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Abstract: Large lifting equipment is used regularly in the maintenance operations of chemical plant
installations, where safety controls must be carried out to ensure the safety of lifting operations.
This paper presents a convolutional neural network (CNN) methodology, based on the PyTorch
framework, to identify unsafe behavior among lifting operation drivers, specifically, by collecting
22,352 images of equipment lifting operations over a certain time period in a chemical plant. The
lifting drivers’ behavior was divided into eight categories, and a ResNet50 network model was
selected to identify the drivers’ behavior in the pictures. The results show that the proposed ResNet50
network model based on transfer learning achieves a 99.6% accuracy rate, a 99% recall rate and a
99% F1 value for the expected behaviors of eight lifting operation drivers. This knowledge regarding
unsafe behavior in the chemical industry provides a new perspective for preventing safety accidents
caused by the dangerous behaviors of lifting operation drivers.

Keywords: unsafe driver behavior; transfer learning; behavior recognition; chemical operations

1. Introduction

Owing to its rapid development, the chemical industry has become a large-scale
operation, with professional management and advanced, large-scale chemical equipment.
However, safety accidents often occur during the lifting of large chemical equipment,
where the large diameter and weight of chemical equipment can result in many loopholes.
The safety problems associated with large chemical equipment lifting operations can be
classified into two main categories: one is caused by objective unforeseen circumstances
and the other is caused by human irregularities. Note that the unsafe behavior of personnel
is known to be the main reason for lifting accidents, according to the “4M” theory of
lifting accidents. The traditional safety management of chemical operations relies on
human resources for patrol inspection. There is less research on accidents caused by
the unsafe behavior of drivers carrying out lifting operations. This paper examines the
unsafe behaviors of drivers performing lifting operations, which is very important for
understanding the causes of such accidents.

In recent years, the use of computer technology for the identification of unsafe be-
havior has become a mainstream in research. Li et al. [1] proposed a deep learning-based
detection method for the detection and identification of personal protective equipment
(PPE), achieving an accuracy of 0.9467 in an experimental scenario by model training.
Zhao et al. [2] proposed a deep learning approach to build HAZOP knowledge graphs
using deep neural networks with an accuracy of 90.75, a recall of 91.53 and an F1 score
of 91.14. Ding et al. [3] proposed a new hybrid model, combining a convolutional neural
network (CNN) and long short-term memory (LSTM) for automatic recognition of workers’
unsafe behaviors. Wu et al. [4] aimed to develop a blockchain-enabled framework to ensure
the effectiveness of on-site safety inspection of tower cranes (OSITC). Guo [5] developed
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a skeleton-based real-time recognition method. The method identifies unsafe behaviors
by reducing dynamic motion to static states. Zou [6] proposed a new method by which to
identify different driving behaviors based on EEG data with an average accuracy of 80.6%.
Wang et al. [7] proposed a hierarchical clustering method and an improved “Apriori” algo-
rithm to identify unsafe driver behavior. [8–13] The above research validates the feasibility
of deep learning methods for the problem of identifying unsafe behavior of people, but
there are various detection problems in the actual identification situations.

In the actual recognition situation, using convolutional neural networks to recognize
unsafe behavior during lifting operations suffers from a high rate of detection error, low
accuracy and unstable data acquisition. In this paper, we propose a migration learning
approach, where a pre-trained network model is used. Specifically, the ImageNet dataset is
used to adjust the parameters, changing the output layer for classification, and using the
state-farm driver behavior dataset and a self-collected driver behavior dataset from lifting
operations to build a new dataset for experimentation, convolution and classification of
the pre-processed images of unsafe driver behavior for the final identification of unsafe
driver behavior during lifting operations. The method outperforms other CNN models, in
terms of accuracy and precision, and can effectively identify the unsafe behaviors of drivers
during chemical crane operation, providing a new method for the identification of unsafe
driver behaviors.

