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Abstract: Boundary conditions of high kinds (fourth and sixth kind) as defined by Carslaw and
Jaeger are used in this work to model the thermal behavior of perfect conductors when involved
in multi-layer transient heat conduction problems. In detail, two- and three-layer configurations
are analyzed. In the former, a thin layer modeled as a lumped body is subject to a surface heat
flux on the front side while it is in perfect (fourth kind) or in imperfect (sixth kind) thermal contact
with a semi-infinite or finite body on the back side. When dealing with a semi-infinite body in
imperfect contact, the temperature solution is derived by means of the Laplace transform method.
Green’s function approach is also used but for solving the companion case of a finite body in perfect
contact with the thin film. In the latter, a thin layer with internal heat generation is located between
two semi-infinite or finite bodies in perfect/imperfect contact. For the sake of thermal symmetry,
such a three-layer structure reduces to a two-layer configuration. Results are given in both tabular
and graphical forms and show the effect of heat capacity and thermal resistance on the temperature
distribution of conductive layers.

Keywords: fourth kind boundary condition; sixth kind boundary condition; transient heat conduction;
Laplace transform method

1. Introduction

Two or three-layer structures are used in a number of applications in engineering, such as in the
field of thermoplastic shaping of polymers [1] and in the estimation of the thermal properties of solid
materials [2,3]. In the latter field, for example, an experimental apparatus consisting of a thin layer
heater located between two specimens of the same material and thickness is employed in order to
obtain measured temperature values. Additionally, this experimental configuration is usually reduced
to a simplified two-layer configuration in which a surface layer, representing the thin heater, is in
contact with a finite plate (specimen).

The complex thermal model of such structures is described by a set of energy equations coupled
at the interface between each layer. Additionally, this thermal model may be simplified if the thermal
diffusion within the surface layer (solid or fluid) is neglected, by introducing the assumption of lumped
body. In particular, the boundary conditions appearing in the simplified model are modified so as to
include different thermal effects due to the thin layer. Several “modified” boundary conditions exist in
the heat conduction literature. One of these is the fourth kind (Carslaw) boundary condition [4] which
takes the thermal capacity of the thin layer into account; in fact, it derives from the application of the
first law of thermodynamics to the thin layer. More general boundary conditions are represented by
the fifth kind (Jaeger) boundary condition [4] which not only takes the thermal capacity of the thin
layer into account, but it also permits a convective heat flux from the thin layer to the surrounding
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ambient; and by the sixth kind boundary condition [5] which is imposed when an imperfect thermal
contact between the thin layer and an adjacent domain occurs.

Although many of multi-layer transient heat conduction problems have been studied in
literature [6–10], in several cases the derivations of these solutions are not provided as occurs,
for example, for many problems treated in Ref. [6]; also, for fewer cases the solution is not available
at all.

In the present work one-dimensional multi-layer heat conduction problems involving boundary
condition of high kinds (fourth and sixth kind) are analyzed. In order to easily identify which
conductive problem is analyzed, the numbering system devised in [11] is used. According to this
notation the addressed problems may be listed as: (1) X40B1T00 for the case of a thin layer in perfect
thermal contact with a semi-infinite body; (2) X60B1T00 when the contact between them is imperfect;
(3) X42B10T00 for the case in which the thin layer is in perfect contact with a slab, insulated at the
other boundary; and (4) X62B10T00 when an imperfect contact between them is taken into account.
In particular, the notation X40B1T00 denotes a one dimensional transient heat conduction problem
concerning a rectangular (by the “X”) semi-finite body (by the “0” in the “X40”) in perfect contact with
a thin layer at the surface x = 0 (fourth kind boundary condition by the “4” in “X40”) where a jump in
heat flux is applied (by the B1); also, T00 stands for a zero initial temperature for both layers. Moreover,
for the case of imperfect contact the “4” in “X40” is replaced by “6” (sixth kind boundary condition
at the surface x = 0). Furthermore, for the problem X42B10T00 (or X62B10T00 for imperfect contact)
concerning a thin layer adjacent to a slab which is insulated at the other boundary, the “2” in “X42” (or
in “X62”) denotes a heat flux boundary condition at x = L which is homogeneous by the “0” in “B10”.

Moreover, as the temperature solution to the X60B1T00 case is not available in the heat conduction
literature, it is derived by means of the Laplace Transform (LT) method. Unlike this last case, the exact
analytical solutions to the X42B10T00 and X62B10T00 problems are available in the literature, but their
derivations are not given. Therefore, they are proposed by using the Green’s Function Solution Equation
(GFSE) method, for the X42B10T00 case, and the LT method for the X62B10T00 case. Additionally,
for both problems the temperature computational solutions are defined for short and large-times,
as well as for the a quasi-steady state.

In addition, three-layer structures involving a thin layer with internal heat generation, located
between two semi-infinite bodies or two finite plates (slabs for short) are discussed.

2. Thin Layer in Perfect Contact with a Semi-Infinite Body

Consider a semi-infinite rectangular one-dimensional (1D) body, initially at uniform temperature
Tin, in perfect thermal contact with a high-conductivity surface layer at the boundary x = 0, as depicted
in Figure 1. At t = 0 a step change in heat flux is applied to the surface layer at its boundary x = −L f ,
which is at the same initial temperature Tin. In particular, the layer is considered to be a lumped body;
or, in other words, it is thin enough to be able to neglect the thermal gradients developing within it.
Additionally, the thermal properties k, C and Cf are considered temperature-independent. The problem
notation is X40B1T11.

The governing equations for the addressed problem, in dimensionless form, are expressed as

∂2T̃
∂x̃2 =

∂T̃

∂̃t
(0 < x̃ < ∞ ; t̃ > 0

)
, (1a)

−
∂T̃
∂x̃

∣∣∣∣∣∣
x̃=0

+ P
∂T̃ f

∂̃t
= 1

(̃
t > 0

)
, (1b)

T̃ f (t) = T̃(0, t)
(̃
t > 0

)
, (1c)

T̃
(
x̃→∞, t̃

)
= finite

(̃
t > 0

)
, (1d)
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T̃(x̃, 0) = 0 (0 < x̃ < ∞), (1e)

T̃ f (0) = 0 (1f)

where Equation (1b,c) represent the boundary condition of the fourth kind. In particular, Equation (1b)
is obtained applying the first law of thermodynamics to the thin layer; while Equation (1c) indicates a
perfect contact between the semi-infinite body and the thin layer (temperature continuity).

The dimensionless variables appearing in Equation (1) are defined as

T̃ =
T − Tin

q′′ f ,0 L/k
, T̃ f =

T f − Tin

q′′ f ,0 L/k
, x̃ =

x
L

, t̃ =
α t
L2 , P =

C f L f

CL
, (2)

where L is a reference length, while L f is the thickness of the thin layer. Additionally, P denotes the
heat capacity ratio. In dimensionless form, the problem notation becomes X40B1T00.

A well established exact analytical solution is available in the heat conduction literature ([6],
p. 306, Equation (12)) for the current problem. Additionally, this solution is discussed and derived
in [12], where a verified computer code is made available. It is

T̃
(
x̃, t̃

)
=

√
4̃t
π

e−
x̃2

4̃t − x̃erfc

 x̃√
4̃t

− P

erfc

 x̃√
4̃t

−Am
(
x̃, t̃, P

) (0 ≤ x̃ < ∞ ; t̃ ≥ 0
)
, (3a)

where Am
(
x̃, t̃, P

)
is the so-called Amos function, defined as

Am
(
x̃, t̃, P

)
= e

x̃
P+

t̃
P2 erfc

 x̃√
4̃t

+

√̃
t

P

 = e−
x̃2

4̃t erfcx

 x̃√
4̃t

+

√̃
t

P

, (3b)

The erfcx (z) = ez2
erfc (z) is the scaled complementary error function. It is recommended for

large values of x̃, t̃ and 1/P as difficulties might arise during the evaluation of Equation (3b) in its
former expression because of the positive argument of the exponential term. On the contrary, the scaled
complementary error function (appearing in the latter expression) approaches zero for large values
of x̃, t̃ and 1/P.Energies 2020, 13, x FOR PEER REVIEW 3 of 26 
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2.1. Thin Layer between Two Semi-Infinite Bodies

The solution given by Equation (3) can also be used for the three-layer configuration shown in
Figure 2. In this case, a thin layer (still considered as a lumped body with temperature-independent
properties) is in perfect contact with two semi-infinite bodies. The thin layer and the semi-infinite
bodies are initially at uniform temperature Tin, but at t = 0 only the former is subject to a uniform and
constant internal heat generation per unit of volume g f ,0.
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Figure 2. Three-layer structure: thin layer having 2Lf as thickness, in perfect contact with two
semi-infinite bodies.

