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Abstract: High voltage direct current (HVDC) transmission systems are suitable for power transfer
to meet the increasing demands of bulk energy and encourage interconnected power systems to
incorporate renewable energy sources without any fear of loss of synchronism, reliability, and efficiency.
The main challenge associated with DC grid protection is the timely diagnosis of DC faults because of
its rapid built up, resulting in failures of power electronic circuitries. Therefore, the demolition of
HVDC systems is evaded by identification, classification, and location of DC faults within milliseconds
(ms). In this research, the support vector machine (SVM)-based protection algorithm is developed so
that DC faults could be identified, classified, and located in multi-terminal high voltage direct current
(MT-HVDC) systems. A four-terminal HVDC system is developed in Matlab/Simulink for the analysis
of DC voltages and currents. Pole to ground and pole to pole faults are applied at different locations
and times. Principal component analysis (PCA) is used to extract reduced dimensional features.
These features are employed for the training and testing of SVM. It is found from simulations that
DC faults are identified, classified, and located within 0.15 ms, ensuring speedy DC grid protection.
The realization and practicality of the proposed machine learning algorithm are demonstrated by
analyzing more straightforward computations of standard deviation and normalization.

Keywords: DC grid protection; MT-HVDC transmission systems; fault identification; fault
classification; fault location; support vector machine (SVM); principal component analysis (PCA);
standard deviation (SD); normalization (N)

1. Introduction

Intercontinental super-grid and integration of a large number of renewable energy sources to
the conventional grid are the fruitful developments achieved through the promising technology
of multi-terminal high voltage direct current (MT-HVDC) transmission systems [1–3]. Most of the
renewable energy sources are located far from load centers, and therefore, the transfer of energy must
be done effectively [4]. For example, an offshore super-grid will be inevitable in the future for the
interconnection of offshore wind farms of Northern Europe and the United Kingdom [5]. Similarly,
solar installations in Africa’s deserts can only be connected to load centers of Europe and Asia via
MT-HVDC grids [5].

The MT-HVDC system’s technical and economic feasibility is proved by recent developments
in voltage source converters (VSCs) and DC circuit breakers [6]. However, there is still a challenge
in expanding point–point HVDC systems to MT-HVDC systems, i.e., developing reliable and quick
protection systems to interrupt the abrupt rise of DC fault currents. In the literature, HVDC point–point
links are interrupted from the AC side of the converter station if DC fault persists [6], which results in
the shutdown of the entire DC system [7]. Thus, this technique is not recommended for MT-HVDC
systems because of the tripping of healthy links along with faulted circuits. Therefore, it is always
desired to develop (i) an appropriate relaying mechanism and (ii) HVDC circuit breakers for the
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isolation of faulty circuits only [2,5]. Moreover, an accurate and abrupt action of relaying mechanisms
is responsible for the online adjustment of zonal relay settings, planned maintenance of the faulty line,
and restoring the system without any fear of tripping instants [2].

Initially, S. Agarwal et al. diagnosed the transmission systems’ faults through impedance-based
methods [8]. But the accuracy of fault estimation decreases with the increase in distance of fault from
sensing location [8]. Advancement in transducer technology leads to developing a fault diagnostic
technique based on current and voltage samples [9–12]. However, advanced filtering methods of
eradicating fault-loop impedance are required for electrical noise [13].

The inventions of fast analog to digital conversions and numerical relays have introduced traveling
wave (TW)-based protection methods in both AC and DC systems [14–22]. However, the unavailability
of mathematical tools to model TW, the difference in the velocities of TWs in overhead line and
underground cables, the incomplete information of surge impedance, and the high sampling rate are
the hurdles in real-time implementation [18,23,24].

Voltage wavelet analysis, current wavelet analysis, and voltage derivative and magnitude analysis
are proposed in [24] as three independent DC fault diagnosis criteria. Fault detection time increases
with the increase in fault resistance, the drawback [25]. The transient based protection is designed
for DC-grids in [24,26]. In this technique, smoothing reactors and capacitors are deployed at ends
of DC links. Inherent busbar capacitance does not transmit high-frequency signals, employed for
discrimination between internal and external faults [18]. This method may experience mal-operation
due to non-fault transients in lightning events [26]. A low speed relaying mechanism is proposed for
mechanical DC breakers in [27]. The total fault clearing time is 1 min, not acceptable for MT-HVDC
systems [27]. The hybrid protection is based on stationary wavelet transform and traveling waves
proposed in [18] for HVDC systems to discriminate between fault-transient and non-fault lightning
transient events [18]. Faults closed to the converter stations, which cannot be detected by TW methods,
can readily be detected with hybrid techniques. However, it requires expensive hardware for a high
sampling rate. The differential analysis of high-frequency transients in current signals, measured
at each terminal, is introduced to protect MT-HVDC systems [28]. This method requires reliable
communication between terminals/VSCs of the DC transmission lines and offers inherent latency [29].

Artificial neural networks (ANN)-based methods are found beneficial in fault diagnosis because
of their accuracy [30,31], robustness [32], and speed [30,31] in HVDC systems [33,34]. ANN-based
techniques are often supported with feature selection through the Fourier transform or wavelet
transform [35,36], but it has drawbacks such as: Inaccurate fault diagnosis with incomplete
information and demands for advanced mathematical tools for feature selection through transform
procedures [37,38].

