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Abstract: Accurate hysteresis models are necessary for modeling of magnetic components of devices
such as transformers and motors. This study presents a hysteresis model with a convenient analytical
form, based on hypergeometric functions with one free parameter, built upon a class of parameterized
curves. The aim of this work is to explore suitability of the presented model for describing major and
minor loops, as well as to demonstrate improved agreement between experimental and modeled
hysteresis loops. The procedure for generating first order reversal curves is also discussed. The added
parameter, introduced into the model, controls the shape of the model curve, especially near saturation.
It can be adjusted to provide better agreement between measured and model curves. The model
parameters are nonlinearly dependent; therefore, they are determined in a nonlinear curve fitting
procedure. The choice of the initial approximation and a suitable set of constraints for the optimization
procedure are discussed. The inverse of the model function, required to generate first order reversal
curves, cannot be obtained in analytical form. The procedure to calculate the inverse numerically is
presented. Performance of the model is demonstrated and verified on experimental data obtained
from measurements on construction steel sheets and grain-oriented electrical steel samples.

Keywords: hysteresis loop; ferromagnetic materials; modeling

1. Introduction

Whenever a cyclic variation of magnetic field is applied to a ferromagnetic material, the so-called
hysteresis loop is obtained. Usually, symmetric closed curves are considered, cf. Figure 1, yet it
should be mentioned that in some applications it is crucial to predict the shapes of magnetization
curves for arbitrary input signals. The practical importance of hysteresis loop stems from the fact
that it allows one to determine the values of some significant properties of magnetic materials like
remanence induction and coercive field strength (shown in the figure for the limiting (saturating)
loop). Moreover, integration of loop area allows one to determine energy dissipated per cycle and
per unit volume [1]. Therefore, the study of hysteresis phenomenon still attracts the attention of the
engineering community.

The choice of material for a specific application may be facilitated using databases containing
measurement results for different materials. However, the abundance of possible excitation scenarios
makes the use of such libraries prohibitive from the practical point of view; therefore, much attention
is paid to the development of mathematical descriptions of hysteresis loops. Advanced analyses and
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Figure 1. A family of hysteresis loops with different amplitudes for a grain-oriented electrical steel.
Source: Wikimedia Commons, author: Stan Zurek.

A convenient model of hysteresis should be simple to use in calculations, described with a small
set of parameters, and provide a good fit to the experimental data. Various mathematical models have
been developed to describe hysteresis loops, such as the wide-spread Jiles–Atherton (JA) [2–4] and
Preisach formalisms [5–8]. However, parameter determination for the JA model can be complicated,
whereas the Preisach model can be computationally demanding. Significant effort is being invested
in improving the accuracy of hysteresis models. Therefore of special interest are models based on
convenient choice of analytical functions, whose parameters are easily determined. For example,
in [9–12], a hysteresis model based on the hyperbolic tangent function is discussed, whereas, in [13,14],
similar descriptions, involving the arctan function, are presented.

In this paper, we present an improved hysteresis model, based on hypergeometric functions, which
defines a class of parameterized curves suitable for modeling of major and minor hysteresis loops,
as well as first order reversal curves (FORCs). The method for generating FORCs, presented in this
paper, is based on methods described in [15–17], with a modification based on numerical calculation of
the inverse model function. Many authors have explored translation and scaling to generate FORCs
and minor loops, to mention as representative examples Refs. [18–21]. Numerical procedures for
parameter determination and FORC construction, specific to our model, are presented. The good
accuracy of the model is verified on experimental data obtained from measurements on commercially
available steel sheets and grain-oriented electrical steel.