In such a case, the governing equations in dimensionless form are

∂2T̃(−)
SI

∂x̃2 =
∂T̃(−)

SI

∂̃t

(
−∞ < x̃ < −2̃L f ; t̃ > 0

)
, (4a)

T̃(−)
SI

(
x̃→ −∞, t̃

)
= finite

(̃
t > 0

)
, (4b)

T̃(−)
SI (x̃, 0) = 0

(
−∞ < x̃ < −2̃L f

)
, (4c)

∂2T(+)
SI

∂x̃2 =
∂T(+)

SI

∂̃t
(0 < x̃ < ∞ ; t̃ > 0

)
, (4d)

T̃(+)
SI

(
x̃→∞, t̃

)
= finite

(̃
t > 0

)
, (4e)

T̃(+)
SI (x̃, 0) = 0 (0 < x̃ < ∞), (4f)

2P
∂T̃ f

∂̃t
= 2 +

∂T̃(+)
SI

∂x̃

∣∣∣∣∣∣∣∣
x̃=0

−

∂T̃(−)
SI

∂x̃

∣∣∣∣∣∣∣∣
x̃=−2̃L f

(̃
t > 0

)
, (4g)

T̃(−)
SI

(
−2̃L f , t̃

)
= T̃ f

(̃
t
) (̃

t > 0
)
, (4h)

T̃ f
(̃
t
)
= T̃(+)

SI

(
0, t̃

)(̃
t > 0

)
, (4i)

T̃ f (0) = 0, (4j)
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where Equation (4g) is obtained applying an energy balance to the thin layer; while Equation (4h,i)
denote a perfect contact between the thin layer and the two semi-infinite bodies.

The dimensionless variables which appear in Equation (4) are defined as

T̃ =
T − Tin(

g f ,0 L f
)

L/k
, T̃ f =

T f − Tin(
g f ,0 L f

)
L/k

, x̃ =
x
L

, t̃ =
α t
L2 , P =

C f L f

CL
, L̃ f =

L f

L
, (5)

For the sake of thermal symmetry, the three-layer structure depicted in Figure 2 reduces to
the two-layer configuration shown in Figure 1 for perfect contact. In fact, by considering only an
half-thickness of the thin layer (say L f ), and by noting that

(
g f ,0 L f

)
in Equation (5) plays the same

role of the surface heat flux q′′ f ,0 in Equation (2), the problem defined by Equation (4) reduces to the

X40B1T00 case defined by Equation (1). Hence, the thermal field T̃(+)
SI

(
x̃, t̃

)
within the semi-infinite body

on the right-side of the three-layer configuration in Figure 2 is still given by Equation (3a), which can
also be used to describe the thermal field T̃(−)

SI

(
x̃, t̃

)
on the left-side by simply replacing the variable x̃

with −
(
x̃ + 2̃L f

)
. As far as the thin film is concerned, its temperature is defined by Equation (3a) for

x̃ = 0.

3. Thin Layer in Imperfect Contact with a Semi-Infinite Body

Consider the same semi-infinite body of the problem discussed in Section 2 and shown in Figure 1,
where now an imperfect thermal contact with the surface layer at the boundary x = 0 is taken into
account through a contact resistance Rc. The problem notation is X60B1T11.

The governing equations, in dimensionless form, for this conductive problem are still defined by
Equation (1), except the condition in Equation (1c) which has to be replaced with the following:

−
∂T̃
∂x̃

∣∣∣∣∣∣
x̃=0

=
1

R̃c

[
T̃ f

(̃
t
)
− T̃

(
0, t̃

)] (̃
t > 0

)
, (6)

where R̃c = Rc
L/k is the dimensionless thermal contact resistance. Additionally, Equations (1b) and

(6) represent the boundary condition of the sixth kind. In dimensionless form, the problem notation
becomes X60B1T00.

3.1. Temperature Solution

To authors’ knowledge, the solution to the current problem is not available in the heat conduction
literature. However, it may be obtained by applying Laplace Transform to Equations (1a,b,d) and (6),
bearing in mind the initial conditions Equation (1e,f). It results in

∂2ϑ

∂x̃2 = sϑ (0 < x̃ < ∞), (7a)

−
∂ϑ

∂x̃

∣∣∣∣∣
x̃=0

+ Psϑ f =
1
s

, (7b)

ϑ(x̃→∞, s) = finite, (7c)

ϑ f = ϑ(0, s) − R̃c
∂ϑ

∂x̃

∣∣∣∣∣
x̃=0

, (7d)

where s denotes the Laplace variable, ϑ(x̃, s) = L
[
T
(
x̃, t̃

)]
, and ϑ f (s) = L

[
T̃ f

(̃
t
)]

.
Thus, seeking the canonical solution for Equation (7a) yields

ϑ(x̃, q) = c1 exp (q x̃) + c2 exp (−q x̃), (8)

where q =
√

s.
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The boundary condition Equation (7c) applied to Equation (8) implies c1 = 0. Moreover,
substituting Equation (7d) into Equation (7b) gives

−
∂ϑ

∂x̃

∣∣∣∣∣
x̃=0

(
1 + PR̃c s

)
+ Psϑ(0, s) =

1
s

, (9)

where ϑ(0, s) and its derivative −(∂ϑ/∂ x̃)x̃=0 may be calculated using Equation (8). Behaving like this,
the constant c2 can be determined and the solution ϑ(x̃, s) is

ϑ(x̃, q) =
exp(−q x̃)

PR̃cq3
(

1
PR̃c

+
q

R̃c
+ q2

) , (10)

To take the inverse of Equation (10) by means of the standard inversion tables, it is convenient to
rewrite it as

ϑ(x̃, q) =
exp(−q x̃)

PR̃c q3
(
q + β̃ 1

) (
q + β̃ 2

) , (11)

where β̃ 1 and β̃ 2 are the roots of the polynomial appearing between round brackets at the denominator
of Equation (10). They are

β̃ 1 =
1

2R̃c

1 +

√
1−

4R̃c

P

; β̃ 2 =
1

2R̃c

1−

√
1−

4R̃c

P

, (12)

By some algebra, Equation (11) becomes

ϑ(x̃, q) =
exp(−q x̃)

PR̃c s q (q+β̃ 1) (q+β̃ 2)
(q+β̃ 2)− (q+β̃ 1)

(β̃ 2−β̃ 1)

=
β̃ 1 β̃ 2

(β̃ 2−β̃ 1)

[
exp(−q x̃)

s q (q+β̃ 1)
−

exp(−q x̃)
s q (q+β̃ 2)

] (13)

where the relation β̃ 1 β̃ 2 = 1/
(
PR̃c

)
has been used.

Now, taking the inverse Laplace transform of Equation (13) yields

T̃
(
x̃, t̃

)
= L −1[ϑ(x̃, q) ] =

β̃ 1 β̃ 2(
β̃ 2 − β̃ 1

)L −1

 exp(−q x̃)

q3
(
q + β̃ 1

) − L −1

 exp(−q x̃)

q3
(
q + β̃ 2

) 
, (14a)

where, by using the inversion tables provided in ([6], p. 495, Equation (15)),

L −1
[

exp(−q x̃)
s q (q+β̃ i)

]
= 1

β̃ i

√
4̃t
π exp

[
− x̃2/

(
4̃t

)]
−

1+β̃ i x̃
β̃2

i
erfc

(
x̃√
4̃t

)
+ 1
β̃2

i
Am

(
x̃, t̃, 1/β̃ i

) (i = 1, 2) (14b)

Note that Am
(
x̃, t̃, 1/β̃ i

)
is the Amos function defined by Equation (3b) for P = 1/β̃ i.