The techniques mentioned above pose shortcomings to DC grid protection such as: (i) Inaccurate,
(ii) not robust, (iii) impose electrical noise, (iv) slow in response, (v) complex calculations, and (vi)
requirement of expensive signal processing tools. Thus a machine learning (ML) technique,
support vector machine (SVM) based algorithm [39–41], is developed in this paper to overcome
the abovementioned obstacles. Support vector machine (SVM) based fault detection, classification,
and location have not been conducted/explored in literature for MT-HVDC systems. The development
of a rapid and mature protection scheme is the main challenge in MT-HVDC systems to ensure
successful and appropriate interruption of the DC breaker in the event of a fault [42,43].

In this research, an algorithm based on support vector machine (SVM) learning is developed for
fault diagnosis in MT-HVDC systems. Features extracted through principal component analysis (PCA)
are employed for training and testing of SVM. The proposed protection algorithm is applied to the
four-terminal HVDC test system. Various types of faults are created at different locations in the DC
test system. This algorithm successfully identifies, classifies, and locates the DC faults. This proposed
algorithm is robust, requires less computational time, and is accurate even for the DC faults closed to
the VSC stations. Thus, the proposed SVM-based algorithm overcomes the shortcomings of all the
aforementioned protection techniques of the literature
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Moreover, the SVM based analysis of standard deviation and normalization is added to demonstrate
the realization of fault diagnosis in a time frame of 0.15 ms.

This research paper consists of the following sections: The mathematical formulation and proposed
fault diagnostic algorithm based on the support vector machine is described in Section 2. MT-HVDC
test system is explained in Section 3. Simulation results are discussed in Section 4. Main achievements
are added in Section 5. Finally, conclusions are drawn in Section 6.

2. Support Vector Machines (SVM)

A support vector machine is a statistical supervised machine learning technique employed
for both regression and classification. Vapnik and Cortes originally developed it in 1995 [44,45].
Although this technique differs from ANN, some authors sometimes declare SVM as a special type of
ANN [46,47]. A rigorous mathematical and statistical approach is employed for the development of
SVM [48–53]. Both binary and multi-class classification problems are the root cause of the development
of its mechanism. In binary linear SVM, the optimal hyper-plane plays a decision-making role for
classification between two classes based on training datasets. There are two ways to achieve the
optimal classification of training datasets.

Hard margin optimality can be employed to achieve the perfect distinction between training
datasets’ classes, as shown in Figure 1. Maxima is derived from the hyper-plane decision boundary.
It helps to maximize the distance between the hyper-plane and the nearest training data points.

Figure 1. Binary classification based on support vector machine (SVM).

Soft margin optimality is employed if no perfect classification is required. Therefore, hyperplane
plays a customized trade-off role between two relative extremes that are: Minimizing the failure
(misclassification) rate and maximizing the distance between the hyperplane to the properly classified
nearest training point.

In SVM classification, the decision boundary hyperplane is evaluated by support vectors.
A different dataset can be applied to SVM classifier after the determination of the hyperplane.
+1 or −1 is assigned to class depending on the location of the dataset concerning the decision boundary.
In the case of a multi-class classification problem, as shown in Figure 2, different approaches, such
as pairwise and one-versus-all, are employed to convert multi-class classification to binary-class
classification [48]. In addition to this, reformulations of binary classification for compact multi-class
classification problems are also developed in literature [54]. All the variables used in this research
paper are enlisted in nomenclature section.
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Figure 2. Multi-classification based on SVM.

2.1. Mathematical Formulation

The objective function of the SVM classification problem is given as:

φ(w, ξ) =
1
2

wTw + C
N∑

i=1

ξi (1)

where xiεRmo is the ith input vector, diε{−1, 1} represents the class corresponding to the ith input vector.
ξ = {ξi}

N
i=1 is the slack variable. C is a user-specified parameter that plays a trade-off role between

misclassification and maximum inter-class margin. The minimum objective function, i.e., computation
of optimal weight vector, should satisfy the following conditions:

di
(
wTxi + b

)
≥ 1− ξi, ∀ i = 1, 2, . . . , Nξi ≥ 0, ∀ i = 1, 2, . . . , N (2)

where {xi, di}
N
i=1 is training data set, w is weight vector, b is bias, and ξ is a slack variable.

Practically, it is impossible to solve all the classification problems by declaring a simple hyperplane
as the decision boundary. Therefore, a more complex and dynamic decision boundary is required.
In SVM, non-linear transformation is applied to increase the dimensions of the input space of dimensions
m0 to a feature space of dimensions m f > mo. As a result, the probability of misclassification in the
transformed feature space is minimized. Radial basis functions, higher-order polynomials, and sigmoids
are common transformation functions. In the non-linear classification problem, the hyperplane decision
boundary is associated with feature space and given as:

wTϕ(x) + b = 0 (3)

where ϕ(x) is the point of transformed feature space, x ∈ Rmo and ϕ(x) ∈ Rm f . Weight vector w can be
optimized by the Lagrange multipliers method [45] and given as:

w =
N∑

i=1

αidiϕ(xi) (4)

where αi represents the coefficients of the Lagrange multiplier. The decision boundary can be
optimized by:

N∑
i=1

αidiϕ(xi)
Tϕ(x) + b = 0 (5)
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Now with the assumption of ui = αidi and K(xi, x) = ϕ(xi)
Tϕ(x) = ϕ(x)Tϕ(xi) = K(x, xi),

the optimized decision function y is simplified as:

y =
N∑

i=1

uiK(x, xi) + b (6)

In the scenario of linear classification, K(x, xi) represents the traditional Euclidean inner product
of the input vector x with the support vector xi. In the scenario of non-linear classification, K(x, xi)

represents the traditional Euclidean inner product of the input vector x with the linear transformation
ϕ(xi) of the support vector xi. The proposed flow chart of support vector machine-based classification
is demonstrated in Figure 3.

