∈ Xi, εi ∈ (0, 1), and βi ∈ (0, 1) such that ε = ∑i∈N εi ∈ (0, 1) , β =

∑i∈N βi ∈ (0, 1)

5: initialize B̃j for all neighboring agents j ∈ Ni

6: determine S̄i ∈ (0,+∞) to approximate the objective function, and Si following Theorem 2

to approximate

the chance constraint (10) in an equivalent sense

7: generate S̄i, Si scenarios of wi, δi to determine the sets of S̄wi ,δi and Swi , Sδi

8: solve the optimization problem in (21) by taking into account the worst-case of B̃j and

determine v∗i

9: generate S̃i scenarios of xi using the dynamics of agent i in form of (8) and v∗i together with

Swi , Sδi

10: determine set B̃i by solving the optimization problem (16)

11: send the set B̃i to all neighboring agents j ∈ Ni

12: receive the sets B̃j from all neighboring agents j ∈ Ni

13: apply the first input of solution u∗i,k = Kixi,k + v∗i,k into the uncertain subsystem (8)

14: measure the state and substitute it as the initial state of the next step xi,0

15: set k← k + 1

16: go to Step (7)
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Algorithm 4 Plug-and-Play Operation

Plug-in Operation

1: Add the number of new subsystems into the previous number of subsystems,

e.g., one additional agent N ← N + 1 such that |N | = N + 1

2: Update the index set of neighboring agents Ni for each agent i ∈ N

3: Go to Step (3) of Algorithm 3

Plug-out Operation

4: Remove the number of departing subsystems from the previous number of subsystems,

e.g., one agent leaving leads to N ← N − 1 such that |N | = N − 1

5: Update the index set of neighboring agents Ni for each agent i ∈ N

6: Go to Step (3) of Algorithm 3

Comparison: DSO without vs. with Soft Communication

We now provide a comparison between the proposed distributed scenario optimiza-
tion without vs. with soft communication in Algorithm 2 and Algorithm 3, respectively,
in terms of their computational complexities and the conservatism level of obtained solu-
tions as follows:

(1) Computational complexity: It is easy to realize that the proposed distributed sce-
nario optimization (Algorithm 3) using soft communication scheme is computationally
advantageous compared to the distributed scenario optimization without soft commu-
nication (Algorithm 2). This can be clearly seen by just comparing Step 7 and Step 8
in Algorithms 2 and 3, respectively. In Step 7 of Algorithm 2 each agent i ∈ N needs
to execute the proposed distributed scenario exchange scheme in Algorithm 1 until all
its neighboring agents agree on consistency of the set of their state variable scenarios
Sxj . However, in Step 8 of Algorithm 3 each agent i ∈ N needs to solve only once the
robust-communication scenario program in (21) and also solve the proposed optimization
problem (16) in Step 10 of Algorithm 3 in order to determine the set B̃i.

(2) Conservatism level: As shown in Theorem 2, the proposed distributed scenario op-
timization using Algorithm 2 retrieves exactly the same property of the original problem (5)
under certain conditions, i.e., ε = ∑i∈N εi ∈ (0, 1), β = ∑i∈N βi ∈ (0, 1). This is however
different in the distributed scenario optimization using the proposed soft communication
scheme as presented in Theorem 5. In fact, such a scheme introduces some level of stochas-
ticity on the probabilistic feasibility of the agent i ∈ N , due to the probabilistic reliability of
the neighboring information. It is important to mention that guaranteeing the optimality of
the obtained solutions in terms of performance objective(s) using the proposed distributed
scenario optimization without or with soft communication in Algorithm 2 and Algorithm 3,
respectively, is not included in the scope of this paper and it is subject of our ongoing
research work.

7. Numerical Study

This section presents two different case studies to illustrate the functionality of our
proposed framework to deal with dynamically coupled (Section 7.1) and coupling con-
straints (Section 7.2) neighboring agents with private and common uncertainty sources in
networked control problems. The simulation environment for both cases was MATLAB
with YALMIP as the interface [31] and Gurobi as the solver.