Then, by substituting Equation (14b) into Equation (14a), the temperature solution is

T̃
(
x̃, t̃

)
=

√
4̃t
π exp

[
− x̃2/

(
4̃t

)]
− (P + x̃)erfc

(
x̃√
4̃t

)
+

β̃ 2

(β̃ 2−β̃ 1) β̃ 1
Am

(
x̃, t̃, 1/β̃ 1

)
−

β̃ 1

(β̃ 2−β̃ 1) β̃ 2
Am

(
x̃, t̃, 1/β̃ 2

) (0 ≤ x̃ < ∞ ; t̃ ≥ 0
)
, (15a)
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Once the semi-infinite solution is known, the surface layer temperature may be determined
through the boundary condition defined by Equation (6). It is

T̃ f
(̃
t
)
=

√
4̃t
π
− P + R̃c +

1(
β̃2

2 − β̃
2
1

)  β̃2
2

β̃ 1
Am

(
0, t̃, 1/β̃ 1

)
−
β̃2

1

β̃ 2
Am

(
0, t̃, 1/β̃ 2

) (̃
t ≥ 0

)
, (15b)

The solution given by Equation (15) is valid for any value of
(
4R̃c/P

)
greater than, equal or less

than 1. Nevertheless, when 4R̃c/P = 1, it is convenient to define the solution as follows

T̃
(
x̃, t̃

)
= 2

√
4̃t
π

e−
x̃2

4̃t − (P + x̃)erfc

 x̃√
4̃t

+ (
P− x̃− 4

t̃
P

)
Am

(
x̃, t̃, P/2

)
, (16a)

T̃ f
(̃
t
)
=

3
2

√
4̃t
π
−

3
4

P +

(
3
4

P− 2
t̃
P

)
erfcx

2

√̃
t

P

, (16b)

A verified computer code for calculating the solution of the X60B1T00 problem is provided in [13].

3.2. Thin Layer between Two Semi-Infinite Bodies: Imperfect Contact Case

The solution given by Equations (15) and (16) can also be used for the three-layer configuration
shown in Figure 2 when an imperfect thermal contact between the thin layer and the semi-infinite
bodies occurs. In such a case, the governing equations may still be defined by Equation (4), provided
that Equation (4h,i) be replaced by the following conditions, respectively:

−

∂T̃(−)
SI

∂x̃

∣∣∣∣∣∣∣∣
x̃=−2̃L f

=
1

R̃c

[
T̃(−)

SI

(
−2̃L f , t̃

)
− T̃ f

(̃
t
)] (̃

t > 0
)
, (17a)

−

∂T̃(+)
SI

∂x̃

∣∣∣∣∣∣∣∣
x̃=0

=
1

R̃c

[
T̃ f

(̃
t
)
− T̃(+)

SI

(
0, t̃

)] (̃
t > 0

)
, (17b)

where the dimensionless variables are still defined by Equation (5), and R̃c = Rc/(L/k).
In this case, by virtue of the same considerations reported in Section 2.1, the addressed problem

reduces to the X60B1T00 case. Hence, the thermal field T̃(+)
SI

(
x̃, t̃

)
within the semi-infinite body on

the right-side of the three-layer configuration is still defined by Equations (15a) and (16a). For what
concerns the thermal field T̃(−)

SI

(
x̃, t̃

)
, on the left-side of Figure 2, Equations (15a) and (16a) may still be

used by replacing the variable x̃ with −
(
x̃ + 2̃L f

)
. As regards the surface layer, its temperature T̃ f

(̃
t
)

is
given by Equations (15b) and (16b).

4. Thin Layer in Perfect Contact with a Slab

Consider now a slab with temperature-independent properties, initially at uniform temperature
Tin, in perfect contact with a thin layer at the boundary x = 0, and insulated at the back side as depicted
in Figure 3. At t = 0 a step change in heat flux is applied to the thin film at x = −L f , which is at the
same initial temperature Tin. The problem notation is X42B10T11.
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Figure 3. Schematic of the X42B10T11 problem.

The mathematical formulation of the conductive problem, in dimensionless form, is reported below.

∂2T̃
∂x̃2 =

∂T̃

∂̃t
(0 < x̃ < 1 ; t̃ > 0

)
, (18a)

−
∂T̃
∂x̃

∣∣∣∣∣∣
x̃=0

+ P
∂T̃ f

∂̃t
= 1

(̃
t > 0

)
, (18b)

T̃ f (t) = T̃(0, t)
(̃
t > 0

)
, (18c)

−

∂T̃
∂x̃


x̃=1

= 0
(̃
t > 0

)
, (18d)

T̃(x̃, 0) = 0 (0 < x̃ < 1), (18e)

T̃ f (0) = 0, (18f)

The dimensionless variable appearing in Equation (18) are defined in Equation (2), where L is now the
slab thickness. In dimensionless form, the problem notation becomes X42B10T00.

The solution to the current problem may be derived by using the solution of the analogous
X24B01T00 problem obtained by Carslaw and Jaeger ([6], p. 128, Equation (5)). In fact, it would be
sufficient to replace the variable x̃ with 1 − x̃. However, as the solution method is not given in [6],
a complete derivation using Green’s functions is proposed afterwards.

The Green’s function for the X42 case is available in ([4], p. 609, Equation (42)). In dimensionless
form, it results in:

G̃X42
(
x̃, t̃

∣∣∣̃x′, τ̃) = 1
P + 1

+ 2
∞∑

m=1

Xm(x̃)Xm(x̃′)

Ñm
exp

[
−β2

m

(̃
t− τ̃

)]
, (19a)

where the eigenfunction, Xm(x̃), and the dimensionless norm, Ñm are defined as

Xm(x̃) = cos (βmx̃) − Pβm sin (βmx̃), (19b)

Ñm = (Pβm)
2 + P + 1, (19c)
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Additionally, the eigenvalues βm satisfy the following eigencondition

βm cot(βm) = −
1
P

, (19d)

whose solution is discussed in Section 4.1.
Applying the Green’s Function Solution Equation (GFSE) ([4], Chap. 6, pp. 181–182) to the current

problem yields

T̃
(
x̃, t̃

)
=

t̃∫
τ̃=0

G̃X42
(
x̃, t̃

∣∣∣0, τ̃
)

d̃τ, (20)

Then, by substituting Equation (19a) into the above integral, it is found

T̃
(
x̃, t̃

)
=

t̃∫
τ̃=0

1
P + 1

d̃τ+ 2
∞∑

m=1

Xm(x̃)

Ñm

t̃∫
τ̃=0

e−β
2
m (̃t−τ̃)d̃τ, (21)

whose integration gives

T̃
(
x̃, t̃

)
=

t̃
P + 1

+ 2
∞∑

m=1

cos(βmx̃) − Pβm sin(βmx̃)

Ñmβ2
m

− 2
∞∑

m=1

cos(βmx̃) − Pβm(βmx̃)

Ñmβ2
m

exp
(
−β2

m t̃
)
, (22)

As the first summation exhibits an algebraic convergence (very slow), which requires a large
number of terms, an alternative solution with better convergence properties is sought. This solution
is discussed in Appendix A. Thus, by using the algebraic identity defined by Equation (A15),
Equation (22) becomes

T̃
(
x̃, t̃

)
=

t̃
P + 1

+
x̃2

2(P + 1)
−

x̃
P + 1

+
1

3(P + 1)2︸                                              ︷︷                                              ︸
T̃s (x̃,̃t)

−2
∞∑

m=1

cos(βmx̃) − Pβm sin(βmx̃)

Ñmβ2
m

e−β
2
m t̃

︸                                            ︷︷                                            ︸
T̃ct (x̃,̃t)

(0 ≤ x̃ ≤ 1 ; t̃ ≥ 0
)
,

(23a)

Also, by using the interface condition defined by Equation (18c), the thin layer temperature
results in

T̃ f
(̃
t
)
=

t̃
P + 1

+
1

3(P + 1)2︸                  ︷︷                  ︸
T̃ f ,s (̃t)

−2
∞∑

m=1

e−β
2
m t̃

Ñmβ2
m︸           ︷︷           ︸

T̃ f ,ct (̃t)

(̃
t ≥ 0

)
, (23b)

Equation (23) show two parts: a quasi-steady part, T̃s
(
x̃, t̃

)
or T̃ f , s

(̃
t
)
, which yields an increasing

temperature response with time, and a complementary transient part, T̃ct
(
x̃, t̃

)
or T̃ f , ct

(̃
t
)
, which becomes

negligible at large times. As regards the latter, an infinite number of terms cannot be taken into account.
For this reason, a finite number of terms will be considered and the related truncation error (termed
‘tail’) is discussed in Section 4.2.