The rest of this paper is organized as follows: Section 2 briefly describes the back-
ground to chemical lifting operations and transfer learning theory. Section 3 describes the
recognition process for crane drivers behaviors based on convolutional neural networks,
where the construction and pre-processing of datasets for the training of models are evalu-
ated. Section 4 introduces the principles of transfer learning and examines the effects of
transfer learning; it also compares the effects of each network model, where it is shown that
the migration learning-based ResNet50 network model has high accuracy in classifying and
identifying the behavior of drivers in lifting operations. Section 5 gives the conclusions.

2. Background to Chemical Lifting Operations and Principles of Transfer Learning

As the scale of petrochemical construction continues to expand, [14–16] the key equip-
ment used in various projects is developing in the direction of extra heavy and extra large.
Common lifting methods for large equipment, i.e., lifting with heavy machinery, masts and
hydraulic devices, can be divided into the following two categories. First, h equipment,
represented by towers and vessels. This type of equipment is large, high and heavy and the
operations are difficult due to the large working space and high lifting capacity. Second,
highly flexible structures, represented by flares, exhausts, etc. This type of equipment has a
high length to slenderness ratio, low stiffness and poor structural stability. Vertical working
space is required for lifting, and equipment is prone to deformation and instability during
the lifting process. From the above key engineering equipment, it can be seen that the trend
in lifting equipment is towards the heavy and the large. With the continuous improvement
in lifting capacity the growing prevalence of increasingly large lifting projects and has
become the main development trend for lifting technology. As a result, [17] there are
increased demands for lifting technology and for the safe management of lifting operations.

Transfer learning is a machine learning method that takes existing knowledge and
solves it for different but similar domain problems. In this paper [18–20], based on the
transfer learning theory, we first pre-train the model on a large-scale dataset in a related
domain, and then extract the weights and image features of the pre-trained model for
initialization in the training process of the new small sample dataset. The model is then
fine-tuned using a stochastic gradient descent algorithm. The larger and more complex the
migration learning dataset, the more the model needs to be retrained. Migration learning
works best when we use a dataset smaller than the original pre-trained model. Using a
transfer learning model in Pytorch means choosing which layers to freeze and which ones
to unfreeze. Freezing the model means that PyTorch retains the parameters (weights) in
the specified layer. Unfreezing the model means that the specified layers are available
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for training to make their weights trainable. After we have finished training the chosen
pre-trained model layer, we can save the newly trained weights for later use.

3. Identification of Driver’s Operational Behavior

In order to identify the unsafe behavior of drivers in chemical lifting operations, we
propose a migration learning-based ResNet50 network model using the convolutional neu-
ral network approach (CNN) with the PyTorch framework. The ResNet50 network model
was built to identify the operational behavior of crane operators. Note that convolutional
neural networks suffer low accuracy and high error rates for unsafe behavior recognition.
Nevertheless, we proposed a pre-trained network model to adjust the parameters, where a
new dataset for detection was constructed. The proposed method significantly improves
recognition rate and accuracy rate. The framework of the behavioral recognition method
for drivers in lifting operations is given in Figure 1.
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3.1. Construction of the Dataset

With the popularization and broad application of video surveillance, collection speeds,
processing capacity and transmission speeds of information have been greatly improved,
which provides an excellent data source for collecting images of lifting operation drivers’
behavior. This paper collected data by intercepting surveillance video streams and crawler
technology. The data were collected from the driver while the lifting operation at the
chemical plant was in progress, and the preliminary data collection was completed by
acquiring images through video surveillance.

3.2. Convolutional Neural Network (CNN) Principle

A neural network is a collection of connected units with input and output mechanisms,
each of which has associated weights. Backpropagation is “backpropagation of errors”
and has strong applicability to training neural networks. Backpropagation benefits deep
neural networks dealing with error-prone projects, such as image recognition. A schematic
diagram of the principle of convolutional neural networks is shown in Figure 2 below.
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1. The forward propagation formula is used to obtain the activation value of each
output layer.