We simulate four different problem formulations, namely a centralized SMPC (CSMPC)
using (6), a distributed SMPC (DSMPC) via Algorithm 2, and DSMPC with the proposed
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soft communication scheme with 0.85−reliability (DSMPCS−0.85) as described in Defi-
nition 1 and DSMPCS−0.50, both following Algorithm 3 in a closed-loop control system
framework. For comparison purposes, we also present the results obtained via decoupled
SMPC (DeSMPC), where the impact of coupling neighboring dynamics in (8) are relaxed.

In Figures 1 and 2, we evaluate our proposed framework in terms of a-posteriori
feasibility validation of the obtained results in both case studies. The “red” line represents
the results obtained via DeSMPC, the “blue” line shows the results obtained via CSMPC,
the “magenta” presents the results obtained by using DSMPC, the “dark green” and “light
green” lines show the results obtained via DSMPCS−0.85 and DSMPCS−0.50, respectively.
The “black” lines indicate the bounds of the three dynamically coupled systems.

7.1. Three-Room Case Study

We simulate a building climate comfort system with three rooms such that the tem-
perature of rooms is dynamically coupled without any common constraints. The outside
weather temperature and the related losses, e.g., through windows, is considered to be the
private uncertainty.

Consider now a three-room building system dynamic:

xk+1 = A(δk)xk + B(δk)uk + C(δk)wk ,

where B = diag([0.01, 0.01, 0.01]), C = diag([0.02, 0.02, 0.02]), and A as follows:

A =

0.2 0.3 0
0.2 0.1 0.1
0.2 0 0.4


such that A(δk) = A + δk and B(δk) = B + δk as well as C(δk) = C + δk. The system
matrices are a simplified model of a three-room building such that the states xi,k for
i = 1, 2, 3, denote the temperature of rooms. The uncertain variable δk ∈ R represents
the modeling errors, losses through windows, and wk ∈ R can be realized as the outside
weather temperatures.

To generate random scenarios from the additive disturbance, we built a discrete
normal process such that one day hourly based forecasted (nominal) outside weather
temperature is used which varies within 10% of its nominal scenario at each sampling time.
As for the uncertainty δk, we generate a random variable from a normal distribution with a
mean value 0, variance 1 and a maximal magnitude of 0.01 at each sampling time.

The initial state variables are [21 19 23]> and the objective is to keep the temperature of
rooms within our desired lower [20.5 18.5 22.5]> and [21.5 19.5 23.5]> upper bounds at the
minimum control input uk. The control input uk is also constrained to be within−1.5 [kWh]
and 1.5 [kWh] for all three rooms, due to actuator saturation. The initialization of the B̃j
for all neighboring agents j ∈ Ni as in Step 5 in Algorithm 3 can be done for instance by
assuming the initial temperature of the neighboring rooms are known for all rooms.

In Figure 1, the dynamically coupled state trajectories for all three rooms are shown.
One can clearly see in Figure 1 that the dynamically coupled state trajectories are feasible
in a probabilistic sense, since the agent operations are within the lower and upper bounds
compared to DeSMPC that violates the constraints completely; the obtained solution via
DeSMPC is completely outside of the feasible areas after the first sampling time and thus,
we just keep the other results for our discussions.This is a direct result of Theorem 2 such
that the obtained solutions via our proposed formulations have to be probabilistically
feasible, that can be clearly seen in Figure 1, since the trajectories are on the lower bounds.
Italics, space, bold, superscript, subscript.
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Figure 1. A-posteriori feasibility validation of the obtained results. The “red”, “blue”, “magenta”,
“dark green”, and “light green” lines are related to the obtained results via DeSMPC, CSMPC,
DSMPC, DSMPCS−0.85, and DSMPCS−0.50, respectively. The “black” lines are related to the
upper bound values. The top, middle, and down plots are related to the temperatures of room 1, 2,
and 3, respectively.