4.1. Computation of the Eigenvalues

The eigenvalues appearing in the temperature solution are computed as roots of the eigencondition
defined by Equation (19d). This transcendental equation is similar to the corresponding equations
of the X31 = X13 cases treated in [14]. In fact, in order to obtain Equation (19d), it is sufficient to
replace the Biot number with the term 1/P. Thus, its roots (eigenvalues) may be computed by using
the same explicit approximate relations based on the second-order modified Newton method [14].
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These relations provide an approximate value of the exact eigenvalue with high accuracy (8-decimal
place after one iteration, and 15-decimal place after two iterations) for the P range [0 , ∞). A computer
code for computing the eigenvalues of the X42 case is given in [15].

4.2. Maximum Number of Terms

The infinite summation appearing in Equation (23) exhibits an exponential convergence and,
hence, very fast. A conservative convergence criterion for this summation may be defined following
the procedure given in [16]. In particular, by using (m− 1/2)π as a conservative estimate for βm, the
maximum number of required terms mmax in order to get a truncation error of 10−A (A = 2, 3, . . . , 15)
in the above series solution may be taken as:

mmax = ceil

1
2
+

1
π

[
A ln(10)

t̃

]1/2
, (24)

where the function ‘ceil(z)’ is a Matlab function which rounds the number z to the nearest integer
greater than or equal to z.

However, the criterion defined by Equation (24) may require a large number of terms for early
times. To avoid it, for short times, less than the so-called deviation time t̃d defined as [11,17]

t̃d = (2− x̃)2/(10A) (A = 2, 3, . . . , 15), (25)

the temperature solution Equation (23) can be replaced by the semi-infinite solution of the X40B1T00
problem, Equation (3), with an error less than 10−A.

Moreover, for large times, greater than the quasi-steady time t̃s defined by [15]

t̃s =
4
π2

A ln 10 + ln

24(P + 1)2

π2


, (26)

the complementary transient solution of Equation (23) becomes negligible with errors less than 10−A

(A = 2, 3, . . . , 15). Thus, for t̃ ≥ t̃s the temperature solution can be taken as

T̃
(
x̃, t̃

)
=

t̃
P + 1

+
x̃2

2(P + 1)
−

x̃
P + 1

+
1

3(P + 1)2
(0 ≤ x̃ ≤ 1 ; t̃ ≥ t̃s

)
, (27)

A verified computer code in Matlab ambient for computing the solution to the X42B10T00 problem
is provided in [15]. For the sake of completeness, some numerical values of t̃d and t̃s for different
accuracies A are shown in Table 1.

Table 1. Deviation time and quasi-steady times for different numerical accuracies A.

A

~
td (

~
x,A)

~
ts (P,A)

~
x = 0

~
x = 0.25

~
x = 0.5

~
x = 1 P = 0.01 P = 0.1 P = 1 P = 10

2 0.2000 0.1531 0.1125 0.0500 2.2346 2.3038 2.7884 4.1702
5 0.0800 0.0613 0.0450 0.0200 5.0342 5.1034 5.5880 6.9698
10 0.0400 0.0306 0.0225 0.0100 9.7002 9.7694 10.2540 11.6358
15 0.0267 0.0204 0.0150 0.0067 14.3662 14.4354 14.9200 16.3018

4.3. Thin Layer between Two Slabs

The solution defined by Equation (23) can also be used for a three-layer configuration in which a
thin layer is located between two slabs insulated at the other boundaries. This situation is depicted
in Figure 4, where the thin layer and the slabs are in perfect thermal contact and initially at uniform
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temperature Tin. At t = 0, an internal heat generation per unit of volume g f ,0 occurs only within the
thin layer. For the addressed problem the governing equations are expressed as

∂2T̃(−)

slab

∂x̃2 =
∂T̃(−)

slab

∂̃t

(
−

(
1 + 2̃L f

)
< x̃ < −2̃L f ; t̃ > 0

)
, (28a)

−

∂T̃(−)

slab

∂x̃

∣∣∣∣∣∣∣∣
x̃=−(1+2̃L f )

= 0
(̃
t > 0

)
, (28b)

T̃(−)

slab(x̃, 0) = 0
(
−

(
1 + 2̃L f

)
< x̃ < −2̃L f

)
, (28c)

∂2T(+)

slab

∂x̃2 =
∂T(+)

slab

∂̃t
(0 < x̃ < 1 ; t̃ > 0

)
, (28d)

−

∂T̃(+)

slab

∂x̃

∣∣∣∣∣∣∣∣
x̃=1

= 0
(̃
t > 0

)
, (28e)

T̃(+)

slab (x̃, 0) = 0 (0 < x̃ < 1), (28f)

2P
∂T̃ f

∂̃t
= 2 +

∂T̃(+)

slab

∂x̃

∣∣∣∣∣∣∣∣
x̃=0

−

∂T̃(−)

slab

∂x̃

∣∣∣∣∣∣∣∣
x̃=−2̃L f

(̃
t > 0

)
, (28g)

T̃(−)

slab

(
−2̃L f , t̃

)
= T̃ f

(̃
t
) (̃

t > 0
)
, (28h)

T̃ f
(̃
t
)
= T̃(+)

slab

(
0, t̃

) (̃
t > 0

)
, (28i)

T̃ f (0) = 0, (28j)

where Equation (28h,i) denote a perfect contact, and the dimensionless variables are defined by
Equation (5).
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For the sake of thermal symmetry, the three layer structure depicted in Figure 4 reduces to the
two-layer configuration shown in Figure 5 for perfect contact. Therefore, the thermal field T̃(+)

slab

(
x̃, t̃

)
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within the right slab of the three-layer configuration is still defined by Equation (23), which may also be
used to describe the thermal field T̃(−)

slab

(
x̃, t̃

)
of the left slab, by replacing the variable x̃ with −

(
x̃ + 2̃L f

)
.

As regards the thin layer, its temperature is given by Equation (23) for x̃ = 0.
It is interesting to observe that the schematic of Figure 4 represents the experimental apparatus

used for thermal properties measurements [2,18]. In particular, the thin film represents the heater,
while the two slabs are the specimens of the material under investigation.

5. Thin Layer in Imperfect Contact with a Slab

This problem is similar to the one discussed in Section 4 and depicted in Figure 3, but now an
imperfect thermal contact with the surface layer is taken into account. Additionally, the slab and the
thin layer are again at the same uniform initial temperature Tin. The problem notation is X62B10T11.

In dimensionless form, the governing equations for the current problem (whose notation becomes
X62B10T00) are still defined by Equation (18), except the interface condition, Equation (18c), which has
to be replaced with Equation (6).

The exact analytical solution to the current X62B10T00 problem is available in the heat conduction
literature ([6], p. 129, Equation (14)). However, as in this reference the solution method is not given,
a complete derivation using Laplace transform is proposed afterwards. Contrary to the X42 case
treated in Section 4.2, the GF approach cannot here be used as the GX62

(
x̃, t̃

∣∣∣̃x′, τ̃) Green’s function is
not available in the literature.

By applying the Laplace transform to Equations (18a,b,d) and (6), subject to the initial conditions,
Equation (18e,f), it results in the same problem defined by Equation (7), where now Equation (7c) valid
for a semi-infinite body has to be replaced with an insulating condition, that is,(

∂ϑ

∂x̃

)
x̃=1

= 0, (29)

where ϑ(x̃, s) = L
[
T̃
(
x̃, t̃

)]
.