2. Model Description

An essential factor in choosing a good analytical model is how accurately it describes the physical
behavior under the applied magnetic field, when the domain structure changes due to domain wall
motion, pinning, and wall rotation. Starting from a simple model for the magnetic moment of the atom
and the quantum interpretation of spin, the energy of the magnetic dipole is expressed via probabilities;
see, for example [9,22,23]. This approach leads to the model of an anhysteretic magnetization curve
expressed with the hyperbolic tangent function

M = MS tanh
(mH

kBT

)
= MS

e2x
− 1

e2x + 1
= MS

(
1−

2
e2x + 1

)
, (1)

where MS is saturation magnetization, m is magnetic moment, kB is the Boltzmann constant, and T is
temperature. x = mH/kBT is the reduced field strength expressed in dimensionless units.
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Hysteresis loop branches can be constructed by shifting the anhysteretic curve (1) horizontally by
the value of hc, dependent on the coercive field. In this way, only irreversible magnetization occurring
due to domain wall motion is included in the model. Reversible magnetization due to domain rotation
is represented by the term qH, which exhibits an approximately linear dependence on the applied
magnetic field.

It is worth mentioning that the well-known Landau–Lifshitz–Gilbert (LLG) equation can be
used to describe the hysteresis phenomenon with a simplified micromagnetic model that can be
combined with a magnetic circuit simulation [24], yet it requires a relatively long computation time.
Reference [25] points out that some solutions to the LLG equation can be explicitly expressed with
confluent hypergeometric functions, which are also included in the present model.

Analytical hysteresis models based on hyperbolic functions [10] usually depend on physical
parameters such as magnetization at saturation, coercive force, and temperature. Hysteresis loops are
thus mathematically expressed as B = B(H) or M = M(H). We refer the readers to the book [9] for
further details.

Consider the confluent hypergeometric function [26–28]

1F1(a; b; x) =
∞∑

n=0

(a)n

(b)n

xn

n!
(2)

where (a)n = a(a + 1) · · · (a + n− 1) for n > 0 and (a)0 = 1, with (b)n defined in the same way.
For certain combinations of a, b, and x, the hypergeometric function reduces to some of the special

functions. One such case is ex = 1F1(a; a; x) for any arbitrary a. Taking tanh from (1) and replacing
e2x with

1F1(a; 1; 2x) =
∞∑

n=0

(a)n

(n!)2
(2x)n

we get

f (a, x) = 1−
2

1 +1 F1(a; 1; 2x)
(3)

Let us now define
Bupper(H) = Bs f

(
a, (H + hc)τ−1

)
+ qH,

Blower(H) = −Bs f
(
a, (−H + hc)τ−1

)
− qH,

(4)

to describe the descending and ascending branches of hysteresis, respectively, where hc is coercive
force, Bs is saturation magnetic flux density, and τ is the scaling factor. For simplicity, we denote the
model (4) with F(a, H) unless a specific branch is addressed, and, for a = 1, we use the shorthand
notation T(H) = F(1, H). The term Bs f (a, (H + hc)/τ) in (4) is related to irreversible magnetization,
and qH to reversible magnetization. This form is well suited for symmetric major and minor loops.
The constant d can be added to (4) to account for vertical displacement occurring in asymmetric curves
and FORCs, and also to compensate for adjustments needed to make the model curves coincide at
loop tips.

The hysteresis model based on the hyperbolic tangent has a physical explanation, but it does
not include all physical effects occurring in materials. By adjusting the parameter a in (3), the model
curve is adjusted to better represent measured data when the material approaches saturation under
magnetization. As the distance between a and 1 increases, the difference between f (a, x) and the
hyperbolic tangent becomes more prominent, cf. Figure 2. This property of (3) has been shown to lead
to improved agreement between the model and measured data. However, the difference shown in
Figure 2 must be accounted for in the parameter determination procedure.
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3. Parameter Determination

Estimates of the model parameters τ, Bs, hc, q, d can be determined from the measured data;
this method is usually supplemented with a numerical fitting procedure. The quality of the fit can be
assessed by examining numerical indicators such as the relative error of the residual vector expressed
via the Euclidean norm

RV =

√√ n∑
i=1

(F(a, hi) − bi)
2/

√√ n∑
i=1

bi2 (5)

or graphically, by plotting the error expressed as a normalized difference between the model and
experimental data. Here, (hi, bi), i = 1, 2, . . . , n denotes an array of measured data. Curve fitting
involves iterative solving of a non-linear least squares problem using methods such as Newton or
Levenberg–Marquardt. As the process involves complex calculations, i.e., evaluating the Jacobian at
each iteration, a good choice of initial values is important. Wolfram Mathematica software was used
for numerical calculations.