7.2. Three-Building (ATES Systems) Case Study

We next simulate the thermal energy demands of three buildings modeled using
realistic parameters and the actual registered weather data in the city center of Utrecht,
The Netherlands, where these buildings are located and these had been equipped with
aquifer thermal energy storage (ATES) systems. A simulation study is carried out for one
year based on actual weather conditions from March 2011–March 2012 in a weekly based
time steps with three months prediction horizon to meet the coupling constraints between
ATES systems. We refer interested readers to [26] for the detailed explanations on this
case study.

To generate random scenarios from the additive disturbance, we built a discrete
normal process such that the nominal scenario is 10% of the amplitude of the energy
content in a deterministic ATES system model and varies within 5% of its nominal scenario
at each sampling time. As for the uncertainty δk, we generate a random variable from a
Gaussian distribution with a mean value 0, variance 0.3 and a maximal magnitude of 0.03
at each sampling time.

In Figure 2 we show a-posteriori feasibility validation of the coupling constraints
between each agent i = 1, 2, 3, and neighboring agents, such that (a) shows the results
from mid-May to mid-August 2011, (b) presents the results of December 2011 to February
2012, and (c) depicts the results of mid-April to mid-July 2011. As a first desired achieve-
ment, one can clearly see in Figure 2 that the constraints are feasible in a probabilistic
sense, since the agent operations are quite close to the upper bounds in the critical time
periods compared to DeSMPC that violates the constraints. Strictly speaking, using our
proposed framework one can achieve the maximum usage of the aquifer (subsurface) to
store thermal energy without affecting the neighboring thermal storage. This is a direct
result of Theorem 2 such that the obtained solutions via our proposed formulations have
to be probabilistically feasible.
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Figure 2. A-posteriori feasibility validation of the obtained results. The “red”, “blue”, “magenta”,
“solid green”, and “dashed green” lines are related to the obtained results via DeSMPC, CSMPC,
DSMPC, DSMPCS−0.85, and DSMPCS−0.50, respectively. The “black” lines are related to the upper
bound values.

It is worth mentioning that both Figures 1 and 2 illustrate our other two main con-
tributions more precisely: (1) the obtained results via CSMPC (blue line) and DSMPC
(magenta line) are practically equivalent throughout the simulation studies; this is due
to Proposition 1 and Theorem 2. Actually, the solutions via DSMPC are slightly more
conservative compared to the results via CSMPC, and this is a direct consequence of
Theorem 2. In fact, the level of violation in CSMPC is considered to be ε = 0.05 and leading
to εi = 0.0167 for all agents, which is more restrictive. (2) the proposed soft communication
scheme yields fewer conservative solutions as explicitly derived in Theorem 5, and can be
clearly seen in Figures 1 and 2 with the obtained results via DSMPCS−0.85 (dark green)
and DSMPCS−0.50 (light green). Following Theorem 5 the new violation level using
DSMPCS−0.85 is ε̄i = 0.0231, and using DSMPCS−0.50 is ε̄i = 0.0668. It is important to
notice that the violation level of global chance constraint will increase to ε̄ = 0.0702 and
ε̄ = 0.2004 using DSMPCS−0.85 and DSMPCS−0.50, respectively.

8. Concluding Remarks and Future Work

In this paper, we presented a rigorous approach to distributed stochastic optimization
using the scenario-based approximation for large-scale linear systems with local and
common uncertainty sources. To highlight the main outcomes of this paper, the following
significant findings are listed:

• Extension of the existing results to quantify the robustness of the resulting solutions
for both cases of local and common uncertainties in a distributed stochastic opti-
mization framework using the so-called distributed scenario exchange scheme based
on ADMM.

• A novel inter-agent soft communication scheme is developed to minimize the amount
of information exchange between each subsystem.



