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Abstract: The paper undertakes the problem of proper structuring of multi-criteria decision support
models. To achieve that, a methodological framework is proposed. The authors’ framework
is the basis for the relevance analysis of individual criteria in any considered decision model.
The formal foundations of the authors’ approach provide a reference set of Multi-Criteria Decision
Analysis (MCDA) methods (TOPSIS, VIKOR, COMET) along with their similarity coefficients
(Spearman correlation coefficients and WS coefficient). In the empirical research, a practical
MCDA-based wind farm location problem was studied. Reference rankings of the decision variants
were obtained, followed by a set of rankings in which particular criteria were excluded. This was
the basis for testing the similarity of the obtained solutions sets, as well as for recommendations in
terms of both indicating the high significance and the possible elimination of individual criteria in the
original model. When carrying out the analyzes, both the positions in the final rankings, as well as
the corresponding values of utility functions of the decision variants were studied. As a result of the
detailed analysis of the obtained results, recommendations were presented in the field of reference
criteria set for the considered decision problem, thus demonstrating the practical usefulness of the
authors’ proposed approach. It should be pointed out that the presented study of criteria relevance is
an important factor for objectification of the multi-criteria decision support processes.

Keywords: MCDA; model objectification; wind farm location problem

1. Introduction

In recent times, decision-making in the field of energy policy has been determined not only by
technological and economic factors [1]. The transfer of the principles of sustainability to the energy
sector results in the inclusion of important groups of pro-environmental factors in the decision-making
process [2] and also implies the assessment of future actions in the social dimension [3]. This results in
the fact that planning or evaluation of energy policies for countries and regions becomes a complex
process [4]. The same is true for the problem of evaluation of individual actions in the area of selection
of type and location of energy sources [5]. The indicated conflicting objectives (technological, economic,
environmental and social) provide the formal background for using Multi-Criteria Decision Analysis
(MCDA) methods in this research area [6]. The current state of the art provides a solid justification
for this fact by showing a strong potential of methods of multi-criteria decision support in the area of
planning and evaluation of energy activities [7–9].

It should be pointed out that the classic paradigm of multi-criteria decision making assumes
that it is a process composed of successive stages [10–12]. Figure 1 shows that the fundamental
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stages are the problem structuring, preference modelling, data aggregation and recommendation
generation [10,13,14]. It is worth recalling that the vital role in this process is played by the
decision-maker and system analyst [15,16]. It should be recalled that objectification of the developed
MCDA models and generating the correct final recommendation require appropriate structuring of the
model by the system analyst [14] and proper selection of the appropriate MCDA method for the given
decision problem [14,16]. The problem of choosing the right MCDA method is current and is addressed
in many works [10,14–17]. The analysis of the literature provides several approaches, guidelines and
frameworks containing algorithms or guidelines for choosing the proper MCDA method for a given
decision-making situation.

Figure 1. The flow chart of the MCDA process.

Nonetheless, from the perspective of the current state of art, there is a visible gap in terms
of the lack of formal guidance to support the structuring stage of a decision problem. It is worth
reminding that at the structuring phase, the task of a decision-maker and/or the system analyst
is to identify a complete set of decision options and a set of criteria for their evaluation [10,14,15].
While the identification of a set of alternatives to a given decision problem is relatively simple (includes
identification non-dominated solutions set in the Pareto terms), defining and proper mapping of the
full set of criteria is a complex process [16,18].

The referential literature-based guidelines contained in the works [10,11,14–16] dictate
scrupulosity in the construction of the criteria set at the stage of the model structuring. In other words,
the set of criteria should be comprehensive yet not redundant [10,15]. These guidelines, although they
are fundamental and commonly used by analysts, do not have formal and algorithmic form. In practice,
this means that the same reference decision-making problems, depending on the assumptions of the
authors of decision models, differ in its structuring. For example, the problems of energy policy
evaluation [19–22], wind farm location (onshore [23–26] or offshore [27–29]), photovoltaic farms
location [30–33] are handled in different ways. The indicated examples significantly differ in terms
of criteria used. In other words, the same decision-making problems are solved with the use of
different sets of criteria. It should be noticed, that in most cases the final form of criteria sets is
justified by the individual research authors on the base of its previous usage in relevant bibliography.
Based on this exemplary analysis, the question arises: what set of criteria for model structuring is the
reference for a given class of decision problems and how to objectify (in the scientific terms) the model
structuring stage.

Additionally, it should be pointed out that the number and form of the family of criteria in the
constructed decision-making model are also significant at the next stage of modelling the decision
maker’s preferences (criteria weighting or evaluation of alternatives) [10,15]. In the methodological
dimension, it is connected to the model complexity, where the number of available criteria translates
into the number of errors (during the transfer of the preferences of the decision-maker to the
resulting model), as well as decreased consistency of experts’ judgments and evaluations in the
final model [11,34,35]. As it was indicated by Saaty [36], the number of criteria is directly related to the
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number of wrong expert judgments, which in practice causes errors in the priorities vector [37] or even
final alternative assessments [38].

The current works in MCDA area [18,39] are mainly focused on mapping the natural imprecision
of the decision makers’ preferences and developing efficient mechanisms for uncertain data handling
and aggregation [40,41]. The fuzzy set theory [42] and some newly developed generalizations of fuzzy
numbers proved to be powerful tools to deal with various forms of uncertainty, being at the same
time the formal foundation for many new MCDA methods [40,43–46]. Additionally, fuzzy numbers
have provided the basis for some new developments of popular methods such as AHP [19,47] and
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [48,49]. It is essential that
the newly developed MCDA methods take into account the imprecision of preferential information and
uncertainty in the model data as well [44], leading to building more accurate models, thus fulfilling the
Roy’s system paradigm [10,15], which require that the developed decision support models are objective.
However, these methods are not free of shortcomings. The adaptations of new fuzzy generalizations
in the new models increase the dimensionality of the decision-making problem, which in turn results
in a significant increase in the computational complexity of the considered problem. Therefore, there is
a visible need to decrease the input data set in terms of the initial set of criteria and number of variants
as it was pointed out in [44–46].

Consequently, the authors propose a formal approach to identifying relevant criteria in a given
multi-criteria decision problem. For this purpose, with the use of multi-criteria methods and dedicated
similarity coefficients, the authors analyze the relevance of the criteria in the decision model for
the problem of inland wind farm location. In this paper, three popular MCDA methods are used.
The literature review indicated the leading popularity of TOPSIS [49–51], however, for methodological
correctness, it was decided to also use VIKOR [52,53] and COMET [54] methods for comparison.

The rest of the paper is organized as follows. Section 2 introduces the topic of wind farm locations.
Section 3 presents the research methods used, including the formal basis of the used MCDA methods
and the mechanisms used to measure the similarity of rankings. Section 4, using the presented research
methods, investigated the relevance of the criteria in the reference windfarm localization problem and
discussed the results. The most important conclusions and the future works are in Section 5.

2. Literature Review

2.1. Renewable Energy Sources

In recent years, an increased interest in renewable energy sources (RES) has been observed [55].
The conditions of such a situation can be found, among others, in the development of technologies
and the search for ways to make the national economies of many countries dependent on conventional
energy sources [56]. Additionally, the progressive decline of natural energy resources, with a
simultaneous increase in their prices on the global market, forces changes in macro and micro strategies
of energy generation [57]. In the face of global energy and climate challenges, renewable energy sources
play an important role in building a safer and more competitive energy system [58]. For example,
in Europe itself, which is the leader in the use of RES, it is assumed that the share of energy from
renewable sources in the total energy consumption will increase to at least 32% in 2030 [59]. Therefore,
the fight against climate change with simultaneous global growth of energy demand implies intensified
efforts to develop new RES technologies [60] as well as their effective use [61]. It is worth noting
that RES have a number of positive technological properties (e.g., low or zero CO2 emission or a
lower degree of production instability and variability compared to conventional energy sources) or
political and economic (independence of countries from energy and fossil fuel imports, creation of new
jobs) [62].

The development of technology and infrastructure, as well as political strategies (e.g., guaranteed
price policy for energy obtained from RES), result in a continuous increase in the use of energy from
RES with a simultaneous decrease in energy production prices [63]. It should be noted that the range
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of RES is wide and constantly growing, and the main types of RES are biomass energy, hydro or
geothermal, solar, wind and marine energy (tidal energy). The basic types of investments using RES
consist of solar, wind, water, geothermal, biofuel or cogeneration plants [64].

The most widespread and at the same time economical and rapidly developing renewable energy
source is wind energy [65]. The development of technology has resulted in a significant reduction of
expenditures on the exploitation of wind energy [66], making it competitive with many conventional
energy production technologies [67]. The essence of wind technology is to convert available energy
from the wind into mechanical or electrical energy by using wind turbines [68]. The best-known types
of wind farm infrastructure are offshore wind farms and onshore wind farms [68]. Onshore wind power
plants are characterized by relatively low investment and maintenance costs and high predictability
of wind parameters [69]. Despite this, currently, offshore wind farms are becoming increasingly
popular [70]. This is due both to the higher force of the wind (at sea and the lower negative impact on
the environment combined with the remoteness of potentially burdensome phenomena related to their
operation (e.g., landscape noise), which could disturb local communities [71].

Renewable energy sources can be used almost anywhere in the world [72]. However, the main
problem is the economically, technologically, ecologically and socially correct justification of the
location and construction of infrastructure using this type of resources [73], e.g., an improperly
located farm can be a source of negative environmental and social impacts [74]. Literature analysis
indicates the possibility of using multi-criteria methods to support decision making in the problem
of localization selection of various types of RES [8]. However, it is extremely important to choose
an appropriate family of criteria, which determine the correctness of the whole decision-making
process [20]. The multiplicity of often conflicting criteria [6] causes the problem to be methodically
reduced to solving the multi-criteria decision making problem [30]. Therefore, an important research
task remains the correct modelling of the structure of this class of decision-making problems [75],
as well as guaranteeing appropriate analytical capabilities in the developed model [24].