3.1. Choice of the Initial Values

Initial values for the optimization procedure are determined from the physical properties of the
curve in a manner similar to the one described in [10]. Model parameters can be obtained directly
for F(1, H) and then used as initial values in the fitting procedure with the additional parameter a in
F(a, H). Depending on the shape of the curve and the choice of initial parameters, the optimization
procedure may converge to a less than satisfactory stationary point, or not converge at all. If necessary,
the initial values can be adjusted using interactive calculation possibilities of the Mathematica GUI by
the Manipulate function. In this way, it is possible to visually track the effect of parameters on the
model curve and determine constraints for the fitting procedure. From our experience, a reasonable
constraint on the parameter a prevents excess distortion of the model curve, for example:

0.5 ≤ a ≤ 1.4 (6)

3.2. Coincidence Point Adjustment

The symmetrical tanh function alone cannot represent asymmetry in the magnetization and
demagnetization parts of hysteresis. To resolve this, a displacement parameter d is usually added
to the model T(H) to shift the upper and lower branches. An example is presented in Figure 3,
with model parameters hc = 382.4, τ = 272.9, Bs = 0.554, q = 2.17× 10−4, and d = −0.117. This simple
approach cannot be applied to F(a, H) due to the nonlinear dependence of parameters.
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Figure 3. The effect of the displacement parameter d in T(H).

Let us observe the example in Figure 4, where the measured data is approximated with T(H)

for hc = 518.1, τ = 1017.1, Bs = 1.72, q = 3.5× 10−5, and d = −8.6× 10−5. Let us note that the model
T(H) + d provides a good fit for the loop in Figure 3. However, for the loop in Figure 4 the best fit value
of d is practically zero, i.e., d has no favorable influence on the model curve, which visibly deviates
from the measured data. This is a known limitation of the model T(H).
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Figure 4. Measured data modeled with T(H).

On the other hand, the presented model (4) is based on an inherently asymmetrical function
f (a, H) which better describes asymmetric branches. Let us remark that parameter values for F(a, H),
a , 1 cannot simply be carried over from T(H). Instead, they should be used as initial values in a new
optimization procedure, which should be performed on all parameters simultaneously, including a.

Plotting F(a, H) with the same set of parameters as in Figure 4 and some a , 1, the situation
similar to the one in Figure 5 is obtained, where the upper and lower branches are apart by ∆B and
do not coincide at

(
Htip, Btip

)
, Figure 5. To enforce coincidence, Bs is adjusted by introducing the

additional constraint
Bupper

(
Htip

)
= Blower

(
Htip

)
= Btip (7)

which causes Bs to deviate somewhat from its original physical interpretation. Furthermore, additional
constraint is required to limit the deviation, for example

0.8bmax ≤ Bs ≤ 1.2bmax (8)
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Figure 5. F(a, H) for a = 0.715 before the adjustment of coincidence point is applied.

Although at the first sight it may seem that this situation could have been resolved by simply
scaling the saturation value or by shifting the branches by ∆B, the effects of the parameters a, Bs

and d are nonlinearly dependent and as such must be treated simultaneously. Thus, the constraints
(6), (7) and (8) must be introduced into the fitting problem.

With the introduced constraints, a new fitting problem with one additional parameter, a, is formed
and solved. The resulting model curve for a = 0.65, hc = 540.1, τ = 489.8, Bs = 1.53, q = 8.7× 10−5,
and d = 0.63 shows good conformance to experimental data (Figure 6).
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Figure 6. Final result of the fitting procedure with F(a, H), a = 0.65.