The input and output of the hidden layer are shown in Equations (1) and (2):

netj =
m

∑
i=0

VjiXi (1)

Hj = f(netj) (2)

where: netj is the input of the hidden layer; Vji is the weight of the ith neuron of the input
layer connected to the jth neuron of the hidden layer; Xi is the output of the ith neuron of
the input layer; and Hj is the jth neuron of the hidden layer. The result of each neuron, f, is
the activation function.

The inputs and outputs of the output layer are shown in Equations (3) and (4):

netk =
n

∑
j=0

WkjHj (3)

Ok = f(netk) (4)

where: netk is the input of the kth neuron of the output layer and Wkj is the weight of the
jth neuron of the hidden layer connected to the kth neuron of the output layer; the result is
the kth neuron of the Ok output layer.

2. Reverse propagation

The cost function is shown in Equation (5):

E =
1
2

l

∑
k=1

(Yk −Ok)
2 (5)

where E is the cost function and Yk is the desired output of the kth neuron in the
output layer.

The output and hidden layers δ (residuals) are shown in Equations (6) and (7):

δO
k = −(Yk −Ok) · f′(netk) (6)
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δH
j =

l

∑
k=1

δO
k ·Wkjf

′(netj
)

(7)

where: δo
k is the residual of the kth neuron in the output layer and δH

j is the residual of the
jth neuron of the hidden layer.

The weight increments are calculated from the input layer to the hidden layer and
from the hidden layer to the output layer, as shown in Equations (8) and (9):

∆Wkj = −η
∂E

∂Wkj
= ηδO

k Hj (8)

∆Vji = −η
∂E

∂Vji
= ηδH

j Xi (9)

where: ∆Wkj is the weight increment of the jth neuron of the hidden layer connected to the
kth neuron of the output layer; ∆Vji is the weight increment of the ith neuron of the input
layer connected to the jth neuron of the hidden layer; and ηis the gradient descent step size.

The final weights are obtained as shown in Equations (10) and (11):

Wkj = Wkj + ∆Wkj (10)

Vji = Vji + ∆Vji (11)

where: Wkj is the weight of the jth neuron of the hidden layer connected to the kth neuron
of the output layer and Vji is the weight of the ith neuron of the input layer connected to
the jth neuron of the hidden layer. The bias term is H0 = X0 = 1.

In the process of forwarding propagation, the value of each node in the network is
calculated, where the backpropagation process uses these values as well as the chain rule for
derivatives in combination with dynamic programming. Repetitive operations are avoided
to improve gradient calculation speed. As a result, it is more conducive to the gradient to
perform stochastic gradient descent for updating the neural network parameters.

3.3. Dataset Preprocessing

When the behavioral classification is based on the accident causation theory, and other
classification bases, it tends to result in fewer classification categories, which eventually
leads to a high rate of detection errors. In this paper, we performed the behavioral classifi-
cation according to human behavior. The collected 102,150 images of the various driver
behaviors were classified and divided into eight categories according to the recognition
target, namely, everyday driving, i.e., looking at the phone (right hand), looking at the
phone (left hand), calling (right hand), calling (left hand), adjusting meters, holding things
in the back seat, and holding glasses. An example image of tower crane driver behavior is
shown in Figure 3.