Energies 2021, 14, 23 21 of 26

• Using a set-based parametrization technique, a novel reliability notion is introduced
and quantified the level of feasibility of the obtained solutions via the PnP distributed
scenario optimization integrated with the so-called soft communication scheme in a
probabilistic sense.

• The theoretical guarantees of the proposed distributed framework coincide with its
centralized counterpart.

Potential future research directions are as follows:

• Following the interpretation of Theorem 2, when the number of agents are increasing
the violation level of individual agents needs to decrease, which may lead to conserva-
tive results for each agent, since the number of samples needs to increase. Addressing
such a scalability limitation is subject of our current research work.

• Enhancing the proposed distributed framework to formally address the recursive
feasibility and stability of the closed-loop control problems.

• Analyzing the performance objective(s) by means of optimality of the scenario pro-
gram solutions in a distributed setting.

• Investigating the possibility of extending our proposed frameworks to the fault detec-
tion and isolation problems following the results in [32].
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Appendix A. Proof of Proposition 1

Given Assumption 3 and following the proposed decomposition technique in Section 3,
any optimizer of each subsystem v∗i yields a feasible pair of the state and control input
variables of its subsystem {x∗i , u∗i } ∈ Xi ×Ui such that Xi = X T

i , and Xi = UT
i . Therefore,

the collection of the optimizers v∗ = coli∈N (v∗i ) will yield the collection of feasible pairs of
the state and control input variables of their subsystem:

{x∗ = coli∈N (x∗i ) , u∗ = coli∈N (u∗i )} ∈ X×U ,

where X := X T = ∏i∈N Xi and U := UT = ∏i∈N Ui, which eventually yields a feasible
point for the optimization problem in (6). It is straightforward to use the above relation
and to show that any optimizer of the optimization problem in (6) v∗ also yields a feasible
solution for the proposed optimization problem in (9). We then have to show that both
optimization problems will have the same performance index in terms of their objective
function values. Due to the proposed decomposition technique and under Assumption 3,
it is easy to see that the objective function in (6) can be formulated as additive components
such that each component represents the objective function of each subsystem i ∈ N ,
and thus: J(x∗, u∗) = ∑i∈N Ji(x∗i , u∗i ) . The proof is completed.

Appendix B. Proof of Theorem 2

Define ξi,k := (wi,k, δi,k, {xj,k}j∈Ni ) to be a concatenated uncertain variable for each
agent i ∈ N such that ξi := {ξi,k}k∈T is defined on probability space (Ξi,B(Ξi),Pξi ), where
Pξi is a probability measure defined over Ξi := Wi × ∆i ×∏j∈Ni

Xj and B(·) denotes a
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Borel σ-algebra. Following this definition, it is straightforward to consider ξ = coli∈N (ξi)
and Ξ = ∏i∈N Ξi. Consider also the sample set Sξi = Swi × Sδi ×∏j∈Ni

Sxj for each agent
i ∈ N such that Sξ = ∏i∈N Sξi .

Consider now v∗ to be the optimizer of the centralized scenario MPC problem (6) and
define Vio(v∗) to be the violation probability of the chance constraint (5c) as follows:

Vio(v∗) := Pξ [ ξ ∈ Ξ : g(v∗, ξ) /∈ X ] , (A1a)

where g(v∗, ξ) represents the predicted state trajectory of large-scale system dynamics (1)
in a more compact form. In particular, the violation probability can be precisely written as
Vio(v∗) := P[w ∈ W , δ ∈ ∆ : xk+` = Acl(δk)xk + B(δk)v∗k + C(δk)wk /∈ X , ` ∈ T+

∣∣ xk =
x0 ] , where Acl(δk) = A(δk) + B(δk)K. Following Theorem 1, we have

PS
ξ

[
Sξ ∈ ΞS : Vio(v∗) ≤ ε

]
≥ 1− β . (A1b)

Given Theorem 1, the problem (9) is an exact decomposition of the problem (6). This yields
the following equivalence relations:

v∗ := coli∈N (v∗i ) , X := ∏i∈N Xi , (A2)

where v∗ is the optimizer of the problem (6) with v∗i as the optimizer of each agent i ∈
N obtained via the problem (9). To this end, it is necessary to prove that the above
statements (A1) still hold under the aforementioned relations (A2). We now break down
the proof into two steps. We first show the results for each agent i ∈ N , and then extend
into the large-scale scenario optimization problem (6).