2.2. Application MCDA Methods in RES Domain

MCDA methods are widely used in solving RES decision-making problems. This issue is widely
discussed in the literature. Many works concern both the selection or evaluation of RES technologies [6]
themselves, their potential locations [29], as well as the evaluation of political [76], economic [8],
environmental [77] and social [22] aspects or, more broadly, sustainability [7,22,77] of various RES. In this
context, MCDA methods have proven to be a useful research tool not only supporting the process of
assessment and prioritization of alternatives [76] but also providing guidance on how to modify strategies
and actions to maximize the intended purpose of decision support [8]. This fact can be confirmed in
“Literature review” papers, where the authors show the high effectiveness of MCDA methodology in the
domain of RES decision-making problems. For example, the paper [77] contains a complete study on the
use of MCDA methods in the field of RES decision making. The multidimensional meta-analysis analysis
of the use of MCDA methods for the RES domain was done in [7,8,73,76]. Additionally, in work [78], a
meta-analysis of the use of MCDA methods in sustainable energy policy has been performed. Among the
studies, we can also point to the work [6], where a complete analysis of the use of multi-criteria methods
in ”RES in households” domain is included.

The issue of wind farm location is an exemplary one and is widely discussed in the literature [9].
This issue is sometimes related to other decision-making problems [7,79]. State of the art for this
problem can be found in works [9,22,79]. Based on taxonomy of MCDA methods provided in [80] it is
possible to demonstrate the effectiveness of different multi-criteria approaches (American, European
and mixed approaches) in the issues related to the selection and evaluation of wind farm locations [9].
For example, when analyzing the methods of the American MCDA school, one can indicate the
popularity of not only the AHP [81] or TOPSIS [82] methods themselves, but also their hybrids [24] in
the problem of wind farm location. Researchers usually use the AHP method in the process of building
a weights vector, and the final evaluation of decision options is done using the TOPSIS method [24,83].
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Other methods of this group such as BWM or MAIRCA [84] or DEMATEL, ANP and COPRAS [85] are
also used here. An undeniable methodological deficiency of this group of methods is an undesirable
effect of linear substitution of criteria [17], which in practice makes it impossible to realize the so-called
strong sustainability paradigm in the constructed model [29]. However, in practice, this effect is
often minimized by authors of MCDA models, e.g., by introducing threshold values of minimum and
maximum individual criteria [8,24]. As already indicated, the methods originating from the European
school of multi-criteria decision support have shown their high usefulness in building multi-criteria
wind farm location models [79]. The methods of this group, in contrast to the group of methods of the
“American school”, are characterized by a limited effect of linear compensation of criteria, and their
foundations lie in proper reflection of natural imprecision of data and decision maker preferences [17].
From a formal point of view, the “European School” methods use outranking relation. Examples of
their effective use are publications [86–88]. In the publication [86], the ELECTRE-III method was used
in offshore wind power station site selection problems. In contrast, in [87], the ELECTRE-II method
was used in the site selection of wind/solar hybrid power station problem. Other examples of using
MCDA methods of this school include Promethee method [88] and PROSA method [29].

Current methodological challenges in the MCDA area include the correct reflection of
various forms of uncertainty in terms of both model measurement data and the preferences of
decision-makers [89]. Moreover, here we can see a widespread adaptation of MCDA models based
on successive generations of fuzzy numbers in the field of wind farm site selection [90]. For example,
in work [91] fuzzy extensions of AHP and TOPSIS methods were used in onshore wind farm site
selection. In [92] fuzzy extensions of AHP method and cumulative prospect theory were successfully
applied in a similar problem. In the paper [86] ELECTRE-III method under intuitive fuzzy environment
problem was used in a wind power station site selection problem. Choquet integral also under
intuitionistic fuzzy sets was used in the paper [93]. The current state of the art of fuzzy MCDA
methodologies for RES evaluation and site selection can be found in [20]. However, it should be pointed
out that despite the huge potential of developing fuzzy MCDA methods, they cause undesirable,
significant limitations in the size of input models. In particular, it takes the form of the number of
criteria used at one time and evaluated variants, which significantly affects the practical possibilities of
their use in the RES domain [91,93].

The above analysis shows a huge potential of using various MCDA methods in the RES domain,
including wind farm site selection and evaluation. It should be noted that, as indicated by the
authors [7,22], none of the MCDA methods can be considered objectively “better” or “best”, and the
task of the decision-maker/analyst is always to choose the right decision support method for the
problem [94]. This, together with the proper structuring of the problem (identification of decision
options and criteria for their assessment) are essential elements of objectivization of the whole process
of building assessment models and, more broadly, the process of decision support [8].

As indicated in Figure 1, the correct structuring of the decision-making model is ensured by the
proper identification of the family of criteria. Its character should be complete and not excessive [15].
For the considered issue of wind farm location, the identification of reference criteria was based
on literature. As a result of the analysis [7,9,22,24,73,78,81–83,91,93], the following sets of criteria
were identified:

• technical aspects of the wind farm operation,
• spatial aspects of wind farm location,
• economic aspects (in particular those related to the planned costs of investment implementation

and maintenance),
• a group of social factors resulting from the construction and operation of a wind farm,
• ecological aspects of investment,
• a group of environmental factors surrounding a wind farm,
• legal and political aspects related to the construction of wind farms.



Energies 2020, 13, 6548 6 of 40

Within the first group—technical aspects, the authors [24,82,83] identified a number of factors
related to technical efficiency, including power or capacity, as well as the height of installation,
wind energy generator properties (e.g., real and technical availability, micro-sitting, computerized
supervisory), technical risks, power transmission safety, regular wind farm testing, and spare parts
stock. Within the next group, which includes spatial factors [91], the following can be indicated:
distance from the road network, distance from Natura 2000 areas and nature reserves, distance to
urban areas and sand dunes, acceptability in terms of both safety and aesthetics for airports or city
centres, acceptable proximity of transmission lines or distance from specific sites (archaeological sites,
tourism facilities, historical sites) [81,82,91,93]. Another group of economic factors are, of course,
cost of investment together with operational and maintenance cost [22]. In this group, a discount
of tax rate, investment and production incentives or reasonable power pricing program can be
positively indicated [22,78]. The analysis of the group of social factors allows for distinguishing
the following specific criteria: social acceptance, visual impact, potential conflict among entrepreneurs,
policymakers and residents, local benefits; and visual coordination [7,9,73]. Another important
group of factors includes the ecological aspects of investments. The literature studies [22,24,83]
indicate the following criteria here: noise, impact on ecosystems, acceptable in terms of bird habitat,
ecological restoration conduct; energy conservation, carbon reduction effect; environmental ecology
monitoring. Within the next group (environmental factors) the studies [78,81,82] indicate the following
specific criteria: wind power density, annual mean wind speed, peak hours matching, wind occurrence
>5 m, turbulence intensity, wind occurrence >20 m, the geographical distribution of wind speed
frequency or uncertainty of land (geology suitability). The last group of factors are legal and
political aspects related to the construction of wind farms [78]. The following specific criteria can be
indicated here [7,9,78]: regulation for energy safety, energy subsidy policy, wind power concession
program, clean development mechanisms program, other policy supports, or establishment of complete
supply chain.

Of course, it is also easy to demonstrate the impact of other criteria on the final form of the decision
model. Examples include a different assessment of a given technology in the perspective of a given
strategy of a region or country, as well as a different model of financing of RES investments [22,78].
It is also worth noting that the identified criteria are related to wind farms in the land. Identification of
a set of criteria, for the problem of offshore wind farms requires the analysis of different criteria such as
technological (turbine foundation, the possibility of connecting to the power grid) [86], environmental
(e.g., depth and type of seabed) [86] or ecological and social (impact on the marine ecosystem or
fisheries management) [29]. Despite the number of identified criteria, the analysis of the literature
in the area of inland wind farm location shows a different form of MCDA model structuring carried
out by the authors of particular studies. Detailed studies also contained in works [9,29,78,95] also
show a different form of the structuring of individual models. These differences include the same
representation (single-level and hierarchical sets of criteria) and different numbers of evaluation criteria
themselves (differentiated in the range of 5 to 32 criteria in individual models). The difference in the
developed models of decision support results from the fact that the authors of individual studies
assumed different goals and the scope of the built assessment models, which is consistent with the
paradigm of multi-criteria decision support indicated by Roy [15], which requires the construction
of personalized models reflecting the preferences of decision-makers in particular decision-making
situations [94]. Nevertheless, the open research challenge undertaken in this paper is the question
of the completeness and redundancy of the sets of criteria in individual models. In this aspect,
the authors of this paper attempt to search for algorithmic procedures to identify relevant criteria in
the decision model.
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3. Methods

3.1. Conceptual Framework

The problem studied in this paper concerns the objectification of a set of criteria in a given decision
problem. For this purpose, the authors developed a framework (see Figure 2) composed of two basic
methodological elements: (1) a set of reference MCDA methods (TOPSIS, VIKOR, COMET); and (2) a
set of similarity coefficients (Spearman correlation coefficients and WS coefficient). These elements are
the basis for further relevance analysis of individual criteria in a considered MCDA model. In the first
step, a primary ranking (including all the criteria for the given model) was computed, which in further
studies was treated as the reference ranking. Subsequently, using the indicated MCDA methods,
a set of rankings was prepared in which iteratively a single criterion was excluded. This was the
basis for testing the similarity of the obtained solutions to the reference solution, as well as for
the recommendations in terms of both indicating the high significance and possible elimination of
individual criteria of the original model. In the subsequent research steps, the number of criteria
eliminated from the original model was extended to 2 and 3, once again examining the similarities of
the obtained sets of rankings with the reference solution. When carrying out the analysis for reference
points, both the final rankings and utility function values of individual decision variants were taken
into account. As a result of a detailed analysis of the obtained results, recommendations were obtained
regarding the reference criteria set for the decision problem under consideration.

Figure 2. Research framework.