Figure 3. Proposed flow chart of SVM based classification.

2.2. Principal Component Analysis (PCA)

The principal component analysis is a statistical technique employed to study the inherent structure
of the information. This method reduces the dimensions of data based on the rotation of coordinate axes.
Eigenvalues and eigenvectors are produced from eigenvalue decomposition for the representation of
variation in the sensed information. Uncorrelated lower-dimensional information is extracted from
a set of correlated high-dimensional information. PCA minimizes squared reconstruction error in
dimensionality reduction. The sensed information is represented by a matrix A (A ∈ <p×q) with p raw
samples (rows) and q process variables (columns) and is expressed as:

A =
[
a1, . . . , ap

]
T (7)
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where xi is the ith normalized sample column vector. Correlation is represented by covariance matrix
Cov, expressed as:

Cov =
ATA
(q− 1)

. (8)

Eigenvalues of Cov are decomposed, and a can be represented by:

a = ae + ar (9)

where ae and ar are the projection vectors of a onto the principal component subspace and residual
subspace, respectively. The projection vector of residual subspace ar aids in the identification of faults
and can be described as:

ar =
(
I − EET

)
(10)

where E ∈ <q×k consists of the former k columns of the eigenvector matrix and its column vectors
represent nonnegative real eigenvalues. The increasing magnitude of the corresponding eigenvalues
are expressed as:

0 ≤ λq ≤ . . . ≤ λ2 ≤ λ1. (11)

A parameter is defined as an indication of the identification of a fault. It determines whether the
sensed data belongs to the particular fault type or not and is expressed as:

S =||ar||2. (12)

2.3. PCA-Based SVM

Each sensed data consists of g number of samples. Training of the PCA model is conducted with a
random selection of h samples (h < g) for each dataset. The rest of the samples are used to evaluate the
accuracy of PCA-based features. The following are the steps behind the identification and classification
of faults based on data obtained from multiple sensing terminals:

1. Sensed data obtained from different sensing terminals are employed as input.
2. Data is normalized with zero mean and unit variance.
3. Eigenvalue decomposition is carried out for normalized data. Optimal principal components are

determined by the employment of the Scree test [55] given as:

Scr(λi, Ci), i = 1, 2, . . . , q (13)

where Scr is used to minimize the number of principal components and determine the optimal
components. Each q process variable is associated with communalities Ci. Scr = 1, when λi > 1
and Ci > 0.5, otherwise Scr = 0. In general, high eigenvalues based components are retained,
and low eigenvalues based components are eliminated.

4. An indication S is created based on the optimal principal components.
5. The indication is classified based on the model of SVM based Si. PCA model is trained to extract

each Si. Indicators
{
S0, S1, S2, S3

}
has the indexes i = (0, 1, 2, 3). In the process of training,

h samples of sensed data are used to prepare each indicator.
6. The proposed algorithm is terminated with the results of fault identification and classification.

2.4. Proposed SVM-Based Protection Algorithm

The flow charts of the proposed SVM based fault diagnostic technique for the positive pole to
ground (PPG) fault, negative pole to ground (NPG) fault, and pole-to-pole (PP) fault in the MT-HVDC
system are presented in Figures 4–9, respectively. DC voltage and currents are measured at different
fault locations in the MT-HVDC system. Standard deviation (SD) and normalization (N) are the features
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extracted from the DC voltages and currents analysis. Relative minima and maxima of standard
deviation and normalization are evaluated. Relative minima and maxima of SD and N are compared
at different fault locations and for different fault types for identification, classification, and location of
DC faults in MT-HVDC systems.

Figure 4. An algorithm for positive pole to ground (PPG) fault location finding based on SVM, using
supported features of standard deviation and normalization of DC voltage.

Figure 5. An algorithm for PPG fault location finding based on SVM, using supported features of
standard deviation and normalization of DC current.
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Figure 6. An algorithm for negative pole to ground (NPG) fault location finding based on SVM, using
supported features of standard deviation and normalization of DC voltage.

Figure 7. An algorithm for NPG fault location finding based on SVM, using supported features of
standard deviation and normalization of DC current.
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Figure 8. An algorithm for pole-to-pole (PP) fault location finding based on SVM, using supported
features of standard deviation and normalization of DC voltage.
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Figure 9. An algorithm for PP fault location finding based on SVM, using supported features of
standard deviation and normalization of DC current.
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DC voltages and currents are measured at the positive pole in the case of PPG fault. Maximum
and minimum values of SD and N, extracted from DC voltage, increase with the increase in the distance
between the sensing terminal and fault point, as shown in Figure 4. Maximum and minimum values of
SD and N, extracted from DC current, increase with the decrease in the distance between the sensing
terminal and fault point, as presented in Figure 5.

In NPG fault, measurements of DC voltage and current are taken at the negative pole. SD and
N are the features extracted from the measurements. Maximum and minimum values of SD and N,
extracted from DC voltage, decrease with the increase in the distance between the converter station
and DC fault location, as presented in Figure 6. In the case of supported features derived from DC
current measurements, maximum and minimum values of SD and N increase with the increase in the
distance between VSC and fault point, as depicted in Figure 7.

In the case of PP fault, DC voltage and DC currents are measured at both positive and negative
poles simultaneously. SD and N are the features extracted from pole measurements. In the condition of
DC voltage measurements, maximum and minimum values of SD and N increase with the increase in
the distance between relay position and fault location for positive pole. The maximum and minimum
values of SD and N decrease with the increase in the distance between VSC and fault point for negative
pole as depicted in Figure 8. In the condition of measurement of DC current, the decrease in the
maximum and minimum values of SD and N with the increase in the distance between sensing terminal
and fault location is found for positive pole. The increase in the maximum, and minimum values of SD
and N with the increase in the distance between relay terminal and fault location is found for negative
pole as presented in Figure 9.