In the current case however, it is convenient to rewrite the solution given by Equation (8) by
using a linear combinations of exponentials, such as

(
eqx̃
− e−qx̃

)
/2 and

(
eqx̃ + e−qx̃

)
/2. Thus, Equation

(8) becomes
ϑ(x̃, q) = B 1 cosh(qx̃) + B 2sinh(qx̃) = A cosh(qx̃ + ϕ), (30)

where q =
√

s and the phase ϕ can be determined by applying the boundary condition at x̃ = 1, i.e.,
Equation (29). It follows that: ϕ = −q. Then, as the hyperbolic cosine is an even function, Equation (30)
becomes

ϑ(x̃, q) = A cosh[q(x̃− 1)] = A cosh[q(1− x̃)], (31)

Also, by using the boundary condition of the sixth kind defined by Equation (7b,d) in the Laplace
domain, it is possible to determine the constant A as

A =
1

Pq4 cosh(q) + q 3
(
PR̃c q2 + 1

)
sinh(q)

, (32)

Thus, the sought solution ϑ(x̃, q) is

ϑ(x̃, q) =
cosh[q(1− x̃)]

q2
[
Pq2 cosh(q) + q

(
PR̃c q2 + 1

)
sinh(q)

]
︸                                              ︷︷                                              ︸

D(q)

=
cosh[q(1− x̃)]

D(q)
, (33)
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To take the inverse of Equation (33) a Taylor series expansion of the hyperbolic functions is needed.
It results in

cosh[q(1− x̃)] = 1 +
q2(1− x̃)

2
+ O

(
q4

)
, (34a)

cosh(q) = 1 +
q2

2
+ O

(
q4

)
, (34b)

sinh(q) = q +
q3

3!
+ O

(
q5

)
, (34c)

Therefore, the function D(q) at the denominator of Equation (33) becomes

D(q) = q2
{
Pq2

[
1 + q2

2 + O
(
q4

)]
+ q

(
PR̃c q2 + 1

) [
q + q3

3! + O
(
q5

)]}
= q4

{
P + 1 + q2

[
P
2 + PR̃c +

1
6

]
+ O

(
q4

)} (35)

The above function admits a quadruple pole at q = 0 (which implies a double pole at s = 0).
Additionally, it has simple zeros along the negative real axis, that may conveniently be assumed as
q = iβ (or s = −β2). Then, the value of β can be computed by solving numerically the eigencondition
D(q = iβ) = 0, that is

Pβ cos(β) +
(
1− PR̃c β

2
)

sin(β) = 0, (36)

where the relations cosh (iβ) = cos (β) and sinh (iβ) = i sin (β) have been used. Equation (36) admits
an infinite number of simple poles at q = iβm, βm > 0, m = 1, 2, . . . (or s = −β2

m), where βm is the m-th
eigenvalue whose computation is discussed in Section 5.1.

Since the function ϑ(x̃, q) in Equation (33) is analytic except at poles q = 0 (s = 0) and at poles
q = iβm (s = −β2

m ), βm > 0, m = 1, 2, . . . , the inverse of such a function may be obtained using the
residue theorem ([19], pp. 384–385).

T̃
(
x̃, t̃

)
= L−1{ϑ(x̃, s)

}
= 1

2π i

γ+i∞∫
γ−i∞

ϑ(x̃, s) estds =
∑ encompassing the left half plane

Residues in the closed contour

= Rs=0 +
∞∑

m=1
Rs=−β2

m

(37)

where the calculation of the residues, Rs=0 and Rs=−β2
m

, is given in Appendix B. In particular, they
result in

Rs=0 =
t̃

P + 1
+

x̃2

2(P + 1)
−

x̃
P + 1

+
1− 3PR̃c

3(P + 1)2 , (38a)

Rs=−β2
m
=

2
(
PR̃cβ2

m − 1
)

cos[βm(1− x̃)] e−β
2
m t̃[(

PR̃c
)2
β4

m +
(
P + PR̃c − 2R̃c

)
Pβ2

m + P + 1
]
β2

m cos(βm)
, (38b)

Substituting Equation (38a,b) in Equation (37) yields the temperature solution in the time domain.

T̃
(
x̃, t̃

)
=

t̃
P + 1

+
x̃2

2(P + 1)
−

x̃
P + 1

+
1− 3PR̃c

3(P + 1)2︸                                              ︷︷                                              ︸
T̃s(x̃,̃t)

+2
∞∑

m=1

(
PR̃cβ2

m − 1
)

cos[βm(1− x̃)]

Ñmβ2
m cos(βm)

e−β
2
m t̃

︸                                               ︷︷                                               ︸
T̃ct(x̃,̃t)

(0 ≤ x̃ ≤ 1 ; t̃ ≥ 0
)
,

(39a)

where Ñm is the dimensionless norm given by

Ñm =
(
PR̃c

)2
β4

m +
(
P + PR̃c − 2R̃c

)
Pβ2

m + P + 1, (39b)
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Once T̃
(
x̃, t̃

)
is known, the thin layer temperature T̃ f

(̃
t
)

may be obtained by using the boundary
condition defined by Equation (6). After some algebra, it is given by

T̃ f
(̃
t
)
=

t̃
P + 1

+
R̃c + 1/3

(P + 1)2︸                 ︷︷                 ︸
T̃ f ,s( t̃)

−2
∞∑

m=1

e−β
2
m t̃

Ñmβ2
m︸           ︷︷           ︸

T̃ f ,ct( t̃)

(̃
t ≥ 0

)
, (39c)

Similarly to the X42B10T00 case, the temperature solutions given by Equation (39a,c) show two
components: a quasi-steady part and a complementary transient part that becomes negligible at large
times. The maximum number of terms and the truncation error of the sums in Equation (39a,c) will be
analyzed in Section 5.2.

5.1. Computation of the Eigenvalues

The X62 eigencondition defined by Equation (36) may be rewritten as

tan(βm) =

βm

R̃c

β 2
m −

1
PR̃c

, (40)

This transcendental equation is similar to the corresponding equation of the X33 case approached
in [14]. In detail, it is needed to replace the sum of the Biot numbers (B 1 + B 2) with the term 1/R̃c, and
their product (B 1B 2) with the term 1/

(
PR̃c

)
. Therefore, its roots (eigenvalues) may be computed by

using the same explicit approximate relations based on the third-order modified Newton method [14].
These relations provide an approximate value ζm of the exact eigenvalue βm (m = 1, 2, 3, . . . ), with
at least seven-decimal place accuracy (10−7) for P ∈ (0,∞) and for R̃c ∈ (0,∞). Additionally, the
lowest accuracy of 10−7 occurs when m = 1; on the contrary, when m > 1, the accuracy is higher [14].
A computer code for computing the eigenvalues of the X62 case is given in Ref. [20].

5.2. Computational Solution

The exact analytical solution given by Equation (39) shows an infinite summation, while the
computational analytical solution requires a finite number of terms. In particular, the maximum
number of required terms mmax for a truncation error less than 10−A (A = 2, 3, . . . , 15), may be taken in
a conservative way as [20]:

mmax = 1 + ceil

 1
π

√
A ln(10) + [H(P− 1) − 1] ln(P)

t̃

, (41)

where H(·) denotes the Heaviside step function.
As the convergence criterion defined by Equation (41) may require a large number of terms for

early times, the solution of the X62B10T00 problem can be replaced by the semi-infinite transient
X60B1T00 solution given by Equations (15) and (16). In fact, at early times the finite body behaves
as a semi-infinite one. In particular, for times less than the so-called deviation time t̃d defined by
Equation (25), this replacement occurs with errors with less than 10−A [11,17].

Moreover, for time greater than the so-called steady time t̃s, the complementary transient part of
the solution defined by Equation (39a,c) may be neglected with errors less than 10−A. Therefore,

T̃
(
x̃, t̃

)
=

t̃
P + 1

+
x̃2

2(P + 1)
−

x̃
P + 1

+
1− 3PR̃c

3(P + 1)2
(0 ≤ x̃ ≤ 1 ; t̃ ≥ t̃s

)
, (42a)
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T̃ f
(̃
t
)
=

t̃
P + 1

+
R̃c + 1/3

(P + 1)2

(̃
t ≥ t̃s

)
, (42b)

where t̃s may be taken in a conservative way as [20]

t̃s =
A(1+2/A) ln 10 +

[
H
(
Ñ1 β2

1 − 1
)
− 1

]
ln

(
Ñ1 β2

1

)
β2

1

, (43)

Some numerical values of t̃s for different accuracies A are shown in Table 2. Additionally, a verified
computer code in Matlab ambient for computing the solution of the X62B10T00 problem is provided
in [20].

Table 2. Quasi-steady times for several P and R̃c values and two different accuracies A.