3.4. ResNet50 Structure

Theoretically, the ability to express is more vital with deeper networks. However,
network degradation, gradient disappearance, and explosion problems occurs more often
with an increasing number of learning layers. This problem can be solved by the standard
initialization and regularization layers, which ensures that dozens of layers of the network
can converge. However, it also suffers from the issue of network degradation, gradient
disappearance, and explosion. Therefore, this paper used ResNet (residual network),
which introduces jump connections, enabling an unimpeded flow of information from
the previous residual block. Thus, the proposed method can avoid network degradation,
gradient disappearance, and the degradation problems caused by being too deep within
the network. The network structure of ResNet50 is shown in Figure 4.
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When using deeper networks, the expression ability is more vital. However, when
the network depth is increased to a certain extent, deeper networks mean more training
mistakes. The reason for the elevated error is that the more profound the network, the more
pronounced the disappearance of the gradient. In backward propagation, the inability
to update the rise to the previous network layer efficiently: this means the preceding
network layer parameters cannot be updated, which leads to poor training and testing
results. In this paper, we decided to use ResNet (residual network), which adds constant
mapping, transferring the current output directly to the next layer of the network so this
level of arithmetic is skipped. It also passes the gradient of the lower layer of the network
directly to the upper layer in the backward propagation process. Residual networks make
feed-forward, back-propagation algorithms work. To a large extent, residual networks
make it easier to optimize deeper models. The network structure of ResNet50 is shown in
Figure 4.

In Figure 4, conv stands for convolutional operation; Maxpool is Max Pooling; Avgpool
is average pooling; and the rectangular box corresponds to the residual module. The size
of the input layer is 244 × 244 × 3, where a 7 × 7 convolutional kernel is responsible
for the extraction of features. The step size of the convolution kernel is 2. This reduces
the length and width of the image to half of its original size. Subsequently, a further
Maxpool layer is passed through to further reduce the resolution of the image. Firstly, we
obtained 256 × 56 × 56 feature maps with the first bottleneck module. Secondly, the next
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512 × 28 × 28 feature maps were obtained with the second bottleneck module. Thirdly,
the third bottleneck module was used to obtain 1024 × 14 × 14 feature maps. Finally,
the 512 × 28 × 28 feature maps were obtained with the fourth bottleneck module, where
we obtained 1×1×2048 feature maps in one layer of Avgpool. As a result, we used fully
connected layers to obtain eight crane driver behavior prediction probabilities after Softmax
classification.

3.5. Model Training

Processed images are inputted into a deep-learning framework with multiple iterations
and parameter updates. The training process consists of the following steps:

(1) Data enhancement. The small training sample creates more pieces by flipping, scaling,
cropping, panning, adding noise, etc. Thus, we should improve the generalization
ability of the neural network. The ResNet50 input image is 244 × 244 × 3, and the
dataset images are resized to match the training image requirements.

(2) Improved model generalization capabilities. If the sample is too small, models tend
to fall into overfitting during training. In order to maintain a dynamic balance
between model complexity and data volume, we should reduce the weight of the
high-dimensional parameter values using regularization methods, automatically
adapt parameters to different images of unsafe behavior, tune each convolutional
layer parameter to a reasonable range, and improve itPs generalization performance.

(3) Validation and training set assignment for all data. The role of the validation set in
the training process is to determine the model and modify the hyperparameters (e.g.,
learning rate), reverse the recursive modification of weights, verify the generalization
capability of the model, and make the model optimal on the validation set.

(4) Modification of training-related parameters. Altering parameters, such as batch size
and anchor scale, to improve the training result.

3.6. Model Performance Evaluation Metrics

The effectiveness of driver behavior recognition using the ResNet50 network can be
assessed in terms of accuracy. Accuracy includes four metrics: precision, recall, and F1
value, as well as a confusion matrix.

(1) Accuracy (precision) is expressed as the percentage of samples with a positive recall,
and the number of instances that have been correctly classified as positive. The
calculation is shown in Equation (12):

precision =
TP

TP + FP
(12)

where TP is the number of samples whose classification is positive and FP is the
number of pieces whose sort is negative.

(2) Recall rate (recall) indicates the number of positive samples that are recalled from the
class. The calculation is shown in Equation (13):

recall =
TP

TP + FN
(13)

where FN is the number of positive samples incorrectly predicted to be classified as
harmful.

F1 value (score), also known as equilibrium F-score, is defined as the summed average
of the precision and recall rates. The calculation is shown in Equation (14):

F1 = 2× precision× recall
percision + recall

(14)
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(3) Each column of the confusion matrix represents a prediction category, where the total
of each column indicates the number of data predicted to be in that category. Each
row represents the accurate attribution category of the data, where the total number
of data in each row indicates the number of data instances of that category.