3. MT-HVDC Test System Understudy

A single line diagram of the four-terminal HVDC system is shown in Figure 10. This test model
consists of two offshore VSC stations, i.e., rectifier stations (RS-I and RS-II), and two onshore VSC
stations, i.e., inverter stations (IS-I and IS-II). An average two-level VSCs value model is employed [56].
DC voltage droop and reactive power controls are applied to onshore VSC stations [57,58]. At offshore
VSC stations, active power and AC voltage controls are used to ensure a constant power flow in the grid
via AC voltage regulation [59]. The dq control is applied at the primary level of the VSC stations [60].

Figure 10. Multi-terminal high voltage direct current (MT-HVDC) test system.

In this bipolar HVDC transmission system, positive and negative DC voltages and DC currents
are recorded for analysis. Four DC links designated as L1, L2, L3, and L4 with lengths 300 km, 200 km,
300 km, and 200 km, respectively.
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4. Simulations and Discussion

The four-terminal HVDC test system of Figure 10 is developed in Matlab/Simulink to analyze the
proposed protection algorithm. The parameters of the test system are given in Table A1 of Appendix A.

As the prime objective of this research is to identify, locate, and classify the faults in the MT-HVDC
system. Therefore, three types of DC faults are studied on the four-terminal HVDC test system. These
faults are positive pole to ground (PPG) fault, negative pole to ground (NPG) fault, and pole to pole
(PP) fault, respectively.

The DC faults are considered cancer for MT-HVDC systems as the rapid building of DC fault
current results in the DC-grid collapse. Faults can be established at different locations within the
MT-HVDC grid and thus designated as different cases shown in Table 1.

Table 1. Different case of MT-HVDC test system.

Scenarios Location of Fault Fault Type

1

RS-I

No-fault
RS-II
IS-I
IS-II

2

RS-I PPG fault
RS-II NPG fault
IS-I

PP faultIS-II

3 100 km at L1 from RS-I
PPG fault
NPG fault
PP fault

4 200 km at L1 from RS-I
PPG fault
NPG fault
PP fault

5 100 km at L2 from RS-I
PPG fault
NPG fault
PP fault

6 200 km at L2 from RS-I
PPG fault
NPG fault
PP fault

7 100 km at L3 from RS-II
PPG fault
NPG fault
PP fault

8 200 km at L3 from RS-II
PPG fault
NPG fault
PP fault

9 100 km at L4 from RS-II
PPG fault
NPG fault
PP fault

10 200 km at L4 from RS-II
PPG fault
NPG fault
PP fault

4.1. DC Voltage and DC Current Analysis

Voltage analysis is conducted to shape a theory that any electrical or mechanical change in the
MT-HVDC system can be studied through DC voltages.

Similarly, the current is considered the primary measuring component in the MT-HVDC system
as DC fault current rises rapidly. Thus, without DC current observations, it is impossible to decide or
deploy protective equipment for expensive converter stations.
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Therefore, DC voltages and currents are measured at all VSC stations (RS-I, RS-II, IS-I, IS-II),
as explained in Figure 11.

Figure 11. Pre-fault and post-fault measurements at VSC stations of the HVDC test system under study.

Table 1 provides detail of various scenarios studied under DC voltage and current analysis.
Considering the length of the paper, only four cases are discussed comprehensively. And note that
throughout the manuscript within Figures, blue lines are for positive pole profiles while red lines
indicate negative pole characteristics.

4.1.1. Scenario 1: No-Fault

Under the no-fault case, DC voltages are measured at all four VSC stations, i.e., RS-I, IS-I, RS-II,
and IS-II. Under normal conditions, DC voltage reaches a rated DC-link voltage, i.e., 100 kV (1 pu) in
less than 0.15 ms. Thus, 1 pu is considered a steady-state. It is found from the analysis that the transient
behavior will exist in the system unless there is a charging of DC capacitors and the functioning of
DC filters. Variation of DC voltages and decaying down of transients are shown in Figure 12 at all
four VSCs.

Figure 12. DC voltages measured at (a) RS-I, (b) IS-I, (c) RS-II, and (d) IS-II under normal condition.
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In the no-fault scenario, DC currents are also measured at all VSCs, i.e., RS-I, IS-I, RS-II, and IS-II,
respectively, as shown in Figure 13. Transients decayed down in less than 0.15 ms and thus attained
steady-state. The DC currents are reduced to zero at VSC stations. The protection scheme for no-fault
state identification in the MT-HVDC system is proposed in Figure 14.

Figure 13. DC currents measured at (a) RS-I, (b) IS-I, (c) RS-II, and (d) IS-II under normal condition.

Figure 14. No-fault identification scheme in the MT-HVDC system.
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4.1.2. Scenario 2: DC Fault at RS-I

In this scenario, three types of DC fault events are developed at RS-I (VSC station). Fault events
are PPG, NPG, and PP fault. DC voltages and currents are observed at all four VSC stations.

It is found from the simulations that in the event of PPG fault, positive DC voltages are reduced
to zero with few immediate rising–immediate falling (IRIF) interruptions, as depicted in Figure 15a.
This observation leads to locate the fault. On the other hand, voltages are seen increasing in the
negative pole, almost two times the magnitude of voltages observed under the no-fault condition.
This information provides a clear identification of PPG fault.

Figure 15. (a) DC voltage and (b) DC current at rectifier station (RS)-I PPG fault.