P
A=2 A=10

~
Rc=0.01

~
Rc = 0.1

~
Rc = 1

~
Rc = 0.01

~
Rc = 0.1

~
Rc = 1

0.01 0.9520 0.9521 0.9540 3.7719 3.7726 3.7798
0.1 1.1254 1.1405 1.4396 4.4591 4.5190 5.7040
1 2.2681 2.5609 6.3138 8.9868 10.1470 25.0168
10 3.5249 4.1530 11.3281 13.9664 16.4553 44.8845

5.3. Thin Layer between Two Slabs: Imperfect Contact Case

The solution given by Equation (39) may also be used for the three-layer configuration shown in
Figure 4 when an imperfect thermal contact between the slabs and the thin layer is taken into account.

The related governing equations may still be defined by Equation (28), provided that
Equation (28h,i) be replaced by the following interface conditions, respectively:

−

∂T̃(−)

slab

∂x̃

∣∣∣∣∣∣∣∣
x̃=−2̃L f

=
1

R̃c

[
T̃(−)

slab

(
−2̃L f , t̃

)
− T̃ f

(̃
t
)] (̃

t > 0
)
, (44a)

−

∂T̃(+)

slab

∂x̃

∣∣∣∣∣∣∣∣
x̃=0

=
1

R̃c

[
T̃ f

(̃
t
)
− T̃(+)

slab

(
0, t̃

)] (̃
t > 0

)
, (44b)

With the same argumentations reported in Section 4.3 the addressed problem reduces to the X62B10T00
case. Hence, the thermal field within the right slab, in the three-layer configuration, is still defined by
Equation (41a). It may also be used to describe the thermal field T̃(−)

slab

(
x̃, t̃

)
, developing in the left slab,

by replacing the variable x̃ with −
(
x̃ + 2̃L f

)
. For what concerns the thin layer, its temperature T̃ f

(̃
t
)

is
still given by Equation (39c).

It has already been mentioned in Section 4.3 that the schematic of Figure 4 finds application in
the field of thermal properties measurements when using transient inverse techniques. In such an
application, the contact resistance R̃c accounts for the imperfect contact between the heater (thin layer)
and the specimens (slabs) [21].

6. Results and Discussion

6.1. Thin Layer in Perfect Contact with a Semi-Infinite Body

Figure 5a shows the dimensionless temperature for the X40B1T00 problem as a function of x̃ and
for different t̃ values, while Figure 5b depicts the dimensionless temperature for the same case as a
function of t̃ and for different dimensionless locations x̃. Both figures are obtained for P = 1. Note that
in Figure 5b the curve for x̃ = 0 also represents the thin layer temperature T̃ f

(̃
t
)
.
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Figure 6 shows the temperature distribution within the semi-infinite medium for different 
values of the heat capacity ratio P and for 2.0~ =t . As shown by the figure the temperature reached 
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thin layer temperature ( )tTf
~~  is also plotted. 

A comparison between Figures 5 and 7 exhibits that the temperature reached for the X60B1T00 
problem (imperfect thermal contact case) is slightly lower than that obtained when the perfect 
contact at the thin layer/semi-infinite body interface is considered (X40B1T00 problem). 

Figure 5. Dimensionless temperature plots for the X40B1T00 problem: (a) Temperature vs. x̃ and t̃ as a
parameter; (b) Temperature vs. t̃ and x̃ as a parameter.

Figure 6 shows the temperature distribution within the semi-infinite medium for different values
of the heat capacity ratio P and for t̃ = 0.2. As shown by the figure the temperature reached in the
medium decreases when the P parameter rises. Additionally, it is interesting to observe that for
P→ 0 the X40B1T00 problem reduces to the case of a semi-infinite body subject to a jump in heat flux
(X20B1T0 case [22]).
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6.2. Thin Layer in Imperfect Contact with a Semi-Infinite Body

Figure 7a,b depict the dimensionless temperature for the X60B1T00 problem as a function of
dimensionless space and time t̃, respectively (for P = 1 and R̃c = 0.25). Moreover, in Figure 7b the thin
layer temperature T̃ f

(̃
t
)

is also plotted.
A comparison between Figures 5 and 7 exhibits that the temperature reached for the X60B1T00

problem (imperfect thermal contact case) is slightly lower than that obtained when the perfect contact
at the thin layer/semi-infinite body interface is considered (X40B1T00 problem).
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6.3. Thin Layer in Perfect Contact with a Slab 
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By using the thickness of the slab L as a reference length for the semi-infinite body, it is possible 
to compare the results obtained for the X40B1T00 (Figure 5) and X42B10T00 (Figure 9) problems. 
Therefore, a comparison between Figures 5 and 9 gives evidence that the temperature distribution 
within the finite slab is greater than that obtained for the semi-infinite body (not for times less than 
the deviation time). However, for small values of x~  this difference is more visible at large t~  
values, while for large values of x~  it can be observed also for shorter times. 

Figure 7. Dimensionless temperature plots for the X60B1T00 problem: (a) Temperature vs. x̃ and t̃ as a
parameter; (b) Temperature vs. t̃ and x̃ as a parameter.

Figure 8 displays the temperature distribution within the semi-infinite body for different values of
the dimensionless contact resistance R̃c, for P = 0.1 and t̃ = 0.2. It can be observed that the temperature
field decreases when the contact resistance increases. However, the temperature at x̃ = 1 is less affected
by the R̃c parameter. Note that for R̃c → 0 the X60B1T00 problem simply reduces to the X40B1T00
problem treated in Section 2.
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6.3. Thin Layer in Perfect Contact with a Slab

The dimensionless temperature field within the slab of the X42B10T00 problem (P = 1) is plotted
as a function of x̃ in Figure 9a, and as a function of time in Figure 9b. Note that in Figure 9b the curve
for x̃ = 0 also represents the thin layer temperature T̃ f

(̃
t
)
.

By using the thickness of the slab L as a reference length for the semi-infinite body, it is possible
to compare the results obtained for the X40B1T00 (Figure 5) and X42B10T00 (Figure 9) problems.
Therefore, a comparison between Figures 5 and 9 gives evidence that the temperature distribution
within the finite slab is greater than that obtained for the semi-infinite body (not for times less than
the deviation time). However, for small values of x̃ this difference is more visible at large t̃ values,
while for large values of x̃ it can be observed also for shorter times.
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The influence of the heat capacity ratio P on the temperature distribution occurring within the
slab is shown by Figure 10. A behavior similar to that displayed by Figure 6 can be observed. Note that
for P→ 0 the X42B10T00 problem reduces to the case of a finite slab subject to a jump in heat flux
(X22B10T0 case [23]).Energies 2020, 13, x FOR PEER REVIEW 19 of 26 

 

  
(a) (b) 

Figure 9. Dimensionless temperature plots for the X42B10T00 problem: (a) Temperature vs. x~  and 
t~  as a parameter; (b) Temperature vs. t~  and x~  as a parameter. 

The influence of the heat capacity ratio P on the temperature distribution occurring within the 
slab is shown by Figure 10. A behavior similar to that displayed by Figure 6 can be observed. Note 
that for 0→P  the X42B10T00 problem reduces to the case of a finite slab subject to a jump in heat 
flux (X22B10T0 case [23]). 

 
Figure 10. Dimensionless temperature distribution for the X42B10T00 problem for different values of 
the heat capacity ratio ( 2.0~ =t ). 

6.4. Thin Layer in Imperfect Contact with a Slab 

Figure 11 shows a plot of the dimensionless temperature as a function of x~  for different time 
values (Figure 11a), and as a function of t~  for different locations (Figure 11b). Additionally, the 

thin layer temperature ( )tTf
~~

 is depicted in Figure 11b. 

By comparing Figure 9 (perfect contact case) and Figure 11 it is possible to state that the 
temperature field obtained for a slab in imperfect contact with a thin layer is slightly lower than that 
occurring when a perfect contact is considered (X42B10T00 problem). 

Also, with the same argumentation reported in the previous Subsection, Figure 7 (X60B1T00 
problem) and Figure 11 are compared. By observing these figures it is clear that the finite thickness 
of the slab yields a temperature distribution greater than that obtained in a semi-infinite body in 
imperfect contact with a thin layer (Figure 7). This behavior is more evident for large time values and 
occurs also for the thin layer temperature. 

Figure 9. Dimensionless temperature plots for the X42B10T00 problem: (a) Temperature vs. x̃ and t̃ as
a parameter; (b) Temperature vs. t̃ and x̃ as a parameter.