It is worth noting that there is a significant similarity between these three methods—TOPSIS and
VIKOR methods are based on the same assumptions—reference points. They differ only in the adopted
techniques of normalization and data aggregation [96]. The TOPSIS method assumes minimizing the
distance to the ideal solution and maximizing the distance from the anti-ideal solution [51]. In contrast,
the VIKOR method minimizes only the distance to the ideal solution [97], which in practice results
in the desired significant reduction of substitution of individual criteria. In the TOPSIS method,
the normalization is vectorized, while in the VIKOR method, it is linear [96]. The COMET method is
based on the space of so-called characteristic objects. This technique solves the problem of the ranking
reversal paradox, because it compares characteristic objects instead of the alternatives. The principles
of the COMET, TOPSIS and VIKOR methods, as mentioned above, make them a comprehensive group
of methods based on the so-called “reference points”. It is worth noting that TOPSIS does not require
identification of the dependence of component attributes (criteria) of the decision model [50,98,99].
The situation is similar for the COMET method. However, additionally, the method secretly identifies
the weights of attributes and allows to model any form of preference function [100,101]. The above
indications show a great potential of using the whole group of methods indicated. What is important is
that it can be successfully applied even in cases in which we do not yet have full scientific knowledge
about dependencies or independence of model attributes [96,102].
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3.2. The TOPSIS Method

The concept of the TOPSIS method is to specify the distance of the considered objects from the
ideal and anti-ideal solution [99,103,104]. The final effect of the study is a synthetic coefficient which
forms a ranking of the studied objects. The best object is defined as the one with the shortest distance
from the ideal solution and, at the same time, the most considerable distance from the anti-ideal
solution [105,106]. The formal description of the TOPSIS method should be shortly mentioned [50]:

Step 1. Create a decision matrix consisting of n alternatives with the values of criteria k.
Then normalize the decision matrix according to the Equation (1).

rij =
xij√
(∑ x2

ij)
(1)

where xij and rij are the initial and normalized value of the decision matrix.
Step 2. Then create a weighted decision matrix that has previously been normalized according to

the Equation (2).
vij = wjrij (2)

where vij is the value of the weighted normalized decision matrix and wj is the weight for j criterion.
Step 3. Determine the best and worst alternative according to the following Equation (3):

A∗ = {v∗1 , · · · , v∗n}
A′ = {v′1, · · · , v′n}

(3)

where:
v∗j = {max(vij) if j ∈ J; min(vij) if j ∈ J′}

v′j = {min(vij) if j ∈ J; max(vij) if j ∈ J′}

Step 4. Calculate the separation measure from the best and worst alternative for each decision
variant according to the Equation (4).

S∗i =
√

∑ (v∗j − vij)2

S′i =
√

∑ (v∗j − vij)2
(4)

Step 5. Calculate the similarity to the worst condition by equation:

C∗i =
S′i

(S∗i + S′i)
(5)

Step 6. Rank the alternatives by their similarity to the worst state.

3.3. The VIKOR Method

The VIKOR method was developed to solve a discrete decision problem with conflicting criteria.
The technique focuses on ranking and choosing from a set of alternatives, and finding compromise
solutions for the problem [107]. It can be presented in the following steps [108,109]:

Step 1. Create a decision matrix consisting of n alternatives with the values of criteria k.
Then normalize the decision matrix according to the Equation (6).

rij =
xij√
(∑ x2

ij)
(6)

where xij and rij are the initial and normalized value of the decision matrix.
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Step 2. Define ideal A∗ and negative-ideal A− alternatives following the Equation (7):

A∗ =
{(

max fij | j ∈ J
)

or
(
min fij | j ∈ J′

)
| i = 1, 2, · · · , m

}
=
{

f ∗1 , f ∗2 , . . . , f ∗j , . . . f ∗n
}

A− =
{(

min fij | j ∈ J
)

or
(
max fij | j ∈ J′

)
| i = 1, 2, · · · , m

}
=
{

f−1 , f−2 , · · · , f−j , · · · , f−n
} (7)

where
J =

{
j = 1, 2, . . . , n | fij, a larger response is desired}

J′ =
{

j = 1, 2, . . . , n | fij, a smaller response is desired}

Step 3. Determine the utility Si and regret Ri measure using the Equations (8) and (9).

Si =
n

∑
j=1

wj

(
f ∗j − fij

)
/
(

f ∗j − f−j
)

(8)

Ri = max
j

[
wj

(
f ∗j − fij

)
/
(

f ∗j − f−j
)]

(9)

where wj is the weight of the jth criterion.
Step 4. By using the Equation (10) the VIKOR index should be evaluated.

Qi = ν

[
Si − S∗

S− − S∗

]
+ (1− ν)

[
Ri − R∗

R− − R∗

]
(10)

where
S∗ = min

i
Si, S− = max

i
Si

R∗ = min
i

Ri, R− = max
i

Ri

where v is determined as the strategy weighting. In this case, it is equal 0.5.
Step 5. Rank the alternatives, sorting by the values Q, from the minimum value. In this way we

obtained the final rank rank.

3.4. The COMET Method

Many MCDM methods exhibit the rank reversal phenomenon, however, the Characteristic Objects
Method (COMET) is completely free of this problem [110]. In previous works, the accuracy of the
COMET method was verified [102,111]. The formal notation of the COMET method should be briefly
recalled [42,101,112]:

Step 1. Definition of the space of the problem - the expert determines the dimensionality of the
problem by selecting r criteria, C1, C2, . . . , Cr. Then, a set of fuzzy numbers is selected for each criterion
Ci, e.g., {C̃i1, C̃i2, . . . , C̃ici} (11):

C1 =
{

C̃11, C̃12, . . . , C̃1c1

}
C2 =

{
C̃21, C̃22, . . . , C̃2c1

}
· · ·

Cr =
{

C̃r1, C̃r2, . . . , C̃rcr

} (11)

where C1, C2, . . . , Cr are the ordinals of the fuzzy numbers for all criteria.
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Step 2. Generation of the characteristic objects—the characteristic objects (CO) are obtained with
the usage of the Cartesian product of the fuzzy numbers’ cores of all the criteria (12):

CO = 〈C (C1)× C (C2)× · · · × C (Cr)〉 (12)

As a result, an ordered set of all CO is obtained (13):

CO1 = 〈C(C̃11), C(C̃21), . . . , C(C̃r1)〉
CO2 = 〈C(C̃11), C(C̃21), . . . , C(C̃r1)〉

· · ·
COt = 〈C(C̃1c1), C(C̃2c2), . . . , C(C̃rcr )〉

(13)

where t is the count of COs and is equal to (14):

t =
r

∏
i=1

ci (14)

Step 3. Evaluation of the characteristic objects—the expert determines the Matrix of Expert
Judgment (MEJ) by comparing the COs pairwise. The matrix is presented below (15):

MEJ =


α11 α12 · · · α1t
α21 α22 · · · α2t
· · · · · · · · · · · ·
αt1 αt2 · · · αtt

 (15)

where αij is the result of comparing COi and COj by the expert. The function Cexp denotes the mental
judgement function of the expert. It depends solely on the knowledge of the expert. The expert’s
preferences can be presented as (16):

αij =


0.0, fexp (COi) < fexp

(
COj

)
0.5, fexp (COi) = fexp

(
COj

)
1.0, fexp (COi) > fexp

(
COj

) (16)

After the MEJ matrix is prepared, a vertical vector of the Summed Judgments (SJ) is obtained as
follows (17):

SJi =
t

∑
j=1

αij (17)

Eventually, the values of preference are approximated for each characteristic object. As a result,
a vertical vector P is obtained, where the i-th row contains the approximate value of preference for COi.

Step 4. The rule base—each characteristic object and its value of preference is converted to a fuzzy
rule as (18):

IF C
(
C̃1i
)

AND C
(
C̃2i
)

AND . . . THEN Pi (18)

In this way, a complete fuzzy rule base is obtained.
Step 5. Inference and the final ranking—each alternative is presented as a set of crisp numbers,

e.g., Ai = {ai1, ai2, ari}. This set corresponds to the criteria C1, C2, . . . , Cr. Mamdani’s fuzzy inference
method is used to compute the preference of the i-th alternative. The rule base guarantees that
the obtained results are unequivocal. The whole process of the COMET method is presented on
the Figure 3.
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Figure 3. The flow chart of the COMET procedure [113].

3.5. Similarity Coefficients

The similarity coefficients of the rankings allow to compare how different is the order of
variants in both compared rankings. It is important to choose such coefficients that work well in the
decision-making field. The paper uses three such coefficients, i.e., Spearman correlation coefficient (19),
Spearman weighted correlation coefficient (20) and WS similarity coefficients (21) [114]. The simplest
way is to check whether the rankings are equal. The much more common way is to use one of the
coefficients of the dependence for two variables, where the obtained rankings for a set of alternatives
are our variables. The most frequently used symmetrical coefficient is the Spearman’s coefficient.

rs = 1−
6·

n
∑

i=1
d2

i

n·(n2−1)
(19)

where di is defined as the difference between the ranks di = xi − yi and n is the number of elements in
the ranking.

The weighted rank measure of correlation rw is also symmetric coefficient which was shown
in [115]. The equation is presented as (20):

rw = 1−
6·

n
∑

i=1
(xi−yi)

2((N−xi+1)+(N−yi+1))

n·(n3+n2−n−1)
(20)

WS coefficient is a new ranking similarity factor, which is sensitive to significant changes in the
ranking. This new indicator is strongly related to the difference between two rankings on particular
positions. The ranking top has a more significant influence on similarity than the bottom of the
ranking [114]. WS coefficient is asymmetrical, and the equation is presented as (21):

WS = 1−
n
∑

i=1

(
2−xi |xi−yi |

max{|xi−1|,|xi−N|}

)
(21)

4. Results and Discussion

The practical organization of the research experiments presented below is as follows.
The following Section 4.1 presents the similarity analysis of the rankings obtained by the TOPSIS
method, assuming the elimination of any single criterion from the reference model. Similarly, the results
obtained with the VIKOR and COMET methods can be found in Appendices A and B. Section 4.2
includes similarity rank studies as above, assuming the elimination of pairs of criteria from the original
model. Here, too, the TOPSIS method was used. Additionally, the results of using the VIKOR and
COMET methods are included in Appendices C and D. Similarly, the research was extended for the
purposes of possible elimination of 3 criteria from the reference model. The results of the TOPSIS
method are presented in Section 4.3, while the results of the VIKOR and COMET methods are available
in Appendices E and F. A synthetic analysis of the tests performed for all 3 MCDA methods is presented
in Section 4.4. Due to the fact that the analyzes so far used only the positions of decision variants in the
rankings, in the next Section 4.5 a full quantitative analysis of the similarity of rankings was carried
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out, using its value of the utility function instead of the rank of a given decision variant. This made it
possible to more precisely indicate the areas of relevance of the analyzed criteria of the decision model.