This DC voltage analysis is further supported by the DC current analysis, as shown in Figure 15b.
It is observed from the simulations that the magnitude of initial transients develops in the PPG fault at
the positive pole are approximately three to five times higher than those in no-fault condition.

Hence, dropping DC voltage to zero at the positive pole and high rise magnitudes of transients in
DC currents is the main indication of identifying PPG fault. The protection scheme of identification of
PPG fault is presented in Figure 16.

Figure 16. PPG fault identification scheme in the MT-HVDC test system.
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In the event of NPG fault, DC voltages start rising at the positive pole, as shown in Figure 17a,
almost two times the magnitude of voltage observed under no-fault condition. On the other hand,
DC voltages at the negative pole are reduced to zero with few IRIF interruptions. This information
provides a clear identification of NPG fault.

Figure 17. (a) DC Voltage and (b) DC current profiles at RS-I during NPG fault.

This DC voltage analysis is further backed by the current analysis, as shown in Figure 17b. It is
observed from the simulations that the magnitude of the initial transients developed during NPG fault
at the negative pole is approximately three to five times higher than that in a no-fault state.

Hence, the dropping of DC voltage closed to zero at the negative pole, and high rise magnitudes
of transients in DC currents is the main indication of NPG fault identification. The protection scheme
of identification of NPG fault is given in Figure 18.

Figure 18. NPG fault identification scheme in the MT-HVDC test system.

Thirdly, PP fault is developed at RS-I. It is observed that the magnitude of DC voltages at both
positive and negative poles are dropped down to 0.2 pu as shown in Figure 19a. Transients developed
during PP fault are stabilized in less than 0.15 ms.
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Figure 19. (a) DC voltage and (b) DC current profiles at RS-I during PP fault.

On the other hand, the initial rise in the DC fault current indicates a fault. It is found that the
magnitude of transients during PP fault is increased to 3.0 pu value, an indication of fault presence, as
shown in Figure 19b.

Further, it is also observed that the offshore VSC stations follow the same characteristics, i.e.,
maintaining a DC current of 3 pu on both poles for 0.2 ms. In contrast, current in onshore VSC stations
decays to zero after developing high rise transients in less than 0.1 ms for IS-I and 0.025 ms for IS-II,
respectively. This observation helps to determine the fault location in the case of PP fault. A protection
scheme of identification of PP fault is shown in Figure 20.

Figure 20. PP fault identification scheme in the MT-HVDC test system.

4.1.3. Scenario 3: Fault at 100 km from RS-I at Line L1

When a PPG fault occurs at 100 km from RS-I at line L1, the rapid decay of DC voltage at the
negative pole and rapid rise in DC current at the positive pole is observed in Figure 21a. The increase
in the magnitude of the DC current at the positive pole is more noticeable compared to the rise in DC
current at the negative pole. It is found from the simulations that the rising characteristics of the DC
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current under PPG fault at 100 km from RS-I are the same as the increasing characteristic observed
at PPG fault at RS-I, as shown in Figure 21b. Therefore, more indepth analysis must be carried out,
or more features must be explored to determine the exact location of the PPG fault.

Figure 21. (a) DC Voltage and (b) DC current profiles under PPG fault occurred at 100 km from RS-I on
Line 1.

Similarly, rapid decay in DC voltages at the negative pole and rapid rise of DC fault current at the
negative pole is observed in the case of NPG fault at 100 km from RS-I at L1 as depicted in Figure 22.
This observation possesses a close resemblance to NPG fault at RS-I. Therefore, additional features are
required to determine the exact location of the fault.

Figure 22. (a) DC Voltage and (b) DC current measured under NPG fault occurred at 100 km from RS-I
on Line 1.

Lastly, Pole to pole fault event is created at 100 km from RS-I on line L1. It is observed that both
poles undergo variations in DC voltage and DC currents, as shown in Figure 23. DC voltages are
reduced to a value of 0.2 p.u. It is much less than the value observed at the test system’s no-fault state
but similar to the value observed under PP fault at RS-I. The presence of transients in the DC voltages
provokes in-depth analysis to determine the location of the fault. Similarly, the rise of DC currents at
both poles is an identification of PP fault. The fault location is determined with the proposed SVM
based algorithms, presented in Figures 8 and 9.
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Figure 23. (a) DC Voltage and (b) DC current profiles under PP fault occurred at 100 km from RS-I on
Line 1.

4.1.4. Scenario 4: Fault at 200 Km From RS-I At Line L1

Initially, the event of PPG fault is developed at 200 km from RS-I at line L1. Reduction of DC
voltage to 0 at positive pole and increase of DC voltage to two times the normal value of DC voltage,
as shown in Figure 24a, is the representation of PPG fault according to the algorithm, presented in
Figure 16. Because of fault in the positive line, positive pole current increases rapidly and then decays
to zero, followed by high rise transients. On the other hand, transients in the DC current of the negative
pole are symmetrical about the axis, as shown in Figure 24b.

Figure 24. (a) DC Voltage and (b) DC current measured under PPG fault occurred 200 km from RS-I
Line 1.

DC voltages are increased by two times the normal voltage at the positive pole in the case of
NPG fault at 200 km from RS-I at line L1 as shown in Figure 25a. The DC current at the negative pole
undergoes a rapid increase in the time duration of 0.025 ms, as shown in Figure 25b. Exploration of
additional features is required to determine the exact location of the NPG fault.
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Figure 25. (a) DC Voltage and (b) DC current measured under NPG fault occurred 200 km from RS-I
Line 1.