The comparison of relative errors and mean relative errors between models is shown in Figure 7
for the upper branch of the loop; the results are symmetrical in H for the lower branch. The model
F(a, H) yields a lower maximum relative error of 4.5% versus 13% for T(H) and a lower mean error of
2% versus 4.5%.
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4. Measurements

Experimental hysteresis data was obtained in a laboratory, at room temperature, using ring
specimens equipped with primary and secondary windings. A principal scheme of the measurement
setup is shown in Figure 8. The value of magnetic field strength H is proportional to current i1 and
the voltage drop u1 on resistor R1. The value of magnetic flux density B is proportional to integrated
voltage induced in the secondary winding of the sample. The values of voltage drop u1 and output
voltage of the integrator are simultaneously sampled on the data acquisition equipment (DAQ) and
stored. The setup excites the sample with magnetic field strength H, generated by the programmable
generator of the control signal. Measurements may be carried out using sinusoidal excitation for
frequencies from 10 Hz to 1 kHz.
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Figure 8. Schematic of the measurement setup.

Measurements were conducted using the measurement setup shown in Figure 9. Excitation for
the primary coil was supplied from the programmable GF-1 function generator. A Tektronix TDS5032
digital oscilloscope was used for simultaneous data acquisition on two channels. Voltage on a precision
1 Ω shunt of negligible inductance, which was connected in series with the primary coil of the toroidal
sample, was sampled on the first channel. Output from the electronic integrator was sampled on the
second channel. Measurements were performed for excitation frequencies from 10Hz, 50Hz up to
450Hz and for current intensities from tens to hundreds of milliamperes. For the purpose of modeling,
we have used the lowest possible frequency in order to avoid the distorting effect of eddy currents
induced in the conductive core material on the shape of hysteresis loop.
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Figure 9. Measurement setup (A—ring sample; B—integrator; C—resistor; D—generator;
E—oscilloscope; F, G—voltmeter).

Sample 1 was a specimen of commercially available 0.4mm steel sheets used for manufacture
of device cases, whereas Sample 2 was a specimen of grain oriented electrical steel (M103-27p), cf.
Figure 10.
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5. Numerical Results

The accuracy and practical suitability of the presented model was tested on experimental data
obtained from laboratory measurements presented in the previous section. Hysteresis data was
obtained by measuring primary current and integrated output voltage from the secondary coil of the
test core, with different excitation currents at a low excitation frequency. Calculations were performed
in Mathematica, using the NonlinearModelFit function.

5.1. Major Loops

The major loop for Sample 1 is shown in Figures 4 and 6, modeled with T(H) and F(a, H)

respectively. Model errors are compared in Figure 7. This example was used to discuss the
parameter determination procedure in Section 3, and the advantages of the presented model are also
discussed there.

The major loop for Sample 2 is shown in Figures 11 and 12, modeled with T(H) and F(a, H)

respectively. Parameter values are hc = 68.75, τ = 5.66, Bs = 1.44, q = 2.5× 10−4, d ≈ 0 for T(H) and
a = 0.52, hc = 70.78, τ = 6.29, Bs = 1.53, q = 1.86× 10−4, d = 0.055 for F(a, H). It can be seen that the
presented model follows the measured data exceptionally well during the magnetization stage of the
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hysteretic cycle. The comparison of relative errors and mean relative errors between the two models
(Figures 11 and 12) is shown in Figure 13. With the mean error of 10%, F(a, H) is clearly better than
T(H) yielding 21%.
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5.2. First Order Reversal Curves

First order reversal curves can be calculated in various ways from the model for the major loop.
We present a technique based on the method established in [17], which in turn is based on earlier
papers [15] and [16]. In [17], hysteresis loops are expressed in terms of magnetizing current versus flux
linkage, im(λ) in the iλ plane. A first order reversal curve is defined as im = f (λ) = F(λ+ x), where
im = F(λ) is the equation of ascending branch of major hysteresis loop and x = X(λ) is a function
describing the displacement of the major branch along the λ axis. To apply the considered method to
the model (4), formulas must be applicable in the HB plane.