The three MCDA methods presented in Section 3 i.e., COMET, TOPSIS and VIKOR have been
utilized to determine the similarity of alternative datasets rankings. For this purpose, an exemplary
wind farm location problem [95] was chosen, from which a set of criteria and a set of alternatives
were taken (see Table 1). The types of criteria are divided equally, with half of them being of cost
type and half of them being the benefit type. The Table 2 presents a set of alternatives and contains
12 decision-making variants. The similarity of the reference ranking of a particular method with the
ranking in which a particular criterion was excluded by means of similarity indicators was examined.
The reference ranking was obtained by assessing the alternatives based on all defined criteria.

Table 1. Selected criteria C1–C10 with names and their units and type [95].

Ci Criterion Unit Preference Direction

C1 yearly amount of energy generated (MWh) Max
C2 average wind speed at the height of 100 m (m/s) Max
C3 distance from power grid connection (km) Min
C4 power grid voltage on the site of connection and its vicinity (kV) Max
C5 distance from the road network (km) Min
C6 location in Natura 2000 protected area [0;1] Min
C7 social acceptance (%) Max
C8 investment cost (PLN) Min
C9 operational costs per year (PLN) Min
C10 profits from generated energy per year (PLN) Max

Table 2. Set of alternatives A1–A12 with their criteria values.

Ai C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

A1 106.78 6.75 2.00 220 6.00 1 52.00 455.50 8.90 36.80
A2 86.37 7.12 3.00 400 10.00 0 20.00 336.50 7.20 29.80
A3 104.85 6.95 60.00 220 7.00 1 60.00 416.00 8.70 36.20
A4 46.60 6.04 1.00 220 3.00 0 50.00 277.00 3.90 16.00
A5 69.18 7.05 33.16 220 8.00 0 35.49 364.79 5.39 33.71
A6 66.48 6.06 26.32 220 6.53 0 34.82 304.02 4.67 27.07
A7 74.48 6.61 48.25 400 4.76 1 44.19 349.45 4.93 28.89
A8 73.67 6.06 19.54 400 3.19 0 46.41 354.65 8.01 21.09
A9 100.58 6.37 39.27 220 8.43 1 22.07 449.42 7.89 17.62

A10 94.81 6.13 50.58 220 4.18 1 21.14 450.88 5.12 17.30
A11 48.93 7.12 21.48 220 5.47 1 55.72 454.71 8.39 19.16
A12 74.75 6.58 7.08 400 9.90 1 26.01 455.17 4.78 18.44

4.1. Rankings Comparison—One Criterion Excluded Case

The rankings of alternatives of particular variants of exclusion criteria and similarity coefficients
of these rankings with the reference ranking for TOPSIS method are placed in Table 3. The reference
ranking in the table is presented as the excluded “None” criterion. The rankings created with the
excluded criteria C1, C2 and C8 have the biggest correlation with the reference ranking among the
considered variants. However, it should be mentioned that the ranking distance created with the
exclusion of criterion C1 is much bigger than in case of exclusion of criterion C4, C9 and C10 from
the ranking process, where C1 has much bigger values of similarity indicators [116]. For the criteria
excluded from the ranking process C10, C7 and C4, the correlation between the resulting ranking and
the reference ranking is high. For the excluded criteria C9 and C5, the correlation between the created
rankings and the reference ranking reflected by the similarity indicators is large. However, there is
also a great difference between the indicators. The WS ratio is much smaller than the rs and rw ratios
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in both cases. The smallest correlation can be seen in the rankings that are created when the C3 and C6

criteria are excluded. These rankings have the greatest distance from the reference ranking.

Table 3. Rankings of alternatives with similarity coefficients and distance for criteria not included in
the ranking process (method: TOPSIS).

Excl. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 WS rw rs Distance

None 5 3 10 1 6 4 9 2 12 11 8 7 1.0000 1.0000 1.0000 0.0000
C10 5 3 11 1 6 4 9 2 12 10 8 7 0.9998 0.9973 0.9930 0.0771
C9 4 3 10 2 6 5 9 1 12 11 8 7 0.9172 0.9784 0.9860 0.0600
C8 5 3 10 1 6 4 9 2 12 11 8 7 1.0000 1.0000 1.0000 0.0145
C7 5 2 11 1 6 4 8 3 12 10 9 7 0.9601 0.9811 0.9790 0.1020
C6 1 4 10 2 9 6 8 3 12 11 7 5 0.8709 0.8327 0.8671 0.2042
C5 5 1 10 2 6 4 9 3 11 12 8 7 0.9016 0.9628 0.9720 0.1180
C4 5 4 10 1 6 3 9 2 12 11 8 7 0.9782 0.9897 0.9930 0.0559
C3 8 5 7 2 4 3 6 1 12 9 10 11 0.8678 0.8165 0.7832 0.2738
C2 5 3 10 1 6 4 9 2 12 11 8 7 1.0000 1.0000 1.0000 0.0037
C1 5 3 10 1 6 4 9 2 12 11 8 7 1.0000 1.0000 1.0000 0.0890

The charts showing relations between the reference ranking and the ranking, excluding one
criterion for the TOPSIS method, are presented using the Figure 4. The x-axis shows the values of the
reference ranking. The y-axis presents the values of the ranking in which a given criterion was excluded.
The highest similarity among the considered rankings with excluded criteria and the reference ranking
is noticeable for the criteria C1, C2 and C8. The alternatives in these rankings do not differ from the
reference ranking. Slightly less similarity between the rankings is visible in charts (a) and (g) for the
criterion excluded from the ranking process C10 and C4. Rankings differ in their alternatives on two
positions. For the criteria, C9 and C7 excluded from the ranking process, the similarity to the reference
ranking differs on four positions and six positions respectively. In the case where the C5 criterion from
the evaluation of alternatives is C5, the obtained ranking compared to the reference ranking differs on
five positions. The lowest similarity among the considered rankings with excluded criteria and the
reference ranking is noticeable for criterion C5 and C3, where the positions in the rankings were the
same for the alternative A8 for criterion C3 and for the alternatives A2, A9 and A8 for the excluded
criterion C5.

4.2. Rankings Comparison—Two Criteria Excluded Case

The rankings of alternatives of particular variants of exclusion pairs of criteria and similarity
coefficients of these rankings with the reference ranking for TOPSIS method are presented in Table 4.
The reference ranking in the table is presented as the excluded “None” criterion. For the rankings
created from excluded criterion pairs C1C2 and C8C2, the similarity with the reference ranking is the
highest. The resulting rankings have a value of 1 for all the similarity coefficients under consideration.
However, in case of the ranking created with the exclusion of criteria pair C1C2 the preference distance
of this ranking with reference ranking preference is greater than in case of rankings created with the
exclusion of criterion pair C10C2, C9C2 and C4C2. Rankings created with excluded criteria pairs C4C2,
C7C2 and C10C2 had slightly less correlation with the reference ranking. For rankings with excluded
criteria pairs C9C2 and C5C2 the difference between the values of similarity ratios rw and rs and WS is
large. It means that according to the WS similarity coefficient, the correlation between the rankings
mentioned above and the reference ranking is small.

On the other hand, according to the rw and rs similarity coefficient, the correlation is large.
The smallest similarity between the reference ranking exists for the rankings from which the C3C2 and
C6C2 criteria pairs are excluded. There is a big difference between the similarity coefficients WS and
rw and the rs coefficient for a ranking that excludes the C3C2 criterion pair. In the case of a ranking that
excludes the C6C2 pair of criteria, all the similarity coefficients under consideration differ significantly.
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Figure 4. Visualizations of the dependence of the reference ranking on rankings without a particular
criterion (method: TOPSIS).

Table 4. Rankings of alternatives with similarity and distance coefficients for criterion pairs not
included in the ranking process (method: TOPSIS).

Excl. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 WS rw rs Distance

None 5 3 10 1 6 4 9 2 12 11 8 7 1.0000 1.0000 1.0000 0.0000
C10C2 5 3 11 1 6 4 9 2 12 10 8 7 0.9998 0.9973 0.9930 0.0808
C9C2 4 3 10 2 6 5 9 1 12 11 8 7 0.9173 0.9785 0.9860 0.0606
C8C2 5 3 10 1 6 4 9 2 12 11 8 7 1.0000 1.0000 1.0000 0.0138
C7C2 5 2 11 1 6 4 8 3 12 10 9 7 0.9602 0.9812 0.9790 0.1037
C6C2 1 4 10 2 9 6 8 3 12 11 7 5 0.8710 0.8327 0.8671 0.2033
C5C2 5 1 10 2 6 4 9 3 11 12 8 7 0.9017 0.9629 0.9720 0.1173
C4C2 5 4 10 1 6 3 9 2 12 11 8 7 0.9783 0.9898 0.9930 0.0573
C3C2 8 5 7 2 4 3 6 1 12 9 10 11 0.8679 0.8166 0.7832 0.2747
C1C2 5 3 10 1 6 4 9 2 12 11 8 7 1.0000 1.0000 1.0000 0.0912
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The graphs showing the dependencies of the rankings in which pairs of criteria were excluded
from the reference chart for the TOPSIS method have been visualized using the Figure 5. Rankings that
have the same alternative positions as the reference chart was created with the criteria pair C8C2 and
C1C2 excluded. The slightly worse similarity to the reference ranking are rankings which exclude
criteria pairs C3C2 and C10C2. These rankings differ from the reference ranking only on two positions.
This means that these criteria do not have too much influence in the ranking process. The least similar
rankings to the reference ranking were created with the exclusion of criterion pairs C3C2 and C6C2.
Most of the alternatives have entirely different positions than in the reference ranking, so the pairs of
these criteria are significant in the ranking process. Rankings that have been created by excluding the
rest of the criteria pairs differ from the reference ranking of four, five or six positions.
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Figure 5. Visualizations of the dependence of a reference ranking on rankings without particular pairs
of criteria (method: TOPSIS).