In the last, during PP fault, an abrupt rise in DC current and decay of DC voltage to 0.2 pu at
both poles are noticed and are employed for identification, as shown in Figure 26. An in-depth study
of transients present in DC voltages and DC currents is used to find the location of the fault in the
MT-HVDC system.

Figure 26. (a) DC Voltage and (b) DC current profiles under PP fault occurred at 200 km from RS-I
Line 1.

As the protection of the MT-HVDC system cannot be completed without the classification of DC
fault. Therefore, based on DC voltage and current values, the fault is classified in terms of PPG fault,
NPG fault, and PP fault. The algorithms of fault classification based on DC voltage and current are
presented in Figures 27 and 28, respectively.
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Figure 27. Fault classification scheme based on the DC voltage in the MT-HVDC test system.
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Figure 28. Fault classification scheme based on DC current in the MT-HVDC test system.

4.2. SVM Algorithm for Fault Location

It is found from the DC voltage and current analysis that faults in MT-HVDC are not only identified
but can also be classified in terms of its types, i.e., PPG fault, NPG fault, and PP fault. However,
the location of the fault requires more exploration of features of DC voltage and current.

In this research, a support vector machine (SVM) is applied to determine the location of the fault,
and it proved from the simulations that SVM offers a precise determination of fault location in the
presence of multi-dimensional data. This technique is memory efficient as SVM learning with short
subsets of training data.
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In this test model, out of total 81, 001 × 17 data values, a sample of 120 × 4 data values is used for
training an SVM. Clear separation is achieved in multi-dimensional data by this proposed algorithm.
Different cases are made, listed in Table 2, to demonstrate the performance of the proposed technique.

Table 2. Different cases for determination of fault location in the MT-HVDC test system.

Scenarios Training Data Testing Data

I

Positive Pole Voltage
Negative Pole Voltage
Positive Pole Current

Negative Pole Current

No-Fault Case
PPG Fault at RS-I

PPG Fault at 100 km from RS-I
PPG Fault at 200 km from RS-I

II

No-Fault Case
NPG Fault at RS-I

NPG Fault at 100 km from RS-I
PPG Fault at 200 km from RS-I

III

No-Fault Case
PP Fault at RS-I

PP Fault at 100 km from RS-I
PP Fault at 200 km from RS-I

SVM is trained with the data of DC voltage and DC currents measured at RS-I. Data samples are
taken between the time intervals of 1.4 ms to 3.4 ms, as shown in Figure 29, to determine the location
of the fault in this proposed test system.

Figure 29. Training values for the SVM algorithm.

After successful training of the algorithm with 100% accuracy, testing is conducted by applying
different cases as described below.

4.2.1. Scenario I

In scenario-I, the trained SVM is tested with the data of DC voltage and current measured at RS-I
to determine the location of PPG fault and no-fault cases, as shown in Figure 30. Piecewise changes
for magnitude are observed in positive pole current Ip and positive pole voltage Vp. These piecewise
changes are employed to determine the location (the no-fault condition at RS-I, PPG fault at RS-I, PPG
fault at 100 km from RS-I, PPG fault at 200 km from RS-I without errors). A similar procedure can also
be adopted for the determination of PPG fault location in lines L2, L3 and L4.

Figure 30. Testing values of the SVM algorithm under PPG fault.



Energies 2020, 13, 6668 24 of 33

This classification technique is further supported with an analysis of standard deviation and
normalization to demonstrate the realization of fault diagnosis through the proposed technique. It is
interesting to note that the fault locations can easily be determined with simpler computations of
relative maxima and minima of standard deviation and normalization. Therefore, dimensionality
reduced data samples are employed for the determination of relative maxima and minima of standard
deviation and normalization as shown in Figures 4 and 5.

4.2.2. Scenario II

In scenario II, the trained SVM is tested with the data of DC voltage and currents measured at RS-I
to determine the location of NPG fault and no-fault cases, as shown in Figure 31. Piecewise changes
are observed for negative pole current In and negative pole voltage Vn. These piecewise changes are
employed to determine fault location (a no-fault state at RS-I, NPG fault at RS-I, NPG fault at 100 km
from RS-I, NPG fault at 200 km from RS-I without errors). A similar method can also be selected for
the determination of NPG fault location in lines L2, L3, and L4. SVM based fault location estimation
for NPG fault is proposed in Figures 6 and 7.

Figure 31. Testing values of the SVM algorithm under NPG fault.

4.2.3. Scenario III

In scenario III, the trained SVM is tested with the data of DC voltage and current measured at
RS-I to determine the location of PP fault and no-fault cases, as shown in Figure 32. Piecewise changes
for currents Ip (positive pole current) and In (negative pole current) and voltages Vp (positive pole
voltage) Vn (negative pole voltage) are observed. These piecewise changes are employed to determine
the location (a no-fault state at RS-I, PP fault at RS-I, PP fault at 100 km from RS-I, PP fault at 200 km
from RS-I without errors). A similar approach can also be employed for the determination of PP
fault location in lines L2, L3, and L4. SVM based fault location estimation for PP fault is presented in
Figures 8 and 9.

Figure 32. Testing values of the SVM algorithm under PP fault.

Table 3 presents the relative maxima and minima values of standard deviation and normalization
based on DC voltage and current. These values are employed in the SVM algorithm for supporting the
classification based on location in the test system. A reduced computational procedure with reduced
featured data samples and a promising attribute with a diagnosis carried out in less than 0.15 ms.
Moreover, it provides an insight that this methodology of fault location can be extended to any number
of VSCs for an MT-HVDC system, provokes its practical implementation.
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Table 3. Relative maxima and minima of standard deviation and normalized DC voltage and current
values for fault location estimation.

