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Abstract: Industry 4.0 houses diverse technologies including wireless communication and shared
networks for internal and external operations. Due to the wireless nature and remote operability, the
exposure to security threats is high. Cyber risk detection and mitigation are prominent for secure
industrial operations and planned outcomes. In addition, the system faces the threat of intelligence
attacks, security standards issues, privacy concerns and scalability problems. The cyber risk related
research problems influence overall data transmission in industry wireless communication networks.
For augmenting communication security through cyber risk detection, this article introduces an
Explicit Risk Detection and Assessment Technique (ERDAT) for cyber threat mitigation in the indus-
trial process. A fuzzy harmony search algorithm powers this technique for identifying the risk and
preventing its impact. The harmony search algorithm mimics the adversary impact using production
factors such as process interruption or halting and production outcome. The search performs a
mimicking operation for a high objective function based on production output for the admitted plan.
The fuzzy operation admits the above factors for identifying the cyber impacting risk, either for its
impacts or profitable outcome. In this process, the fuzzy optimization identifies the maximum or
minimum objective output targeted for either outcome or risk interrupts, respectively. The fuzzy
threshold is identified using a mediated acceptable range, computed as the ratio between mini-
mum and maximum, mimicking occurrences between the risk and scheduled production outcomes.
Therefore, the mimicking crossing or falling behind the threshold for the interruption/halting or
production, respectively, are identified as risks and their source is detected. The detection com-
munication source is disconnected from the industrial process for preventing further adversary
impacts. The introduced system achieves 8.52% high-risk detection, 12.5% fewer outcome interrupts,
8.3% fewer halted schedules, 8.08% less interrupt span, and 7.94% less detection time compared to
traditional methods.

Keywords: communication networks; cyber security; FHS; industry 4.0; risk detection

1. Introduction

Industry 4.0 is the fourth industrial revolution that rapidly contains automated ma-
chines and technologies to perform industry-related tasks. Industry 4.0 enhances the
efficiency and productivity range of products. Various risks and challenges occurred in
industry 4.0, which enormously reduced the production range [1]. Cyber security risks also
occur in industries that lead to the loss of a huge amount of data due to attacks. Malware
and ransomware are the major cyber-security risks that cause attacks due to malfunctions
in software [2]. Insufficient security policies also cause severe damage and attack possi-
bilities in industry 4.0. Cyber security risk prediction and prevention are crucial tasks to
perform in industry 4.0. The cyber security analysis-based method is mostly used for risk
prediction in industry 4.0 [3]. A reference architecture model is used here to detect threats
and risks based on certain functions and operations. A monitoring system is implemented
in every industry that gathers information that is relevant to production and risks [4]. The
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monitoring system reduces the latency in cyber-attack risk prediction, enhancing industries’
efficiency ratio. Information and communication technologies (ICT) are used in industry
4.0, providing various services and functionalities during the manufacturing process [5].

Various methods and techniques are used to address cyber-security risks which oc-
curred in industry 4.0. The Artificial Intelligence (AI) technology-based detection method is
commonly used for the cyber-security detection processes. The Artificial Neural Network
(ANN) algorithm detects the threats which contain abnormal risks in a process [6]. The
feature selection method in ANN extracts the important features and patterns relevant to
risks and problems [7]. Third-party attacks and risks are predicted by the feature selection
method, reducing the early detection latency. ANN also identifies the actual cause of
threats and the location of risks, which are presented in industry 4.0 [8]. The Industrial
Internet of Things (IIoT) network is used in industries that provide certain services for the
product improvement process. The IIoT-based detection method is also used for the risk
detection process [9]. IIoT analyzes the datasets which are presented in the database, which
produce feasible information for the further risk detection process. IIoT identifies the risks
which occur during interaction and communication processes. IIoT improves risk detection
accuracy, enhancing industries’ performance and production levels [10].

Machine learning (ML) techniques and methods are most commonly used for predic-
tion and detection processes. ML is mainly used to achieve high accuracy in the detection
process. ML is used in the cyber risk detection process for industry 4.0 [11]. ML-based
methods are used in the cyber-security risk prediction process. Convolutional neural net-
work (CNN) is used as a detection method that detects the malfunctions and risks which
occur during interaction and production processes. CNN improves the overall production
and feasibility range of industries, enhancing efficiency among other organizations [6,12].
An adaptive deep learning (ADL) algorithm is also used for the cyber risk detection pro-
cess. The ADL algorithm detects industries’ network traffic and data flow that provides
relevant data for further processes. ADL reduces both the computation cost and time con-
sumption ratio in the computation process, which increases the accuracy of the detection
process [13]. A deep neural network (DNN) model is used for the optimization process.
Principle component analysis (PCA) is implemented in the DNN model that analyses the
data which is eliminated by certain operations. PCA detects the original data required for
the optimization process and provides feasible solutions to solve optimization problems in
industries [14,15]. However, these methods are consumed with difficulties while handling
the threat intelligence because several intermediate attacks reduce the system efficiency
and cause security related issues. The security related cyber risks are overcome by applying
the fuzzy harmony search. The contributions of this article are highlighted below:

(1) Designing a risk detection technique for smart industrial communication networks to
prevent cyber threats for uninterrupted production outcomes.