Energies 2020, 13, x FOR PEER REVIEW 19 of 26 

 

  
(a) (b) 

Figure 9. Dimensionless temperature plots for the X42B10T00 problem: (a) Temperature vs. x~  and 
t~  as a parameter; (b) Temperature vs. t~  and x~  as a parameter. 

The influence of the heat capacity ratio P on the temperature distribution occurring within the 
slab is shown by Figure 10. A behavior similar to that displayed by Figure 6 can be observed. Note 
that for 0→P  the X42B10T00 problem reduces to the case of a finite slab subject to a jump in heat 
flux (X22B10T0 case [23]). 

 
Figure 10. Dimensionless temperature distribution for the X42B10T00 problem for different values of 
the heat capacity ratio ( 2.0~ =t ). 

6.4. Thin Layer in Imperfect Contact with a Slab 

Figure 11 shows a plot of the dimensionless temperature as a function of x~  for different time 
values (Figure 11a), and as a function of t~  for different locations (Figure 11b). Additionally, the 

thin layer temperature ( )tTf
~~

 is depicted in Figure 11b. 

By comparing Figure 9 (perfect contact case) and Figure 11 it is possible to state that the 
temperature field obtained for a slab in imperfect contact with a thin layer is slightly lower than that 
occurring when a perfect contact is considered (X42B10T00 problem). 

Also, with the same argumentation reported in the previous Subsection, Figure 7 (X60B1T00 
problem) and Figure 11 are compared. By observing these figures it is clear that the finite thickness 
of the slab yields a temperature distribution greater than that obtained in a semi-infinite body in 
imperfect contact with a thin layer (Figure 7). This behavior is more evident for large time values and 
occurs also for the thin layer temperature. 

Figure 10. Dimensionless temperature distribution for the X42B10T00 problem for different values of
the heat capacity ratio (̃t = 0.2).

6.4. Thin Layer in Imperfect Contact with a Slab

Figure 11 shows a plot of the dimensionless temperature as a function of x̃ for different time values
(Figure 11a), and as a function of t̃ for different locations (Figure 11b). Additionally, the thin layer
temperature T̃ f

(̃
t
)

is depicted in Figure 11b.
By comparing Figure 9 (perfect contact case) and Figure 11 it is possible to state that the temperature

field obtained for a slab in imperfect contact with a thin layer is slightly lower than that occurring
when a perfect contact is considered (X42B10T00 problem).

Also, with the same argumentation reported in the previous Subsection, Figure 7 (X60B1T00
problem) and Figure 11 are compared. By observing these figures it is clear that the finite thickness of
the slab yields a temperature distribution greater than that obtained in a semi-infinite body in imperfect
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contact with a thin layer (Figure 7). This behavior is more evident for large time values and occurs also
for the thin layer temperature.Energies 2020, 13, x FOR PEER REVIEW 20 of 26 
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Finally, the influence of the contact resistance R̃c on the temperature distribution within the slab
(at t̃ = 0.2) is shown by Figure 12. Similarly to what has been discussed for Figure 8, when the contact
resistance increases, lower temperature values are obtained. Note that for R̃c → 0 the X62B10T00
problem simply reduces to the X42B10T00 problem discussed in Section 5.
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7. Conclusions

One-dimensional multi-layer transient heat conduction problems involving boundary conditions
of fourth and sixth kind have been discussed.

In particular, structures in which a thin layer and a semi-infinite body are in perfect or imperfect
thermal contact (X40B1T00 and X60B1T00 problems, respectively) have been investigated. Additionally
in these situations a jump in the heat flux was applied to the thin layer. Furthermore, the temperature
solution of the X60B1T00 problem, which is not available in the heat conduction literature, has been
derived by means of the LT method.
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Two-layer problems defined by a thin layer in perfect or imperfect thermal contact with a slab,
insulated at the other boundary, have also been investigated. In particular, the exact analytical solutions
for the X42B10T00 and X62B10T00 problems have been derived by means of the GFSE and the LT
methods, respectively.

Moreover situations in which a thin layer, with internal heat generation, is located between two
adjacent domains (semi-infinite bodies or slabs) have been discussed. For sake of thermal symmetry
occurring in one dimensional conductive problems, such three-layer structures have been reduced to
the two-layer configurations previously analyzed.

The results have been shown that for all the considered cases the temperature levels reached in
the domain increase when the heat capacity of the thin layer and the contact resistance at the thin
layer-domain interface decrease. In particular, the greatest temperature field has been obtained for a
finite body in perfect thermal contact with a thin layer. Additionally, when an imperfect contact is
considered, it has been found that the thin layer temperature is highest when the adjacent domain is a
slab and it increases when the contact resistance rises.
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the manuscript.
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Appendix A

In this Section the derivation of an alternative solution for the X42B10T00 problem is provided by
means of the Alternative GFSE (AGFSE) [4].

Firstly the temperature solution is rewritten as the sum of two terms:

T̃
(
x̃, t̃

)
= T̃∗

(
x̃, t̃

)
+ T̃′

(
x̃, t̃

)
, (A1)

where T̃∗
(
x̃, t̃

)
is the quasi-steady solution, which satisfies only the boundary conditions, and T̃′

(
x̃, t̃

)
represents the transient solution.

Then, by substituting Equation (A1) into the governing equations, Equation (18), the original
problem can be split up into a set of two simpler problems:

• a non-homogeneous problem defined for T̃∗
(
x̃, t̃

)
, as:

∂2T̃∗

∂x̃2 =
∂T̃∗

∂̃t
, (A2a)

−
∂T̃∗

∂x̃

∣∣∣∣∣∣
x̃=0

+ P
∂T̃∗

(
0, t̃

)
∂̃t

= 1 ;
∂T̃∗

∂x̃

∣∣∣∣∣∣
x̃=1

= 0, (A2b)

• and a transient problem defined for T̃′
(
x̃, t̃

)
, with homogeneous boundary conditions:

∂2T̃′
∂x̃2 =

∂T̃′

∂̃t
, (A3a)

−
∂T̃′
∂x̃

∣∣∣∣∣∣
x̃=0

+ P
∂T̃′

(
0, t̃

)
∂̃t

= 0 ;
∂T̃′
∂x̃

∣∣∣∣∣∣
x̃=1

= 0, (A3b)

T̃′(x̃, 0) = −T̃∗(x̃, 0), (A3c)
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Note that in Equation (A2) the T̃∗ solution does not need to satisfy the initial condition. In fact,
as the temperature solution defined by Equation (22), contains a time dependent term which
dominates temperature for large times, that is t̃/(P + 1), the T̃∗

(
x̃, t̃

)
solution should be:

T̃∗
(
x̃, t̃

)
= f (x̃) +

t̃
P + 1

, (A4)

where the f (x̃) function must satisfy the boundary conditions of the problem defined by Equation
(A2). By substituting Equation (A4) in Equation (A2) the first problem becomes:

d2 f (x̃)
dx̃2 =

1
P + 1

, (A5a)

−
d f (x̃)

dx̃

∣∣∣∣∣∣
x̃=0

+
P

P + 1
= 1 , (A5b)

d f (x̃)
dx̃

∣∣∣∣∣∣
x̃=1

= 0, (A5c)

By integrating twice Equation (A5a), the f (x̃) function is obtained:

f (x̃) =
x̃2

2(P + 1)
+ C1x̃ + C2, (A6)

The constants appearing in Equation (A6) can be determined by imposing the boundary conditions
defined by Equation (A5b,c). In particular since the boundary conditions are both gradient conditions,
the choice of the constant C2 is arbitrary. For this reason, the constant C2 is set equal to zero. Then

f (x̃) =
x̃2

2(P + 1)
−

x̃
(P + 1)

, (A7)

Thus the T̃∗
(
x̃, t̃

)
solution results in

T̃∗
(
x̃, t̃

)
=

t̃
P + 1

+
x̃2

2(P + 1)
−

x̃
(P + 1)

, (A8)

Now the transient problem defined by Equation (A3) is conveniently solved by means of the
GFSE: in this case the only non-homogeneous term is the initial condition, Equation (A3c). The solution
T̃′

(
x̃, t̃

)
may be obtained by the following equation:

T̃′
(
x̃, t̃

)
= −

1∫
x̃′=0

G̃X42
(
x̃, t̃

∣∣∣̃x′, 0
)

f (x̃′) dx̃′ − PG̃X42
(
x̃, t̃

∣∣∣0, 0
)

f (0)︸                   ︷︷                   ︸
= 0

, (A9)