A first order reversal curve is generated between an arbitrary starting point on the descending
major branch and the positive loop tip (Figure 14). The curve is obtained by displacing the major
branch by an amount expressed with the function

X(b) =
1
2

x1

(
1−

(
b− b1

Btip − b1

)p

+

( Btip − b
Btip − b1

)w)
. (9)

where p = 1−αk, w = 1+ βk, k =
(
Btip + b

)(
Btip + b1

)
B−2

tip . Parameters α and β depend on ferromagnetic
material and can be adjusted to influence the slope of the magnetic path. Here α = 0.1 and β = 0.3.
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For a chosen starting point 1 with coordinates (h1, b1), the value of the parameter x1 is calculated as the
difference x1 =

∣∣∣Blower(h1)−Bupper(h1)
∣∣∣. It represents the initial displacement between points 1′ and 1.

An arbitrary point P on the reversal curve is calculated as

P =
(
B−1

lower(b−X(b)), b
)

for b ∈
[
b1, Btip

]
. Since the ascending branch in the model (4) is expressed with Blower(H), the inverse

function H = B−1
lower(B) is needed for computation. Analytical form of the inverse hypergeometric

function is not feasible, therefore one must resort to numerical computation.
The value of the inverse function is computed by numerically solving the equation Blower(h) = b0

for any given value b0 = b − X(b). The initial value h0 for the root-finding method is chosen as
follows. The hysteresis branch is approximated with several linear segments, constructed by a linear
fit. The value h0 is obtained from the inverse of the closest linear segment (Figure 15). The root-finding
method then calculates the numerical solution hn in n iterations, which is taken as the value of the
inverse B−1

lower. Thanks to the shape of hysteresis branches, convergence conditions for the iterative
method are satisfied for all values of b0. In our experiments, using five linear segments (Figure 15),
the iterative method took an average of 3.6 iterations to calculate and plot B−1

lower.
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5.3. Minor Loops

One of the important properties of hysteresis models is the ability of the model to represent minor
loops. There are various approaches to minor loop construction, e.g., by shifting and scaling major
loop branches and adjusting the loop tips. Several minor loops for Sample 1, approximated by T(H)

and F(a, H) are shown in Figures 16 and 17, respectively. Comparing relative errors (RV) as the minor
loops approach the major loop, advantage of the model (4) becomes more pronounced (Figure 17).
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Figure 17. Minor loops for Sample 1 approximated with F(a, H). Comparison of errors obtained with
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6. Conclusions

By employing model curves based on a family of parameterized hypergeometric functions,
a more accurate hysteresis model with one free parameter is constructed. The presented model has
a convenient analytical form that makes it suitable for practical applications. The conditions for
parameter determination using a nonlinear fitting procedure are discussed, as well as the applied
modification of the method for generating first order reversal curves. Using experimental data, it is
shown that the model can be used with good accuracy to represent major and minor loops, as well as
simulate first order reversal curves.

The ease of use and the flexibility of simple analytical T(x) model is retained in the case of the
extended description, based on hypergeometric functions with a single free parameter. The generalized
model is able to describe both major and minor loops of representative soft magnetic materials
accurately. This fact is important from the practical point of view, since the examined description
is much simpler in implementation than the Jiles-Atherton or Preisach models. The application of
hypergeometric functions allows one to consider different classes of magnetic materials. Since the
hypergeometric function may be reduced to hyperbolic tangent in the limiting case and the description
based on hyperbolic tangent i.e., the T(x) model is particularly suited for materials with strong uni-axial
anisotropy, we believe that our generalized model may represent soft magnetic materials with differing
anisotropy level. The examination of physical meaning of hypergeometric series shall be the subject of
forthcoming research.
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14. Milovanović, A.; Koprivica, B. Mathematical Model of Major Hysteresis Loop and Transient Magnetizations.