Fault State Parameters Standard Deviation (STD) Values Normalized Values

Maximum Minimum Maximum Minimum

No-Fault
Positive Voltage

Negative Voltage
Positive Current

+2.75 −0.80 0.50 +0.26
+0.90 −2.50 −0.24 −0.49
+1.20 −1.65 0.79 +0.52
+2.00 −1.80 −0.57 −0.72

PPG Fault

Positive Voltage
Positive Current

−0.90 −1.80 +0.16 +0.08
+1.80 +1.35 +1.76 +1.54

PPG Fault—100 km
+0.35 −0.15 +0.30 +0.25
−0.15 −0.25 +0.95 +0.89

PPG Fault—200 km
+2.00 +0.70 +0.47 +0.33
−0.60 −0.75 +0.78 +0.67

NPG Fault

Negative Voltage
Negative Current

+1.60 +1.10 −0.03 −0.09
−1.25 −1.90 −1.41 −1.65

NPG Fault—100 km
0.00 −0.50 −0.27 −0.32
0.00 +0.35 −0.84 −0.96

NPG Fault—200 km
−0.75 −1.90 −0.37 −0.47
+0.40 +0.75 −0.70 −0.83

PP Fault

Positive Voltage
Negative Voltage
Positive Current

−0.90 −1.80 +0.16 +0.08
+1.80 +1.35 +1.76 +1.54
+1.60 +1.10 −0.03 −0.09
−1.25 −1.90 −1.41 −1.65

PP Fault—100 km

+0.35 −0.15 +0.30 +0.25
−0.15 −0.25 +0.95 +0.89
0.00 −0.50 −0.27 −0.32
0.00 +0.35 −0.84 −0.96

PP Fault—100 km

+2.00 +0.70 +0.47 +0.33
−0.60 −0.75 +0.78 +0.67
−0.75 −1.90 −0.37 −0.47
+0.40 +0.75 −0.70 −0.83

Moreover, performance evaluation of the proposed algorithm for fault identification, classification,
and the location is supported with the confusion matrix results, as shown in Figure 33. The trained
algorithm is tested with true and predicted classes of data of different fault locations. Accuracy is
proven because of the synchronism between true classes and predicted classes, as shown in Figure 33a.
The fault’s location is determined with a 100% true positive rate, and the predicted location is classified
accurately, depicting the successful implementation within a period of 0.15 ms, as shown in Figure 33b.
The probability of predicting the positive value of fault location is 1, as shown in Figure 33c. Hence,
the probability of discovering the false value of fault is zero, which depicts the excellent performance
of the proposed technique for determining fault location in MT-HVDC systems.

4.3. Proposed Structure of SVM-Based Protection Algorithem

The applied structure of the proposed SVM-based protection technique is shown in Figure 34.
DC voltage and currents are measured. PCA-based features are extracted from these measurements in
order to reduce computational data and time. Relative maxima and minima of PCA-based features are
evaluated and are fed into the trained SVM based model. This model-based relay identifies, classifies,
and locates the fault and sends a trip signal to the corresponding breaker for fault current interruption.
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Figure 33. Confusion matrices based performance evaluation of the proposed technique for fault
identification, classification, and location in MT-HVDC systems.
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4.4. Performance Comparison of Protection Techniques

Reduced computational time, accuracy, and realization with simpler calculations are the convincing
features of this proposed SVM-based protection scheme. A detailed comparison of proposed protection
techniques with different latest protection methods from literature is presented in Table 4.

Figure 34. Applied structure of SVM-based protection technique.

Table 4. Comparison of different protection techniques for MT-HVDC systems.

Parameters Proposed SVM
Technique

Traditional SVM
Technique Traveling Waves Technique

Arrival time
measurement Not required Not required

Required. It is affected by
parameters of the transmission
line

Faults Near or at
Converter Stations

Readily identified
and classified

Not yet proven.
Additional features will
be required to train so
that fault near or at the
converter station could
be identified and
classified.

Not Applicable. Additional
transformations like Fourier and
Wavelet Transform will be
required.

Computational time
Rapidly identified
and classified within
0.15 ms

0.3 s will be required to
identify and classify.

Complex computations increase
computational time. Moreover,
synchronization is required in
two-terminal methods.

Response Time ~0.05 ms Closed to 1 ms Few ms are required to respond
to abnormal conditions

Length of the time
window

Length of 0.2 ms time
window is enough
for fault
identification and
classification

A length of 0.3 s time
window is required.

It varies and depends upon the
detection of the first traveling
wave-head.
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Table 4. Cont.

Parameters Proposed SVM
Technique

Traditional SVM
Technique Traveling Waves Technique

Accuracy

Accuracy is higher
and closed to 100
percent in all types of
DC faults.

Accuracy is higher in the
case of two-terminal
data, and accuracy is
compromised in the case
of single terminal data.

Accuracy is greatly affected by
wave-speed,
non-synchronization,
and sampling frequency.

Complexity Implementation is
easy. Implementation is easy

Complex digital processing
techniques and synchronization
(for two-terminal) is required.

Realization and
Practicality

A simple analysis of
relative maxima and
minima of standard
deviation and
normalization is
done to prove its
realization.

Error analysis is done to
prove its realization

Traveling wave-based relays are
practically developed for
Brasada–Harney transmission
system and Bonneville Power
Administration’s field.
Attenuation and dispersion are
the factors that change the
accuracy of finding fault
location.