4.3. Rankings Comparison—Three Criteria Excluded Case

Rankings of alternatives of particular variants of the triple criteria exclusions and similarity
coefficients of these rankings with the reference ranking for TOPSIS method are placed in Table 5.
The reference ranking in the table is presented as the excluded “None” criterion. The highest similarity
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to the reference ranking was achieved by excluding the three criteria C10C2C7. It has the highest values
of similarity indicators WS and rw from the considered rankings with the exclusion of the three criteria.
However, its distance to the reference ranking is much greater than in the case of rankings from which
the three criteria were excluded C9C2C7, C8C2C7, C4C2C7 and C1C2C7. It should also be mentioned
that the rs similarity ratio for a ranking with the three criteria, C10C2C7 does not have the highest value
from the table. The resemblance to the reference ranking with the rankings that were created when the
three criteria C8C2C7, C4C2C7 and C1C2C7 are similar to the resemblance to the reference ranking with
the ranking in which the three criteria C10C2C7 were excluded. However, the WS coefficient value
for this ranking is much higher than the WS coefficient values of other rankings. The big difference
between the WS similarity coefficient and the similarity coefficients rw and rs have rankings that were
created when the three criteria C5C2C7 and C9C2C7 were excluded. The value of the WS coefficient
in these rankings is much smaller than in the case of the rw and rs coefficients. This means that
according to these ratios, there is a strong correlation between these rankings with excluded criteria
and the reference ranking. In case of the rankings from which the three criteria C6C2C7 and C3C2C7

have been excluded, the similarity indicators considered received the lowest values. This means
that the data of the three criteria have a significant influence on the final ranking. Distances for the
rankings from which data of three criteria were excluded were also given the highest values from the
considered rankings.

Table 5. Rankings of alternatives with similarity and distance factors for triad of criteria not included
in the ranking process (method: TOPSIS).

Excl. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 WS rw rs Distance

None 5 3 10 1 6 4 9 2 12 11 8 7 1.0000 1.0000 1.0000 0.0000
C10C2C7 5 3 12 1 6 4 9 2 11 10 8 7 0.9997 0.9935 0.9790 0.1693
C9C2C7 5 2 11 3 6 4 9 1 12 10 8 7 0.8700 0.9618 0.9720 0.1151
C8C2C7 5 2 11 1 6 4 9 3 12 10 8 7 0.9610 0.9860 0.9860 0.1032
C6C2C7 1 3 11 2 9 6 7 4 12 10 8 5 0.8600 0.8139 0.8462 0.2011
C5C2C7 6 1 11 2 5 4 9 3 10 12 8 7 0.8945 0.9500 0.9510 0.2428
C4C2C7 6 2 11 1 5 4 9 3 12 10 8 7 0.9539 0.9779 0.9790 0.1193
C3C2C7 7 5 9 3 4 2 6 1 11 8 12 10 0.8194 0.8031 0.7692 0.3153
C1C2C7 6 3 11 1 5 4 9 2 12 10 8 7 0.9928 0.9892 0.9860 0.1571

In the charts illustrating the relationship between the rankings in which three criteria were
excluded, and the reference chart for the TOPSIS method were visualized using the Figure 6. The values
of reference ranking are on x-axis, and y-axis, there are values of the ranking that was created when
the three criteria were excluded. The most similar to the reference ranking is the ranking that excludes
the three criteria C10C2C7. The three criteria are of low importance for the ranking process. The three
criteria are less similar to the reference ranking and do not include the three criteria C1C2C7, C8C2C7

and C9C2C7. Rankings with the excluded triple criteria C1C2C7 and C8C2C7 differ from the reference
ranking of four positions while ranking with excluded triple criteria C9C2C7 differs from the reference
ranking of five positions. The ranking that excludes the three criteria, C4C2C7 and C5C2C7 has little
similarity to the reference ranking. For the ranking from which the three criteria C4C2C7 have been
excluded differ in six positions, while the ranking from which the criteria C5C2C7 have been excluded
differ in eight positions with a reference ranking. The least similarity to the reference ranking has a
ranking that excludes the three criteria C3C2C7 and C6C2C7. In case of a ranking from which three
criteria C6C2C7 have been excluded, it has three positions as the reference ranking. In contrast, the
ranking from which criteria C3C2C7 have been excluded does not have the same positions as the
reference ranking. It means that the aforementioned three criteria have the most significant influence
on the ranking process.
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Figure 6. Visualizations of the dependence of the reference ranking on rankings without particular
triads of the criterion (method: TOPSIS).

4.4. Results Analysis and Discussion

In order to graphically present the relations of the MCDA methods used and their impact on
WS and rs coefficients values, histograms were used (see Figures 7–9). The Figure 7 chart refers to
rankings in which one given criterion has been excluded. It shows a large difference between the WS
coefficient and the rw coefficient. The rw ratio has a much higher value than the WS ratio for the C9

criterion for COMET and VIKOR methods. On the other hand, in case of the C6 criterion excluded,
the WS ratio has a greater value than the rw ratio for COMET method. The value of the rw similarity
coefficient is greater than the WS similarity coefficient for the C5 criterion for the COMET method and
the VIKOR method. Both coefficients for the TOPSIS method have relatively similar values. The rest of
the considered coefficient values are also similar for COMET and VIKOR methods.
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Figure 7. Similarity coefficients WS and rw for rankings with excluded criteria for the methods under
consideration.

Similarity coefficients relating to the pairs of criteria are presented in the chart Figure 8. In case
of the C9C2 criteria pair the COMET method, and the VIKOR method has a greater value of rw than
WS. Meanwhile, for criterion pair C7C2 a smaller value than rw has a WS similarity factor for VIKOR
method. Whereas for the criteria pair C3C2 a smaller value has the rw ratio for the VIKOR method.
When using COMET for the C6C2 criteria pair, the rw ratio has a smaller value than the WS ratio.
For TOPSIS method the WS similarity factor for criteria pairs C5C2, C4C2 and C1C2 has a greater value
than the rw similarity factor.
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Figure 8. Similarity coefficients of WS and rw for rankings with excluded criterion pairs for the methods
under consideration.

The similarity coefficients for the three criteria have been visualized using the graph on Figure 9.
In the case of the triple criteria, C9C2C7 and C5C2C7, the rw similarity coefficient has a greater value
than the WS coefficient for VIKOR and COMET methods. With three criteria C8C2C7 and C1C2C7

the WS coefficient has a smaller value than the rw coefficient for TOPSIS methods. In the COMET
method, the three criteria C6C2C7 have a greater value of WS than rw. However, for the three criteria
C3C2C7 the WS value is much smaller than the rw value for the COMET method. The value of rw

for the three criteria C4C2C7 is smaller than the value of WS for TOPSIS method. However, for the
C3C2C7 three criteria, the WS similarity factor has a smaller value than the rw similarity factor for the
TOPSIS method.
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Figure 9. Similarity coefficients of WS and rw for rankings with excluded triad criteria for the methods
considered.

4.5. Results Analysis Based on Utility Values of Decision Variants

Contrary to the previous sections, in this section, a quantitative analysis of the result rankings was
carried out based on the resultant utility value of the alternatives in particular rankings. This analysis
is important, as it provides a more complete and valuable insight of the effects of excluding particular
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criteria of the decision-making model. It is worth recalling that in the previous sections, only the place
of alternatives in the rankings was examined. Here, the study was also conducted by excluding 1,
2 and 3 criteria in turn. Figures 10–12 present obtained results.
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Figure 10. Comparison the preferences of alternatives to the MCDA methods under consideration with
the excluded criterion.

On Figure 10, the calculated utility values for alternatives to COMET, VIKOR and TOPSIS for
single exclusion criteria are presented. The "None" criterion means that no criterion is excluded.
The differences between the utility values of alternatives to COMET and TOPSIS methods are minimal.
On the other hand, the differences are large between the utility values of alternatives from VIKOR and
COMET, and between the utility values of alternatives from VIKOR and TOPSIS. The utility values
of alternatives to the VIKOR method are much more valuable than utility values of alternatives to
COMET and TOPSIS. The utility values of alternatives from COMET method with excluded criterion
C2 and non-excluded criterion are almost identical.

On the other hand, the utility values of the alternatives with the excluded criterion C6 are much
higher than those of the non-excluded criterion and the excluded criterion C2. In the case of the VIKOR
method, the differences between the utility values for the excluded criteria are not as significant as for
COMET method. The utility values of alternatives with the excluded criterion C6 have more similar
values to the reference utility values of alternatives than the utility values of alternatives with excluded
criterion C2. In the TOPSIS method, the alternatives’ utility values for the excluded criterion C2 and
the non-excluded criterion are very similar to each other. On the other hand, in the case of utility
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values for the excluded criterion C6, the difference in value with the utility values of alternatives for
the excluded criterion C2 and the non-excluded criterion is massive. The utility values of alternatives
for the excluded criterion C6 have the highest value of the considered preferences.
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Figure 11. Comparison the preferences of alternatives to the MCDA methods under consideration with
the excluded pairs of criteria.

The calculated utility values of alternatives using TOPSIS, VIKOR and COMET methods for
exclusion pairs of criteria have been visualized in the picture Figure 11. The “None” criterion means
that no criterion is excluded. The utility values of the TOPSIS and COMET alternatives are similar.
However, in case of the utility values for the VIKOR and COMET methods, as well as for the VIKOR
and TOPSIS methods, a significant difference is visible because the VIKOR method has much higher
values. The utility values for alternatives to the excluded C7C2 criteria pair and the non-excluded
COMET criteria pair is similar. However, this cannot be said about the C3C2 criteria pair and the
non-excluded criteria pair, because the difference between the utility values is big. The utility values
for the C3C2 and C7C2 criteria pair differ significantly. For the VIKOR method, the utility values
for the C3C2 and the non-excluded criteria pair do not differ significantly. However, criterion pair
C7C2 has a much lower utility value for decision options than criterion pair C3C2 and a non-excluded
criterion pair. For the utility value of decision options for the excluded criteria pair C7C2 and the
non-excluded criteria pair for TOPSIS, the difference is minimal. On the other hand, for the value of
decision option utility values for the excluded criteria pair C3C2 and the non-excluded criteria pair for
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TOPSIS method, the difference is enormous. The excluded criteria pair C3C2 has the highest utility
values for TOPSIS alternatives.
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Figure 12. Comparison the preferences of alternatives to the MCDA methods under consideration with
the excluded triad of criteria.