In the above equation the relation T̃∗(x̃, 0) = f (x̃), derived from Equation (A4), has been used.
Substituting Equations (19) and (A7) into the above equation gives:

T̃′
(
x̃, t̃

)
= −

1
P + 1

1∫
x̃′=0

 x̃′2

2(P + 1)
−

x̃′
P + 1

 dx̃′ − 2
∞∑

m=1

Xm(x̃)

Ñm
e−β

2
m t̃

1∫
x̃′=0

Xm(x̃′)

 x̃′2

2(P + 1)
−

x̃′
P + 1

dx̃′,

(A10)
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Bearing in mind the definition of the eigenfunction Xm(x̃′), Equation (A10) becomes

T̃′
(
x̃, t̃

)
= − 1

2(P+1)2

1∫
0

x̃′2 dx̃′+ 1
(P+1)2

1∫
0

x̃′ dx̃′

−2
∞∑

m=1

Xm(x̃)
Ñm

e−β
2
m t̃

 1
2(P+1)

1∫
0

x̃′2 cos(βmx̃′) dx̃′ − 1
P+1

1∫
0

x̃′ cos(βmx̃′) dx̃′

−
Pβm

2(P+1)

1∫
0

x̃′2 sin(βmx̃′) dx̃′+ Pβm
P+1

1∫
0

x̃′ sin(βmx̃′) dx̃′


, (A11)

Then by performing the integrals by parts, and after some algebra, Equation (A11) yields

T̃′
(
x̃, t̃

)
=

1

3(P + 1)2 − 2
∞∑

m=1

Xm(x̃)

Ñm
e−β

2
m t̃

[
−

sin βm

(P + 1)βm
−

sin βm

(P + 1)β3
m
−

P cos βm

P + 1
−

P cos βm

(P + 1)β2
m
+

1
β2

m

]
,

(A12)
which, by using the eigencondition defined by Equation (19d), becomes

T̃′
(
x̃, t̃

)
= 1

3(P+1)2 − 2
∞∑

m=1

Xm(x̃)
Ñmβ2

m
e−β

2
m t̃ =

1
3(P+1)2 − 2

∞∑
m=1

cos(βmx̃)−Pβm sin(βmx̃)
Ñmβ2

m
exp

(
−β2

m t̃
) , (A13)

Substituting the expressions obtained for T̃∗ and T̃′ solutions, Equations (A8) and (A13),
respectively, into Equation (A1), gives

T̃
(
x̃, t̃

)
=

t̃
P + 1

+
x̃2

2(P + 1)
−

x̃
P + 1

+
1

3(P + 1)2 − 2
∞∑

m=1

cos(βmx̃) − Pβm sin(βmx̃)

Ñmβ2
m

e−β
2
m t̃, (A14)

It is worth noting that by setting Equations (22) and (A14) equal, the following algebraic identity
can be obtained.

∞∑
m=1

cos(βmx̃) − Pβm sin(βmx̃)

Ñmβ2
m

=
x̃2

4(P + 1)
−

x̃
2(P + 1)

+
1

6(P + 1)2
(0 ≤ x̃ ≤ 1), (A15)

Therefore, the exact value of the infinite series has been found.

Appendix B

In this Section the calculation of the residues Rs=0 and Rs=−β2
m

, related to the X62B10T00 problem,
is reported.

In order to determine the residue at q = 0 (or s = 0), the inversion integrand ϑ(x̃, q) eq2 t̃ (or ϑ(x̃, s) es̃t)
should be brought into the form of a Laurent expansion at q = 0; the sought residue corresponds to the
coefficient of the 1/q2 (1/s) term appearing in the expansion.

By using a Taylor expansion for eq2 t̃, that is eq2 t̃ = 1 + t̃q2 + t̃2

2 q4 + . . ., and bearing in mind that
ϑ(x̃, q) is a quotient of even powers of q, as shown by Equations (34) and (35), the inversion integrand
can be rewritten as:

ϑ(x̃, q) eq2 t̃ =
C0 + C 1 q2 + O

(
q4

)
q4

1 + t̃q2 + O
(
q4

)
C3 + C 4 q2 + O(q4)

, (A16a)

which may be taken in a form closer to the Laurent expansion

ϑ(x̃, q) eq̃t =

(
C0

q4
+

C 1

q2 + O(1)
)[

C6 + C7 q2 + O
(
q4

)]
, (A16b)



Energies 2020, 13, 6484 23 of 25

Thus, bearing in mind Equations (34a) and (35), and by setting Equation (A16a,b) equal, one can obtain
the following identities:

C0 + C 1 q2 + O
(
q4

)
= 1 +

q2(1− x̃)
2

+ O
(
q4

)
, (A17a)

q4
[
C3 + C 4 q2 + O

(
q4

)]
= q4

{
P + 1 + q2

[P
2
+ PR̃c +

1
6

]
+ O

(
q4

)}
, (A17b)

1 + t̃q2 + O
(
q4

)
C3 + C 4 q2 + O(q4)

= C6 + C7 q2 + O
(
q4

)
, (A17c)

Then Equation (A17a,b) give:

C0 = 1 , C 1 =
(1− x̃)2

2
, C 3 = P + 1 , C 4 =

P
2
+ PR̃c +

1
6

, (A18)

also, Equation (A17c) is an identity and the constants C 6 and C 7 can be obtained similarly.

C 6 =
1

C3
=

1
P + 1

, C 7 =
1

C3

(̃
t−

C4

C3

)
, (A19)

Moreover, by using Equation (A16b), the coefficient of 1/q2 (1/s) term in the Laurent expansion may
be identified. This coefficient represents the residue (Rs=0) for the pole s = 0, and it results in

Rs=0 = C0C7 + C1C6, (A20)

Then by substituting Equations (A18) and (A19) into Equation (A20), and after some algebra, the same
expression reported in Equation (38a) can be obtained.

Now consider the generic pole at q = iβm (or s = −β2
m). As first step, it is worth noting that the

inversion integrand is a quotient of a numerator and a denominator, i.e., ϑ(x̃, q) eq2 t̃ = N(q)/D(q);
in such a case the residue for the simple pole q = iβm may be conveniently calculate by taking the
derivative of the denominator of Equation (33) evaluated at its zero, that is

Rs=−β2
m
=

N(q = iβm)

D′(q = iβm)
=

cosh[q(1− x̃)] eq2 t̃
∣∣∣∣
q=iβm

dD(q)
ds

∣∣∣∣
q=iβm

, (A21)

where D(q) = q2
[
Pq2 cosh(q) + q

(
PR̃c q2 + 1

)
sinh(q)

]
, see Equation (35), and its derivative dD(q)/ds

is calculated by using the chain rule as follows

dD(q)
ds

=
dD(q)

dq
dq
ds

=
1
2q

dD(q)
dq

, (A22)

Thus, substituting Equation (A22) into Equation (A21) gives

Rs=−β2
m
=

cosh[q(1− x̃)]eq2 t̃
∣∣∣∣
q=iβm

1
2q

dD(q)
dq

∣∣∣∣
q=iβm

, (A23)
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By performing the derivative appearing in Equation (A23), using the eigencondition in the form
sin(β) = −Pβ cos(β)/

(
1− P R̃c β 2

)
, after lengthy algebra, one can obtain:

1
2q

dD
dq

∣∣∣∣
q=iβm

= 1
2

{ [
PR̃cβ4

m − (4P + 1)β2
m

]
cos(βm) +

[(
1 + 5R̃c

)
Pβ3

m − 3βm
]

sin(βm)
}

=

[
(PR̃c)

2
β4

m+(P+PR̃c−2R̃c)Pβ2
m+P+1

]
β2

m cos(βm)

2 (PR̃cβ2
m−1)

, (A24)

Therefore, substituting Equation (A24) into Equation (A23) yields the residue for the generic pole
s = −β2

m

Rs=−β2
m
=

2
(
PR̃cβ2

m − 1
)

cos[βm(1− x̃)] e−β
2
m t̃[(

PR̃c
)2
β4

m +
(
P + PR̃c − 2R̃c

)
Pβ2

m + P + 1
]
β2

m cos(βm)
, (A25)

which is exactly the same as Equation (38b).
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