4. Instance Verification

In the experiments, we built a convolutional neural network framework such as
ResNet50 on Windows 10 OS, Inter (R) Core (TM) i7-8750H 6-core 12-thread processor,
NVIDIA GeF orce GTX 1050 Ti graphics card, 8GB system memory using PyTorch 1.5.1 and
compiled it using Python language. In order to avoid the impact of sample imbalance on
the model, 22,352 images, of operators in the operating room at a certain time during the
lifting operation in the chemical plant, were used as the training and testing dataset for
the model. The model creates more samples before training by flipping, scaling, cropping,
panning, adding noise, etc, to increase generalization and prevent overfitting.

4.1. Applications of Transfer Learning

The behavior dataset of lifting operation drivers is limited. Consequently, only a
limited amount of data can be used for learning algorithms. This inevitably leads to poor
accuracy of the resulting model. Moreover, it is easy to cause overfitting in the case of
restricted data sets. Although the accuracy of the training samples is exceptionally high,
the generalization effect can be inferior. Therefore, the transfer learning idea is adopted
to transfer the learned and trained model parameters to the new model, with the aim of
helping to the train the new model. Since a large amount of data is correlated, sharing
the trained model parameters to the new model by transferring learning speeds up and
optimizes the learning efficiency of the model. As a result, it improves the recognition
accuracy of unsafe behaviors. The process of transfer learning is shown in Figure 5.
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ResNet50, He et al. [21], is fine-tuned using transfer learning, where the ImageNet
dataset and the ResNet50 network are initialized with the trained weight parameters. On
this basis, the lifting operation driver behavior dataset is used to train and adjust the
parameters.
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4.2. Comparison of Transfer Learning Effects

For migration learning, we used the weight parameters of the pre-trained ImageNet
dataset as ResNet50 network weight parameters to initialize the model. The model training
iteration curve is shown in Figure 6.
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Figure 6. Lost and accuracy values without migration learning.

As seen from Figure 6, there was a slow improvement in accuracy of the training set
during training for the ResNet50 network model without migration learning, where the
loss value during the iterations hovered around 1.0. At the same time, the accuracy and
loss values also changed slowly on the validation set. It can be seen from Figure 7 that,
the network can fit the sample accurately using transfer learning, which rapidly improves
accuracy and reduces the loss value and the proposed method can converge quickly. It
can be seen from the comparison that migration learning can significantly improve the
network.
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4.3. Comparison of the Effects of Each Network Model

Using the ResNet50 structure for training, the learning rate was 0.001, and the training
period was 100. The evaluation indicators obtained are shown in Table 1.

Table 1. ResNet50 model test results.

Network Model ResNet50

Assessment Indicators Precision Recall F1

Everyday driving 1.00 0.99 0.99
Looking at the phone (right hand) 1.00 1.00 1.00

Calling (right hand) 1.00 1.00 1.00
Looking at the phone (left hand) 1.00 1.00 1.00

Calling (left hand) 1.00 1.00 1.00
Adjusting meters 1.00 1.00 1.00

Holding things in the back seat 1.00 1.00 1.00
Holding glasses 0.99 0.98 0.99
Average value 0.99 0.99 0.99

It can be seen from Table 1 that the accuracy is 99% in identifying eight categories
of common lifting operation driver behaviors, where the recall rate is 98%, and the F1
value is 98% based on the ResNet50 model. It can be seen that recognition of typical
behaviors of lifting operation drivers has a reasonable recognition rate, which enables
effective identification of the unsafe behaviors of lifting operation drivers. The proposed
method extracts histogram of oriented gradient (HOG) features, which are used for image
recognition in the Random Forest (RF) classifier. We constructed a lightweight CNN
network with two convolutional layers, two pooling layers, and one fully connected layer.
The results of the migration learning based ResNet50 compared with the HOG-RF and
light CNN networks are shown in Table 2.