5. Additional Discussion and Achievements

As previously explained in the Introduction section, DC grid protection’s existing strategies and
techniques are inaccurate, not robust, impose electrical noise, slow in response, complex calculations,
and require expensive signal processing tools. This means that there exists not a single mature
technique for the protection of HVDC systems. Moreover, it is possible to highlight the novel aspects
of the proposed approach because it differs considerably from the solutions to be found in the existing
literature. Firstly, this technique manages to diagnose the DC fault within a time frame of 0.15 ms.
To the best of the author’s knowledge, this is the shortest time when the fault is diagnosed, as previous
solutions offer comparatively large time for fault diagnosis. Secondly, this technique requires a
simpler computations for relay operation. The magnitude of DC voltage and DC current and maxima
and minima of standard deviation and normalization are the parameters employed for protective
relaying. Indeed, a proposed technique offers reliable and rapid primary protection for DC grids.
Thirdly, the proposed scheme utilizes relative maxima and minima values of standard deviation and
normalization. This information is easier to understand and is aligned with the technical language
of the protection system. Hence an understandable intuition from the human perspective regarding
the decision-making process of protective relays is obtained. Fourthly, maxima and minima values of
standard deviation also serve as a second step of fault identification and fault type-based classification
on DC voltage and DC current values but serve as a first step in the case of fault location. This means
that identification and classification are cross-checked in this proposed algorithm, which depicts its
security and reliability. Moreover, confusion matrix-based prediction analysis proves its efficiency and
enables the research to forecast fault conditions in MT-HVDC systems.

Finally, the feasibility of deploying the proposed fault diagnostic method to a real system is
discussed. Computational complexity is reduced by the extraction of DC voltage and current based
features. This characteristic reduces computational time, resulting in rapid training and testing of
support vector machines. It can be concluded based on simulations that the proposed algorithm is
perfectly suitable for real HVDC systems. Although this proposed algorithm involves capital cost
for hardware development, software development, and data transformation, it can be viewed as a
long term investment enabling reliability and successful integration of renewable energy. In short,
it becomes profitable after a certain number of years because of the secure transfer of green energy.
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6. Conclusions

In this research, a support vector machine-based protection technique is proposed for MT-HVDC
systems. Simulations are developed for a four-terminal HVDC system in Simulink/Matlab under the
no-fault, pole to ground fault, and pole to pole fault conditions and at different locations. The proposed
protection technique offers rapid fault identification, classification, and location within a timeframe of
0.15 ms, enabling circuit breakers to respond accordingly. Computational complexities and training
time of SVM for fault diagnosis are reduced by PCA based features. Therefore, building up large DC
fault currents that could damage the MT-HVDC systems and expensive power electronic circuitries is
evaded by quick fault diagnosis. Moreover, the robustness and abruptness of the proposed protection
algorithm enhance the safety margins of VSC converters. Thus, fewer insulations are required for
converter stations against the rapid rise of DC fault currents under abnormal conditions.

An applied demonstration of the proposed protection algorithm is carried out by the supportive
analysis of relative maxima and minima of standard deviation and normalization. Confusion matrices
confirm its realization with more straightforward computations.
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Nomenclature

xi Input vector
di Class corresponding to the ith input vector.
ξ Slack variable
C User specified parameter
{xi, di}

N
i=1 Training data set

w Weight vector
m0 Dimensions of input space
m f Dimensions of feature space
ϕ(x) Point of transformed feature space
αi Coefficients of the Lagrange multiplier
K(x, xi) Traditional Euclidean inner product of the input vector x with the support vector xi.
p Raw samples
q Process variables
Cov Covariance matrix
ae and ae Projection vectors of a
S0, S1, S2, S3 Indicators
L1, L2, L3 and L4 Line lengths
dq Direct-quadrature
VAC AC Voltage
VDC DC Voltage
AC Alternating Current
ANN Artificial Neural Networks
DC Direct Current
HVDC High Voltage Direct Current
IGBTs Insulated Gate Bipolar Transistors
IRIF Immediate Rising–Immediate Falling
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IS—I and IS—II Inverter Station I and Inverter Station II
ML Machine Learning
MT-HVDC Multi-terminal High Voltage Direct Current
N Normalization
NPG Negative Pole to Ground
PCA Principal Component Analysis
PP Pole to Pole
PPG Positive Pole to Ground
Pu Per Unit
R1 and B1 Relay 1 and DC Breaker 1
RS-I and RS-II Rectifier Station I and Rectifier Station II
SD Standard Deviation
SVM Support Vector Machine
TW Traveling Wave
VSCs Voltage Source Converters

Appendix A

The parameters of the test system are presented here.

Table A1. Parameters of the test system.

Parameters VSC-I VSC-II VSC-III VSC-IV

Function Rectifier (RS-I) Inverter (IS-I) Rectifier (RS-II) Inverter (IS-II)
AC Voltage (kV) 230 230 230 230
DC Voltage (kV) 100 100 100 100
Transformer (MVA) 200 200 200 200
AC Filters (MVAR) 40 40 40 40
Phase Reactor’s
Resistance (Ohms) 0.0075 0.0075 0.0075 0.0075

Phase Reactor’s
Inductance (mH) 23.8 23.8 23.8 23.8

DC Capacitance (µF) 70 70 70 70
3rd Harmonic Filter
Capacitance (µF) 12 12 12 12

3rd Harmonic Filter
Resistance (Ohms) 0.15 0.15 0.15 0.15

3rd Harmonic Filter
Inductance (mH) 47 47 47 47

Smoothing Reactor’s
Resistance (Ohms) 0.025 0.025 0.025 0.025

Smoothing Reactor’s
Inductance (mH) 8.0 8.0 8.0 8.0

Power Electronic
Component IGBTs IGBTs IGBTs IGBTs
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