(2) Incorporating the fuzzy harmony search process for analyzing, classifying, and de-
tecting mimicking operations for maximizing production-based objectives.

(3) Performing a dataset-based analysis for validating the proposed techniques’ process
flow based on harmony search optimization.

(4) Performing a comparative analysis using specific methods for proving the proposed
techniques’ consistency with the other existing methods.

2. Related Works

Pearce et al. [16] proposed a smart input–output module for mitigating cyber–physical
attacks. The proposed scheme is mostly used in industrial control systems. The actual goal
of the proposed scheme is to identify the dangers which are mitigated in industries. The
proposed scheme secures real-time applications from cyber-attacks, enhancing the systems’
reliability range. The smart I/O module reduces both complexity and difficulties in connec-
tivity. The proposed scheme improves the efficacy and performance range of industries.
Ahmadi-Assalemi et al. [17] designed a super learner ensemble for anomaly detection in the
industrial control system (ICS). Artificial intelligence (AI) is used that collects the necessary
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data, which reduces the latency in the data collection process. The proposed method also
identifies the cyber risks which are presented in ICS. Cyber risks reduce the workflow
and production rate of industries. Experimental results show that the designed method
achieves high accuracy in anomaly detection. Wang et al. [18] developed a lightweight
approach for the network intrusion detection process in industrial cyber–physical systems
(CPS). A deep learning algorithm named deep convolutional neural network (CNN) is
implemented in the proposed approach. CNN is mainly used here to improve performance
and to increase the speed of the anomaly detection process. Knowledge distillation (KD) is
also used to train the data for the detection process. The proposed approach maximizes
the accuracy of intrusion detection, improving CPS’s effectiveness. Rosado et al. [19] intro-
duced a new methodology for analyzing risks in information systems using meta-pattern
and adaptability (MARISMA). The introduced MARISMA method is commonly used to ad-
dress the risks in cyber–physical systems (CPS). A risk analysis technique is used here that
analyzes the risks based on characteristics and behaviors. The introduced method reduces
the latency in detection, which enhances the performance and efficiency level of CPS. When
compared with other methods, the introduced MARISMA increases the accuracy of the risk
detection process. Traganos et al. [20] proposed a reference architecture named the HORSE
framework for cyber–physical systems (CPS) in smart manufacturing industries. Important
characteristics and features are detected from the database, producing feasible information
for further processes. The reference architecture acts as a safety detection method that
identifies the cyber-attacks’ risks that occurred during production.

The proposed HORSE framework improves smart industries’ overall production and
manufacturing range. Farrugia et al. [21] developed a real-time prescriptive solution for
explainable cyber-fraud detection. Machine learning (ML) algorithms are used here to
detect the actual cyber-fraud located in an application. The actual behaviors of frauds
and intrusions are examined, which provides feasible data for the detection process. The
proposed method reduces both the time and energy consumption ratio in the computation
process. The proposed method achieves high accuracy in cyber-fraud detection, which
maximizes the efficiency and flexibility level of the systems. Leong et al. [22] designed
a cyber risk cost management method for Internet of Things (IoT) devices-based health
insurance. The proposed method’s main aim is to ensure users’ safety and security to obtain
proper insurance. Cyber risks and problems are detected by this method, which reduces
the complexity and difficulties ratio in cost management systems. The proposed method
improves the performance and energy-efficiency range of IoT-linked health insurance sys-
tems. Pinto et al. [23] proposed a data-driven anomaly detection method for cyber–physical
production systems (CPPS). The proposed method detects the attacks which are presented
in the edge layer of CPPS. An artificial intelligence-based model is used here to tackle the
attacks occurring during manufacturing and production processes. Experimental results
show that the proposed method increases the accuracy of anomaly detection, enhancing the
systems’ effectiveness and performance level. Zängerle et al. [24] developed an enterprise-
level cyber risk prediction method. The actual goal of the proposed method is to address
the risks and problems which cause severe damage to the production and manufacturing
systems. The proposed method predicts the sparse data availability which is required
for various processes. Unwanted threats and cyber risks are detected here, reducing the
overall complexity of certain tasks. The developed method maximizes the efficiency and
feasibility range of the systems. Pantano et al. [25] introduced a human cyber–physical
system approach for lean automaton. An industrial 4.0 reference architecture is used here
that addresses human integration and operation in a system. The main aim of the intro-
duced approach is to improve flexibility and reduce the complexity ratio of the systems.
Human mistakes and malfunctions are detected here, reducing production system errors.
Compared with other approaches, the introduced approach enhances the performance and
effectiveness level of the systems. Latino et al. [26] proposed a reference framework for
cyber-security in the food and beverage industries. A thematic analysis is used here that
identifies the important datasets which are required to perform a certain task in industry.
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The reference framework detects cyber threats, problems, and challenges. Both time and
energy consumption ranges in the computation are reduced. The proposed framework
improves both the flexibility and robustness range of the food and beverage industries.
Miehle et al. [27] designed a stochastic Petri net approach for smart factories. The designed
method is an information network analysis that analyzes the information based on certain
conditions. The threats and problems which occur during manufacturing are detected
using the Petri net approach. The proposed approach reduces the IT network complexity
in smart industries. The proposed approach increases the accuracy of attack detection,
enhancing smart factories’ performance. Shahin et al. [28] presented a fully convolutional
neural network (FCN) approach for cyber-attack detection and classification processes in
smart manufacturing systems. Industrial Internet of Things (IIoT) devices are commonly
used in manufacturing systems, which leads to various problems. Intelligence tools are
used here to detect the threats and attacks from the manufacturing systems. Experimental
results show that the proposed FCN approach achieves high accuracy in attack detection,
which reduces the latency in further processes. Jbair et al. [29] introduced a structured
threat modeling approach for industrial cyber–physical systems (CPS). The main aim of the
proposed approach is to identify the threats which occurred due to smart manufacturing
systems. The introduced method is end-to-end modeling which detects the threats based
on characteristics and functions. The exact impacts and ability of threats are also identified,
reducing the computation process’s complexity. The introduced method increases the
safety and security ratio of CPS from attackers.