The utility values of the decision options that were calculated using VIKOR, TOPSIS and COMET
methods for the triple exclusion criteria were presented using Figure 12. The “None” criterion means
that no criterion is excluded. The utility values of alternatives to the three criteria’ cases are similar
for TOPSIS and COMET. In the case of the VIKOR method, the utility values of the decision options
differ significantly from the utility values for the TOPSIS and COMET method. The difference in the
utility values of alternatives between the excluded C8C2C7 and the non-excluded three criteria is much
smaller than between the utility values of the excluded three criteria C6C2C7 and the non-excluded
three for COMET. The reference utility values of the alternatives has the smallest values, while the
utility values for the excluded three criteria C6C2C7 has the highest values. In the case of the VIKOR
method, the utility values for alternatives to the excluded criteria triangle C6C2C7 is the lowest. For the
criteria triangle, C8C2C7, the utility values for decision-making options is the lowest. The difference
between these utility values and the reference utility values of the alternatives is not significant.
The values of utility values of alternatives when excluding the three criteria, C8C2C7 and C6C2C7 are
similar for TOPSIS. The difference between the reference utility values of alternatives and the utility
values of alternatives to the excluded criteria triplets C8C2C7 and C6C2C7 is significant (WS = 0.8713
and rw = 0.8273).
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5. Conclusions

In this paper, we focused on the structuring phase in the MCDA process. In particular, in order
to make the decision support more effective, we examined the relevance of a set of input decision
criteria in the model. Our research was embedded in a reference practical problem of wind farm
location [95]. In the methodological dimension, three MCDA decision-making methods, i.e., COMET,
TOPSIS and VIKOR were used. Using similarity coefficients, in particular Spearmann’s and WS
coefficents, we showed in the analysis that TOPSIS and COMET are most resistant to omitting one
criterion, a pair of criteria and three criteria in the ranking process.

In terms of the analysis of the used criteria, the research showed that the most crucial criterion
for the COMET method is C3 and C6. In the studies conducted to exclude a single criterion, pairs and
triples of criteria, they had the lowest values of similarity coefficients WS, rw and rs with a reference
ranking. On the other hand, the Euclidean distance for the utility values of alternatives calculated
without taking into account these criteria with the reference utility values of alternatives was high.
Therefore, the similarity of the resulting rankings when excluding the criteria mentioned above is
minimal, with the reference ranking for the COMET method.

Concerning the TOPSIS method, the most influential criteria taken into account for single,
double and triple exclusions for the final ranking are C6 criterion and C3 criterion. The resulting
rankings, which excluded these criteria, had the lowest similarity coefficients and these rankings
differed in a large number of positions with a reference ranking. Moreover, the utility values of
the alternatives calculated when excluding these criteria (both single, in pairs and triples) differed
significantly from the reference utility values of the alternatives calculated taking into account all the
defined criteria.

Unlike the COMET and TOPSIS methods, for the VIKOR method, criteria of C4 and C6 have the
most significant impact on positions of the considered alternatives in the ranking. These criteria are
most important because of their similarity coefficients, which are much smaller than the rest of the
criteria considered. Also, the Euclidean distance of utility values of alternatives calculated without
taking into account these criteria with reference utility values of alternatives is considerable. On the
other hand, the positions of alternatives in the ranking with excluded criteria C4 and C6 differ from the
positions of alternatives in the TOPSIS method reference ranking.

Compared to COMET and TOPSIS, in the VIKOR method, the utility values of alternatives
calculated excluding the essential criteria differs significantly less from the reference utility values of
alternatives. In the COMET and TOPSIS method, the utility values distribution of the alternatives
with the exclusion of the least significant single criterion is similar to that of the reference alternatives.
For TOPSIS and COMET, the utility values of alternatives excluding the most significant criterion
(single, pair or triple) are much higher than the reference utility values and the utility values excluding
the least significant criterion. It can be concluded that TOPSIS and COMET similarly evaluate
decision variants.

It should be pointed out that the advisability and effectiveness of the proposed approach in
objectification of decision support models have been demonstrated. The use of MCDA reference
methods, as well as the proposed coefficients is a useful tool in the process of elimination of redundant
and irrelevant criteria in the decision support model. Importantly, the approaches are highly universal
and can be used by analysts each time in the process of building multi-criteria decision models.

Since only the exemplary decision problem is used in the research, the direction of further
research is to build reference models of sets of criteria for the given decision problem. The next step
in improving the efficiency of the proposed approach is its further algorithmization, in which the
applied factor values will describe more analytically the relevance of individual criteria and their sets.
The challenge is to apply this approach for an uncertain data environment with the use of various
fuzzy number generalizations.
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Appendix A

The Table A1 presents values of alternatives for particular rankings of excluded criteria and
similarity coefficients with the distance from the reference ranking for VIKOR method. The reference
ranking in the table is presented as the excluded “None” criterion. The largest total correlation of
the three coefficients with the reference ranking was obtained with the C10 criterion excluded. In a
given ranking, there is a big difference between factors rs and rw and a factor WS. The WS similarity
coefficient is much smaller in the case of the ranking with the excluded criterion C10 than in the case
of the ranking with the excluded criterion C5 and C7. Slightly worse values of similarity coefficients
were achieved in rankings with excluded criteria C2, C5 and C7. In the case of a ranking where the C2

criterion was excluded, the rs similarity coefficient is much higher than the WS similarity coefficient.
In the case of the ranking where criterion C1 has been excluded, the value of similarity coefficient rs is
the same as in the case of the ranking where criterion C10 has been excluded. The difference between
the WS ratio with ratios rw and rs is relatively large. This means that according to indicators rs and rw,
the similarity of the ranking with the reference ranking is much greater than according to indicator WS.
Rankings in which the criterion C9 and C8 is excluded have similar values of correlation indicators.
However, it is much smaller than in the other rankings, and the biggest difference is visible in the
rw value. In the case of the ranking with the excluded criterion C6, the similarity with the reference
ranking is small. The distance with the reference ranking is large. The smallest values of correlation
indicators with the reference ranking are those except for criterion C4. It also has the greatest distance
from the reference ranking. This means that it is the most influential criterion in the VIKOR method.

Table A1. Rankings of alternatives with similarity coefficients and distance for criteria not included in
the ranking process (method: VIKOR).

Excl. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 WS rw rs Distance

None 7 2 8 3 5 7 4 1 12 11 10 9 1.0000 1.0000 1.0000 0.0000
C10 7 3 9 2 5 6 4 1 12 11 10 8 0.9590 0.9803 0.9842 0.1680
C9 3 2 7 6 4 8 6 1 12 11 9 10 0.9308 0.8585 0.9052 0.1848
C8 3 2 7 6 4 8 5 1 12 11 10 9 0.9389 0.8749 0.9071 0.1358
C7 7 2 9 4 3 6 5 1 12 10 11 8 0.9671 0.9599 0.9632 0.2525
C6 4 2 7 5 6 8 1 3 12 11 10 9 0.8476 0.8598 0.9036 0.7379
C5 7 2 8 5 3 6 4 1 11 12 10 9 0.9619 0.9561 0.9632 0.2323
C4 5 3 8 2 1 4 7 6 12 11 9 10 0.6856 0.6834 0.7810 0.7485
C3 8 3 6 5 4 7 2 1 12 11 10 9 0.9247 0.9330 0.9422 0.1868
C2 7 3 8 2 6 5 4 1 12 10 11 9 0.9538 0.9669 0.9737 0.1851
C1 7 3 9 2 4 6 5 1 12 11 10 9 0.9469 0.9736 0.9824 0.1508

The Figure A1 shows charts showing relations between the reference ranking and the ranking,
excluding one criterion for the VIKOR method. The values of the reference ranking are on the x-axis,
and the y-axis, there are values of the ranking that was created when a given criterion was excluded.
If the criterion C10 and C5 is excluded, the difference between the resulting rankings with the reference
ranking is the smallest among the considered variants, because seven alternatives are on the same
positions as in the reference ranking. For the resulting rankings with excluded criteria C1, C2, C3 and
C8 the alternatives were on six positions as in the reference ranking. The rest of the alternatives, on the
other hand, took utterly different positions in the ranking. The similarity of the ranking that emerged
when excluding the C6 criterion with the reference ranking is not as great as the alternatives in the
ranking are only five positions. Excluding the criteria C4, C7 and C9 the rankings do not differ on four
positions. The rankings are the least similar to the reference ranking. This means that the criteria for
evaluating alternatives in the VIKOR method are very influential.
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Figure A1. Visualizations of the dependence of the reference ranking on rankings without a particular
criterion (method: VIKOR).
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Appendix B

The Table A2 presents the rankings of alternatives for particular variants of exclusion criteria and
the similarity coefficients of these rankings with the reference ranking. The reference ranking in the
table is presented as the excluded "None" criterion. The best correlation with the reference ranking is
the ranking with the C2 excluded criterion because the similarity coefficients have a value of 1 and the
distance between preferences was 0.0038. The similarity coefficients for the excluded rankings from
the criteria C10, C8 and C7 were of a slightly worse value. For the value of coefficients for criteria C8

and C7 there is no significant difference, while for criterion C10 the difference between indicators WS
and rw and rs is much bigger than for criteria C8 and C7. For the excluded rankings in the criteria C9

and C5 there is a big difference between the ratios WS and rw and rs. The rw and rs similarity ratios are
much higher than the WS ratio. It means that according to the WS ratio, the correlation between the
reference ranking and the ranking in which the criterion was excluded is much smaller than the rest
of the considered correlation coefficients. The coefficients WS, rw and rs take the same values in case
of correlation between the reference ranking and the ranking with the excluded criterion C1 and C4.
The lowest similarity of the rankings was for the ranking with the criterion C3 and C6 excluded. In the
case of the excluded criterion C3 the indicators WS and rw indicate a much greater correlation between
the rankings than the indicator rs. On the other hand, in case of the excluded criterion C6, the biggest
difference is between the WS indicator and the rw indicator. It is also worth mentioning that in this
criterion, the difference between the value of each indicator is large.