(1) Define Vio(v∗i ) to be the violation probability of each agent i ∈ N for the chance
constraint (10) as follows:

Vio(v∗i ) := Pξi [ ξi ∈ Ξi : gi(v∗i , ξi) /∈ Xi ] , (A3)

where gi(v∗i , ξi) corresponds to the predicted state trajectory of subsystem dynamics (8)
for each agent i ∈ N . Applying the existing results in Theorem 1 for each agent i ∈ N ,
we have

PSi
ξi

[
Sξi ∈ ΞSi

i : Vio(v∗i ) ≤ εi

]
≥ 1− βi . (A4)

(2) Following the relations (A2), it is easy to rewrite Vio(v∗) in the following form:

Vio(v∗) = Pξ

[
ξ ∈ Ξ : g(v∗, ξ) /∈ ∏

i∈N
Xi

]
.

It is then sufficient to show that for S = maxi∈M Si:

PS
ξ

[
Sξ ∈ ΞS : Vio(v∗) ≥ ε

]
≤ β . (A5)

where ε = ∑i∈N εi ∈ (0, 1) and β = ∑i∈N βi ∈ (0, 1). Hence

Vio(v∗) = Pξ

[
ξ ∈ Ξ : g(v∗, ξ) /∈ ∏

i∈N
Xi

]
= Pξ [ ξ ∈ Ξ : ∃ i ∈ N , g(v∗i , ξi) /∈ Xi ]

= Pξ

[ ⋃
i∈N
{ ξi ∈ Ξi : g(v∗i , ξi) /∈ Xi }

]
≤ ∑

i∈N
Pξi [ ξi ∈ Ξi : g(v∗i , ξi) /∈ Xi ] = ∑

i∈N
Vio(v∗i ).
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The last statement implies that Vio(v∗) ≤ ∑i∈N Vio(v∗i ), and thus, we have

PS
ξ

[
Sξ ∈ ΞS : Vio(v∗) ≥ ε

]
≤ PS

ξ

[
Sξ ∈ ΞS : ∑

i∈N
Vio(v∗i ) ≥ ∑

i∈N
εi

]

= PS
ξ

[ ⋃
i∈N

{
Sξi ∈ ΞSi

i : Vio(v∗i ) ≥ εi

} ]
≤ ∑

i∈N
PSi

ξi

[
Sξi ∈ ΞSi

i : Vio(v∗i ) ≥ εi

]
≤ ∑

i∈N
βi = β .

The obtained bounds in the above procedure are the desired assertions as stated in the
theorem. The proof is completed by noting that the feasible set X = ∏i∈N Xi of the
problem (6) and (9) has a nonempty interior, and it thus admits at least one feasible
solution v∗ = coli∈N (v∗i ).

Appendix C. Proof of Theorem 4

Equation (19) is a direct result of the scenario approach theory in [33], if β̃ j is chosen
such that (

S̃j
nj

)
α̃

S̃j−nj
j ≤ β̃ j . (A6)

Considering the worst-case equality in the above relation and some algebraic manipula-
tions, one can obtain the above assertion. The proof is completed.

Appendix D. Proof of Theorem 5

The proof consists of two main steps. We first provide an analytical expression for the
robustness of the solution in agent i by taking into account the effect of just one neighboring
agent j ∈ Nj, and then extend the obtained results for the case when the agent i interacts
with more neighboring agents, e.g., for all j ∈ Nj.