Table 2. ResNet50 vs. HOG-RF and light CNN networks.

Network Type Light CNN HOG-RF ResNet50 Maximum
Difference

Everyday driving 0.96 0.87 1.00 0.13
Looking at the phone (right hand) 0.96 0.92 1.00 0.08

Calling (right hand) 0.98 0.94 1.00 0.06
Looking at the phone (left hand) 0.98 0.93 1.00 0.07

Calling (left hand) 0.97 0.95 1.00 0.05
Adjusting meters 0.98 0.98 1.00 0.02

Holding things in the back seat 0.97 0.96 1.00 0.04
Holding glasses 0.93 0.93 0.99 0.06
Average value 0.96 0.93 0.99 0.06

As can be seen from Table 2, the recognition rate of the migration learning-based
ResNet50 network is higher than both the light CNN structure and the HOG-RF. The
recognition rate of the migration learning-based ResNet50 network is 3.25% higher than the
lightweight CNN structure, and 6.375% higher than the HOG-RF algorithm. Among them,
the recognition rate of hand-held glasses improved the most, by 6%. There was a minimal
increase in talking on the phone (right hand) and looking at the phone (left hand), of 2%.
The experimental results exemplify the accurate information identified by the migration
learning-based ResNet50 network.

The confusion matrix of the lifting operation driver behavior recognition results
obtained from the migration learning-based ResNet50 experiments are shown in Table 3.
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Table 3. ResNet50 driver behavior recognition confusion matrix.

Identification
Categories

Holding
Glasses

Adjusting
Meters

Looking at
the Phone

(Right Hand)

Calling
(Right Hand)

Looking at
the Phone

(Left Hand)

Calling
(Left Hand)

Holding
Things in the

Back Seat

Everyday
Driving

Holding glasses 300 0 0 0 0 0 0 0
Adjusting meters 1 197 0 0 1 0 1 0

Looking at the
phone (right hand) 0 0 200 0 0 0 0 0

Calling
(right hand) 0 1 0 299 0 0 0 0

Looking at the
phone (left hand) 0 0 0 0 299 1 0 0

Calling (left hand) 0 0 0 0 1 299 0 0
Holding things in

the back seat 0 0 0 0 0 0 200 0

Everyday driving 0 0 1 0 0 1 0 298

As can be seen from the confusion matrix diagram, holding glasses, looking at the
phone (right hand) and holding something in the back seat, are the highest. A small amount
of meter adjustment is mistaken for holding glasses and looking at a mobile phone (left
hand). The most common type of misclassification is left-handed mobile phone use. As
can be seen from the confusion matrix, overall driver behavior recognition accuracy has
reached a high level and has an ideal recognition effect.

5. Conclusions

(1) Recently, the lifting of large chemical equipment has become widely used and safety
management and the control of lifting operations has been a major concern. Many
accidents in lifting operations are caused by improper handling by the driver. In
this paper, we aimed to recognize driver behavior during lifting operations. It is
well known that convolutional neural networks suffer from a high error rate for the
detection of unsafe behavior in lifting operation drivers. We proposed a ResNet50
network model based on migration learning, where the network structure is analyzed
and its parameters are adjusted.

(2) This network has a high accuracy in classifying and recognizing the behavior of eight
common types of crane driver behavior. The results show that the recognition method
can identify crane driver behaviors more accurately, with an average recognition rate
of 99.6%, which is 3.25% higher than the average accuracy of light CNN structures
and 6.375% higher than the traditional HOG-RF algorithm.

(3) For the study of unsafe driver behavior in lifting operations, the dataset from this study
is small and does not reflect all the possible behaviors of lifting drivers. In addition,
the timing of data collection was relatively fixed, failing to consider other scenarios.
Further research needs to consider adding dynamic identification to improve the
identification of driver unsafe behavior in order to further contribute to the safety
management of chemical lifting operations.
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