Table A2. Rankings of alternatives with similarity coefficients and distance for criteria not included in
the ranking process (method: COMET).

Excl. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 WS rw rs Distance

None 6 3 10 1 5 4 8 2 12 11 9 7 1.0000 1.0000 1.0000 0.0000
C10 6 3 11 1 5 4 9 2 12 10 8 7 0.9990 0.9924 0.9860 0.0725
C9 5 3 10 2 6 4 9 1 12 11 7 8 0.9201 0.9634 0.9650 0.0599
C8 6 3 10 1 5 4 9 2 12 11 8 7 0.9991 0.9951 0.9930 0.0149
C7 6 3 11 1 5 4 8 2 12 10 9 7 0.9998 0.9973 0.9930 0.0999
C6 1 4 10 2 9 6 7 3 12 11 8 5 0.8657 0.7660 0.8111 0.2432
C5 6 1 10 2 5 4 9 3 11 12 8 7 0.9008 0.9580 0.9650 0.1080
C4 6 4 10 1 5 3 9 2 12 11 8 7 0.9774 0.9849 0.9860 0.0481
C3 8 5 7 2 4 3 6 1 12 9 10 11 0.8772 0.8682 0.8391 0.2137
C2 6 3 10 1 5 4 8 2 12 11 9 7 1.0000 1.0000 1.0000 0.0038
C1 6 4 10 1 5 3 9 2 12 11 8 7 0.9774 0.9849 0.9860 0.0944

Figure A2 shows charts comparing rankings of COMET method. The x-axis is a representation
of the reference ranking, while the y-axis is a representation of the ranking that was calculated by
excluding one criterion. In case of exclusion of criterion C2, there is no difference between the resulting
ranking and the reference ranking. When criterion C8 and C7 is excluded in the process of evaluating
alternatives, the rankings differ on only two positions. If the criterion C10 is excluded, however, the
rankings differ on four positions. Excluding criterion, C4 and C1 the difference in ranking occurs
with alternate pairs A6 and A10 between position 9 and 10 in the ranking, and A1 and A5 between
position 3 and 4. The rest of the ranking positions remain unchanged. A little less similarity between
the reference ranking and the excluded ranking is found for criteria C5 and C9. The lowest similarity
between the reference ranking and the excluded ranking is for criteria C6 and C3. It can be stated that
these criteria have the highest impact during the ranking process, while criterion C2 has the lowest
impact during the COMET method ranking.
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Figure A2. Visualizations of the dependence of the reference ranking on rankings without a particular
criterion (method: COMET).

Appendix C

The Table A3 shows the values of alternatives for each ranking of excluded criterion pairs and
similarity coefficients together with the distance from the reference ranking. The reference ranking
in the table is presented as the excluded “None” criterion. Most of the rankings that were created
with the exclusion of the criterion pairs have significant differences among the values of similarity
indicators. It is difficult to determine which ranking created with the exclusion of criterion pairs has
the highest similarity to the reference ranking. The ranking that was created with the exclusion of
criterion pairs C8C2 has the smallest distance to the reference ranking. However, its value of the WS
ratio referring to the reference ranking is much smaller than in the case of rankings created with the
exclusion of criteria pairs C9C2, C7C2 and C5C2.
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On the other hand, the value of coefficient rw in case of the ranking excluding criteria pairs C8C2

is higher than the values of coefficients for the rankings mentioned above excluding criteria pairs. In
the case of the ranking created with the exclusion of criteria pairs C10C2 the value of the WS coefficient
is similar to the value of the WS coefficient for the ranking with the exclusion of criteria pairs C8C2.
However, the values of the rs and rw similarity indicators have a more considerable value for the
C8C2 ranking with excluded criteria pairs. Rankings that have been created except for criterion pairs
C3C2 and C6C2 have small values of similarity coefficients. This means that their correlation with the
reference ranking is small. It can be seen here that for a ranking with excluded criteria pair C3C2 the
distance with reference ranking preference is much smaller than for a ranking created with excluded
criteria pair C10C2. However, this ranking has higher values of similarity indicators. The smallest
similarity between the reference ranking exists for a ranking that excludes criterion pair C4C2. There is
a big difference between the WS and rr similarity coefficients and the rw ratio. It means that according
to the similarity coefficients WS and rs the ranking with the excluded criteria pair is more similar to
the reference ranking than the rw similarity coefficient.

Table A3. Rankings of alternatives with similarity and distance coefficients for criterion pairs not
included in the ranking process (method: VIKOR).

Excl. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 WS rw rs Distance

None 7 2 8 3 5 7 4 1 12 11 10 9 1.0000 1.0000 1.0000 0.0000
C10C2 8 3 9 2 6 4 5 1 12 10 11 7 0.9424 0.9250 0.9317 0.3640
C9C2 4 2 8 3 7 6 5 1 12 11 10 9 0.9781 0.9406 0.9597 0.2246
C8C2 5 3 9 2 7 6 4 1 12 10 11 8 0.9473 0.9476 0.9562 0.1715
C7C2 7 2 10 3 6 4 5 1 11 9 12 8 0.9821 0.9325 0.9212 0.2856
C6C2 4 5 7 3 8 6 1 2 12 10 11 9 0.8368 0.8201 0.8687 0.5931
C5C2 7 2 9 3 5 4 6 1 12 11 10 8 0.9797 0.9416 0.9562 0.1956
C4C2 5 6 8 4 2 1 7 3 12 9 10 11 0.7474 0.6092 0.7215 0.7406
C3C2 8 5 7 3 6 4 2 1 12 10 11 9 0.8990 0.8835 0.9107 0.2537
C1C2 7 4 9 2 6 3 5 1 12 11 10 8 0.9178 0.8905 0.9247 0.2262

The Figure A3 shows charts showing relations between the reference ranking and the ranking
with the exclusion of criterion pairs for the VIKOR method. The values of the reference ranking are on
the x-axis, and the y-axis, there are values of the ranking that was created when a given criterion pair
was excluded. The most similar to the reference ranking are rankings in which criterion pairs C5C2 and
C9C2 were excluded because more important than distance are rw and WS coefficients. Alternatives in
these rankings are on the same eight positions as in the reference ranking. These rankings are very
similar to the reference ranking. However, the excluded pairs of criteria do not have much influence in
the ranking process. The rest of the rankings from which the given criterion pairs were excluded have
a weak connection with the reference ranking. Most of the alternative positions determined by these
rankings differ from the alternative positions in the reference ranking. The lowest similarity is found in
the rankings from which the criterion pairs C4C2, C6C2, C8C2 and C10C2 were excluded. The positions
of alternatives in rankings where criteria pairs C4C2, C6C2 and C8C2 do not differ on three positions
with a reference ranking. In comparison, the ranking created with the exclusion of criteria pair C10C2

does not differ on only two positions. This means that these criterion pairs have a big influence on the
positions in the ranking of alternatives in the ranking process.
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Figure A3. Visualizations of the dependence of a reference ranking on rankings without particular
pairs of criteria (method: VIKOR).



Energies 2020, 13, 6548 30 of 40

Appendix D

The Table A4 presents the rankings of alternatives for particular variants of exclusion pairs of
criteria and similarity coefficients of these rankings with the reference ranking for COMET method.
The reference ranking in the table is presented as the excluded “None” criterion. The most similar
to the reference ranking were rankings in which criterion pairs C1C2, C10C2, C4C2, C7C2 C8C2 and
C9C2 were excluded. The values of similarity coefficients for these rankings are close to the value
of 1. This means that they do not have much influence on the ranking. Slightly smaller values of
similarity coefficients have rankings with excluded criteria pairs C5C2 and C9C2. However, there is a
big difference between the WS similarity coefficient and the rs and rw similarity coefficients. The WS
ratio has a much smaller value than the rs and rw ratios. This means that according to coefficients
rs and rw the calculated rankings with the above-mentioned criteria excluded are more similar to
the reference rank. However, according to the WS ratio, the calculated rankings with the excluded
criteria are less similar to the reference ranking. The least similarity to the reference ranking is found
in the rankings in which the criterion pairs C3C2 and C6C2 have been excluded. The values of their
similarity coefficients are much smaller to the rest of the rankings with the excluded criteria. It is also
worth mentioning the distance between the preference of the reference and calculated ranking. It is
much larger than in the case of the rest of the rankings with excluded criterion pairs. There is also a
big difference between the similarity coefficients WS and rw and the rs coefficient for a ranking with
excluded criteria pairs C3C2. In the case of a ranking that excludes the C6C2 pair of criteria, all the
similarity coefficients under consideration differ.

Table A4. Rankings of alternatives with similarity and distance coefficients for criterion pairs not
included in the ranking process (method: COMET).