Electromagnetics 2015, 35, 155–166. [CrossRef]
15. Talukdar, S.R.; Bailey, J.R. Hysteresis model for system studies. IEEE Trans. Power Appl. Syst. 1976,

95, 1429–1434. [CrossRef]
16. Guerra, F.; Mota, W.S. Current transformer model. IEEE Trans. Power Deliv. 2007, 22, 187–194. [CrossRef]
17. Faiz, J.; Saffari, S. A New Technique for Modeling Hysteresis Phenomenon in Soft Magnetic Materials.

Electromagnetics 2010, 30, 376–401. [CrossRef]
18. Zirka, S.E.; Moroz, Y.I. Hysteresis modeling based on transplantation. IEEE Trans. Magn. 1995, 31, 3509–3511.

[CrossRef]
19. Zirka, S.E.; Moroz, Y.I. Hysteresis modeling based on similarity. IEEE Trans. Magn. 1999, 35, 2090–2096.

[CrossRef]
20. Heslop, D.; Muxworthy, A.R. Aspects of calculating first-order reversal curve distributions.

J. Magn. Magn. Mater. 2005, 288, 155–167. [CrossRef]
21. Chwastek, K. Higher order reversal curves in some hysteresis models. Arch. Electr. Eng. 2012, 61, 455–470.

[CrossRef]
22. O’Handley, R.C. Modern Magnetic Materials: Principles and Applications; John Wiley & Sons: New York, NY,

USA, 1999.
23. Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; Wiley-IEEE Press: Hoboken, NJ, USA, 2008.
24. Tanaka, H.; Nakamura, K.; Ichinokura, O. Magnetic Circuit Model Considering Magnetic Hysteresis.

Electr. Eng. Jpn. 2015, 192, 11–18. [CrossRef]
25. Gutiérrez, S.; de Laire, A. Self-similar shrinkers of the one-dimensional Landau–Lifshitz–Gilbert equation.

J. Evol. Equ. 2020, 20, 1–26. [CrossRef]
26. Beteman, H.; Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions;

McGraw-Hill: New York, NY, USA, 1953.
27. Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended Hypergeometric and Confluent

Hypergeometric Functions. Appl. Math. Comput. 2004, 159, 589–602. [CrossRef]

http://dx.doi.org/10.1103/PhysRev.46.526
http://dx.doi.org/10.1016/0304-8853(86)90066-1
http://dx.doi.org/10.3390/en10040480
http://dx.doi.org/10.3390/en13081865
http://dx.doi.org/10.1007/BF01349418
http://dx.doi.org/10.3390/ma12203384
http://dx.doi.org/10.3390/ma13112561
http://dx.doi.org/10.1108/EUM0000000005771
http://dx.doi.org/10.1109/TMAG.2015.2406299
http://dx.doi.org/10.3390/en13061491
http://dx.doi.org/10.3390/s130911539
http://dx.doi.org/10.1080/02726343.2015.1005202
http://dx.doi.org/10.1109/T-PAS.1976.32238
http://dx.doi.org/10.1109/TPWRD.2006.887092
http://dx.doi.org/10.1080/02726341003712657
http://dx.doi.org/10.1109/20.489552
http://dx.doi.org/10.1109/20.774177
http://dx.doi.org/10.1016/j.jmmm.2004.09.002
http://dx.doi.org/10.2478/v10171-012-0036-9
http://dx.doi.org/10.1002/eej.22733
http://dx.doi.org/10.1007/s00028-020-00589-8
http://dx.doi.org/10.1016/j.amc.2003.09.017


Energies 2020, 13, 6500 14 of 14

28. Bohra, N.; Ravichandran, V. On confluent hypergeometric functions and generalized Bessel functions.
Anal. Math. 2017, 43, 533–545. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10476-017-0203-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Model Description 
	Parameter Determination 
	Choice of the Initial Values 
	Coincidence Point Adjustment 

	Measurements 
	Numerical Results 
	Major Loops 
	First Order Reversal Curves 
	Minor Loops 

	Conclusions 
	References