Following Remark 1, we have the following updated situation:

αi ≤ P
[

xi ∈ Xi , xj ∈ B̃j
]

,

which is a joint probability of xi ∈ Xi and xj ∈ B̃j. Such a joint probability can be
equivalently written as a joint cumulative distribution function (CDF):

αi ≤ P
[

xi ∈ Xi , xj ∈ B̃j
]

=
∫
Xi

∫
B̃j

p(xi , xj)dxi dxj = Fxi , xj (Xi , B̃j) ,
(A7)

where p(xi , xj) is the joint probability density function (PDF) of xi and xj. Our goal is
to calculate:

P[ xi ∈ Xi ] =
∫
Xi

p(xi)dxi = Fxi (Xi) ,
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where p(xi) is the PDF of xi. To transform the joint CDF into the marginal CDF of xi, one
can take the limit of the joint CDF as B̃j approaches Rnj :

P[ xi ∈ Xi ] = Fxi (Xi) = lim
B̃j→R

nj
Fxi , xj (Xi , B̃j)

= lim
B̃j→R

nj
Fxi | xj

(Xi | B̃j)Fxj (B̃j)

= Fxi (Xi) lim
B̃j→R

nj
Fxj (B̃j) ,

(A8)

where the last equality is due to the fact that xi and xj are conditionally independent.
To determine lim

B̃j→R
nj

Fxj (B̃j), one can calculate:

lim
B̃j→R

nj
Fxj (B̃j) =

∫
R

nj

p(xj)dxj

=
∫

R
nj\B̃j

p(xj)dxj +
∫
B̃j

p(xj)dxj

= P
[

xj /∈ B̃j
]
+ P

[
xj ∈ B̃j

]
= (1− α̃j) + α̃j = 1 ,

(A9)

where p(xj) is the PDF of xj, and the last equality is a direct result of Theorem 4.
We now put all the steps together as follows:

αi ≤ P
[

xi ∈ Xi , xj ∈ B̃j
]
= Fxi , xj (Xi , B̃j)

≤ Fxi (Xi) lim
B̃j→R

nj
Fxj (B̃j)

= P[ xi ∈ Xi ]

 ∫
R

nj\B̃j

p(xj)dxj +
∫
B̃j

p(xj)dxj


≤

∫
R

nj\B̃j

p(xj)dxj + P[ xi ∈ Xi ]
∫
B̃j

p(xj)dxj

= (1− α̃j) + α̃j P[ xi ∈ Xi ] ,

where the first inequality and equality is due to (A7), the second inequality is due to (A8),
the second and last equality is due to (A9), and the last inequality is considering the
worst-case situation, e.g., P

[
xi ∈ Xi

∣∣xj /∈ B̃j
]
= 1.

By rearranging the last equation in above result:

αi − (1− α̃j)

α̃j
= 1− 1− αi

α̃j
= ᾱi ≤ P[ xi ∈ Xi ] . (A10)

This completes the proof of first part. We now need to show the effect of having more than
one neighboring agent. To this end, the most straightforward step, in order to extend the
current results, is to use the fact that all neighboring agents are independent from each
other. We therefore can apply the previous results for a new situation where the agent i
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with the probabilistic level of feasibility ᾱi have another neighboring agent ν ∈ Ni with α̃ν

the level of reliability of B̃ν. By using (A10), we have the following relations for j, ν ∈ Ni

1− 1− ᾱi
α̃ν

= 1−
1−

(
1− 1−αi

α̃j

)
α̃ν

= 1− 1− αi
α̃j α̃ν

≤ P[ xi ∈ Xi ] .

By continuing the similar arguments for all neighboring agents, one can obtain ᾱi = 1−
1−αi

α̃i
≤ P[ xi ∈ Xi ] such that α̃i = α̃1 · · · α̃j α̃ν · · · α̃|Ni | = ∏j∈Ni

(α̃j). The proof is completed.
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