Excl. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 WS rw rs Distance

None 6 3 10 1 5 4 8 2 12 11 9 7 1.0000 1.0000 1.0000 0.0000
C10C2 6 4 11 1 5 3 9 2 12 10 8 7 0.9773 0.9822 0.9790 0.0763
C9C2 5 3 10 2 6 4 9 1 12 11 7 8 0.9201 0.9634 0.9650 0.0604
C8C2 6 3 10 1 5 4 9 2 12 11 8 7 0.9992 0.9952 0.9930 0.0141
C7C2 6 3 11 1 5 4 8 2 12 10 9 7 0.9998 0.9973 0.9930 0.1021
C6C2 1 4 10 2 9 5 7 3 12 11 8 6 0.8749 0.7902 0.8322 0.2421
C5C2 6 1 10 2 5 4 9 3 11 12 8 7 0.9009 0.9580 0.9650 0.1074
C4C2 6 4 10 1 5 3 9 2 12 11 8 7 0.9775 0.9849 0.9860 0.0496
C3C2 8 5 7 2 4 3 6 1 12 9 10 11 0.8773 0.8682 0.8392 0.2148
C1C2 6 4 10 1 5 3 9 2 12 11 8 7 0.9775 0.9849 0.9860 0.0978

Figure A4 shows the charts that illustrate the relationship between the reference ranking and the
ranking that was created with the exclusion of criteria pairs for the COMET method. Rankings that
exclude the C8C2 and C7C2 have the most significant similarity to the reference ranking. The given
criteria pairs also have the least influence on the ranking. The highest impact on the ranking process has
the criterion pairs C6C2 and C3C2. The graphs show that most of the alternatives had a different position
in the calculated rankings by excluding these triples than in the reference ranking. Excluding the
criteria pair C9C2 also disrupts the position of the alternatives in the ranking, but it is not as significant.
In the rest of the rankings shown where criterion pairs were excluded, most of the alternatives were on
the same position as in the reference ranking.
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Figure A4. Visualizations of the dependence of a reference ranking on rankings without particular
pairs of criteria (method: COMET).
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Appendix E

The Table A5 shows the values of alternatives for the individual rankings of the excluded triad of
criteria and similarity coefficients together with the distance from the reference ranking. The reference
ranking in the table is presented as the excluded “None” criterion. The rankings in which the three
criteria C9C2C7 and C8C2C7 are excluded are closest to the reference ranking. The values of their
similarity coefficients are also large. However, the WS coefficient has larger values than the coefficients
rs and rw. Also, the distance to the reference ranking is large, which means that the data of the three
criteria that made the resulting rankings have the least significant impact on the ranking. The rankings
with the three criteria C1C2C7 and C3C2C7 are less similar to a reference ranking. They have smaller
values of similarity coefficients than the rankings in which the three criteria C9C2C7 and C8C2C7 were
excluded. The value of the WS similarity coefficient in these rankings is much higher than the values
of rs and rw. This means that according to the WS coefficient, these rankings have a strong correlation
with the reference ranking. In the case of the ranking created with the exclusion of the three criteria,
C10C2C7 big differences between the values of similarity coefficients can be noticed. The WS coefficient
reaches the highest value, the lower value is reached by the rw coefficient, while the lowest value of the
three considered coefficients for this ranking is reached by the rs coefficient. A small similarity to the
reference ranking exists for the rankings for which the three criteria C5C2C7 and C6C2C7 are excluded.
They have small values of similarity coefficients as well as large distance. This means that they are
important in the process of decision making variants ranking. Three criteria C4C2C7 have the biggest
influence on the ranking process. The value of similarity coefficients is much lower than the rest of the
three criteria and also the distance. The ranking created with the exclusion of these three criteria also
has the smallest similarity to the reference ranking for the VIKOR method.

Table A5. Rankings of alternatives with similarity and distance factors for triad of criteria not included
in the ranking process (method: VIKOR).

Excl. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 WS rw rs Distance

None 7 2 8 3 5 7 4 1 12 11 10 9 1.0000 1.0000 1.0000 0.0000
C10C2C7 9 3 11 2 6 4 5 1 10 8 12 7 0.9398 0.8798 0.8371 0.4478
C9C2C7 6 2 8 3 7 4 5 1 11 10 12 9 0.9778 0.9341 0.9387 0.2958
C8C2C7 7 2 10 3 6 5 4 1 11 9 12 8 0.9912 0.9583 0.9387 0.2907
C6C2C7 6 3 10 4 8 5 1 2 11 9 12 7 0.8730 0.8513 0.8581 0.6261
C5C2C7 8 1 9 4 5 3 6 2 11 10 12 7 0.8922 0.8739 0.8862 0.6177
C4C2C7 6 5 9 4 2 1 7 3 11 8 12 10 0.7731 0.6388 0.7250 0.7972
C3C2C7 8 2 7 5 6 4 3 1 11 9 12 10 0.9536 0.9158 0.9107 0.3371
C1C2C7 8 3 10 2 6 4 5 1 12 9 11 7 0.9418 0.9137 0.9107 0.3063

Through the Figure A5 figure, the charts representing relations between the reference ranking
and the ranking excluding the triple criteria for the VIKOR method are shown. The values of reference
ranking are on x-axis and y-axis; there are values of the ranking that was created when the three criteria
were excluded. Rankings that exclude the three criteria C8C2C7 and C9C2C7 have most of the same
positions as the reference ranking for the three criteria in the VIKOR method. However, there are only
five of these positions, so most of the alternative positions are different. The rest of the considered
rankings from which the three criteria are excluded have less similarity to the reference ranking.
The smallest of these has a ranking that excludes the three criteria C6C2C7 and C4C2C7 because all the
alternative positions are different from the reference ranking. It means that the impact of these three
criteria is enormous on the ranking process, and they are essential in the model.
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Figure A5. Visualizations of the dependence of the reference ranking on rankings without particular
triads of the criterion (method: VIKOR).

Appendix F

The Table A6 presents the rankings of alternatives for individual variants of exclusions of the
three criteria and the similarity coefficients of these rankings with the reference ranking for the COMET
method. The reference ranking in the table is presented as the excluded “None” criterion. The most
similarity of the reference ranking exists with the rankings from which the triad of criteria C1C2C7,
C4C2C7, C8C2C7 and C10C2C7 have been excluded. Similarity indicators for these rankings are close to
value 1. This means that their correlation with the reference ranking is very high. The rankings from
which the three criteria C1C2C7, C4C2C7, C8C2C7 and C10C2C7 also have a much smaller distance to
the reference ranking than the other considered rankings created by the excluded criteria. The distance
of the reference ranking preference with the preference of the ranking determined with the exclusion
of criteria triplets C9C2C7 is much smaller than in the case of rankings that were created with the
exclusion of criteria triplets C1C2C7, C4C2C7 and C10C2C7. However, the value of the WS similarity
ratio for this ranking is much lower than for rankings with excluded triple criteria C1C2C7, C4C2C7

and C10C2C7. Much less similar to the reference ranking has a ranking that excludes the three criteria
C5C2C10. There is also a big difference between the WS similarity coefficient and the rw and rs similarity
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coefficient values. The rw and rs ratios have much higher values for this ranking than the WS ratio.
The smallest similarity of the reference ranking exists with the rankings in which the three criteria
C3C2C7 and C6C2C7 were excluded during the ranking process. These rankings have the smallest
values of similarity indicators in the table. Moreover, their distance is much larger than the rest of the
considered rankings. This means that three of these criteria are very important for the ranking process.

Table A6. Rankings of alternatives with similarity and distance factors for triad of criteria not included
in the ranking process (method: COMET).

Excl. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 WS rw rs Distance

None 6 3 10 1 5 4 8 2 12 11 9 7 1.0000 1.0000 1.0000 0.0000
C10C2C7 6 3 12 1 5 4 8 2 11 10 9 7 0.9997 0.9935 0.9790 0.1662
C9C2C7 6 2 11 3 5 4 8 1 12 10 9 7 0.8700 0.9618 0.9720 0.1146
C8C2C7 6 3 11 1 5 4 8 2 12 10 9 7 0.9998 0.9973 0.9930 0.1020
C6C2C7 1 3 11 2 8 6 7 4 12 10 9 5 0.8592 0.7751 0.8252 0.2332
C5C2C7 6 1 11 2 5 3 8 4 10 12 9 7 0.8688 0.9371 0.9441 0.2269
C4C2C7 6 3 11 1 5 4 8 2 12 10 9 7 0.9998 0.9973 0.9930 0.1154
C3C2C7 7 5 9 3 4 2 6 1 11 8 12 10 0.8276 0.8548 0.8322 0.2648
C1C2C7 6 3 11 1 5 4 8 2 12 10 9 7 0.9998 0.9973 0.9930 0.1654

Diagrams in Figure A6 illustrate the relationship between the reference ranking and the ranking
that was created with the exclusion of the three criteria for the COMET method. The values of the
reference ranking are on the x-axis, and the y-axis, there are values of the ranking that was created
with the exclusion of the three criteria. Of the excluded triple criteria in the ranking process, the most
similar to the reference ranking is the ranking that excludes the triple criteria C1C2C7, C4C2C7 and
C8C2C7. The alternatives in these rankings differ from the reference rankings only on two positions.
The positions in these rankings are also the same. However, the relevance of the three criteria C1C2C7,
C4C2C7 and C8C2C7 in the ranking process is small. Slightly less similar to the reference ranking has a
ranking created with the exclusion of the three criteria C10C2C7. The alternatives in this ranking differ
from the reference ranking on three positions. Most of the positions in the ranking where the three
criteria C9C2C7 are excluded are the same as in the reference ranking. A minority of the same positions
as in the reference ranking are in a ranking where the three criteria C5C2C7 are excluded. The least
similarity to the reference ranking is found in the ranking where the three criteria, C3C2C7 and C6C2C7,
are excluded. This means that these three criteria have the most significant influence on the process of
decision making options ranking.
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Figure A6. Visualizations of the dependence of the reference ranking on rankings without particular
triads of the criterion (method: COMET).
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18. Zavadskas, E.K.; Turskis, Z.; Kildienė, S. State of art surveys of overviews on MCDM/MADM methods.

Technol. Econ. Dev. Econ. 2014, 20, 165–179. [CrossRef]
19. Wang, Y.; Xu, L.; Solangi, Y.A. Strategic renewable energy resources selection for Pakistan: Based on

SWOT-Fuzzy AHP approach. Sustain. Cities Soc. 2020, 52, 101861. [CrossRef]
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80. Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria
method selection: Rule set database and exemplary decision support system implementation blueprints.
Data Brief 2019, 22, 639. [CrossRef] [PubMed]

81. Ali, Y.; Butt, M.; Sabir, M.; Mumtaz, U.; Salman, A. Selection of suitable site in Pakistan for wind power
plant installation using analytic hierarchy process (AHP). J. Control. Decis. 2018, 5, 117–128. [CrossRef]

82. Mohsin, M.; Zhang, J.; Saidur, R.; Sun, H.; Sait, S.M. Economic assessment and ranking of wind power
potential using fuzzy-TOPSIS approach. Environ. Sci. Pollut. Res. 2019, 26, 22494–22511. [CrossRef]

83. Solangi, Y.A.; Tan, Q.; Khan, M.W.A.; Mirjat, N.H.; Ahmed, I. The selection of wind power project location in
the Southeastern Corridor of Pakistan: A factor analysis, AHP, and fuzzy-TOPSIS application. Energies 2018,
11, 1940. [CrossRef]
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