The so far discussed methods rely on external data observed from the ground de-
vices and inputs from the previous performance as discussed in [16,19]. The methods
in [18,20,21] address the aforementioned issues for handling shortcomings using classifica-
tion. In classification, the complexity of handling adverse impacts is suppressed in the later
methods [24,27]. However, risk assessment relies on predicted and observed outcomes
for identifying different halts and their precise reason. The proposed technique relies on
this information for reducing the halts due to interrupts coping with the production plan.
The adaptability of balancing the performance and risk mitigation to be maintained, is
accomplished by the proposed technique.

3. Explicit Risk Detection and Assessment Technique

The proposed ERDA technique is introduced to detect and mitigate cyber risk in
industrial operations to improve security. The different technologies in wireless com-
munication networks remotely accessed and regulated through processing units in the
industry depend on better accuracy for their operations and planned outcomes. Both
data processing and production monitoring integrations comprise security threats due to
the remote operability and wireless nature exposed through cyber risk detection. Some
common wireless communication networks based on industry 4.0 house technologies that
are used for performing external and internal operations which is a prominent factor in
which the adversary/risk can be thwarted through a fuzzy harmony search algorithm
(FHS). ERDAT is one such technique used for classifying the processing unit. Figure 1
presents the proposed techniques’ illustration.

The process of ERDAT in wireless communication networks assisted industry 4.0 in
acquiring a prediction plan and adversary detection to prevent its impact. Production
monitoring and data processing in the industrial unit through communication networks
are processed. The prediction plan is used for classifying the processing between risk
and scheduled production. The classification output is used for identifying the process
interruption or halting and production outcome by the correlation analysis from the stored
industrial data. The process of explicit risk detection and the computation technique is
used to prevent adversaries, where the prediction plan is initially processed. The input
prediction plan in industry 4.0 is represented in Equations (1) and (2).

Indn =
1
Ni

∣∣∣∑Ni
t=1 PO(t)− IH(t)

∣∣∣ (1)
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where,
PO(t) = 1

π

∫ ∞
−∞

αM(t)
Ni∗t dt

and
IH(t) = 1

π

∫ ∞
−∞

βM(t)
Ni∗t dt

 (2)

where, PO(t) and IH(t) means the production outcome and process interruption/halt in the
wireless communication networks for the mimicking operations based on α and β. If αM and
βM are the minimum and maximum profitable outcome and process interruption or halting
at different time t intervals. This mimicking operation M is performed through the harmony
search algorithm HSA for gaining profitable outcomes and identifying the cyber risks. The
variable Ni used to denote the amount of processing performed in a single industrial
unit. Then, αM ∈ [0, ∞] and βM ∈ [−∞, 0], and hence, the harmony search algorithm is a
relatively fuzzy optimization inspired by industry 4.0 wireless communication networks.
The HSA process Equations (3)–(5) identify cyber risk and prevent its impacts on the search
domain.

HSA ∈ [0, 1] (3)

F(X)New = F(X)Old + ∆p (4)

CRD = min(PO) ∈ max(IH) (5)

Such that,
PO(t) = 1

Ni

∫ ∞
−∞ αM.t ∈ CRDdt
and

IH(t) = 1
Ni

∫ ∞
−∞ βM.t ∈ CRDdt

 (6)

Equations (3) and (4) computes the initial cyber security is detected and mitigated
for all PO(t) + IH(t) instances. This sequence of instances represents a complete industrial
data processing and production monitoring based on αM and βM operations in different
time intervals through a fuzzy harmony search algorithm. Here ∃ is the overall industrial
data and production analysis. The mimicking operation is illustrated in Figure 2.
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The production output is classified ∀(α, β) such that αM and βM are used for assess-
ment. In the αM, βM outcomes, βM is alone mimicked for Ni + i ∈ (t + 1). The αM, the
generated output is pursued F(X) for identifying any risks in the previous t. This analysis
is not pursued under M for t whereas (t + 1) pursues (α, β) for classification (Figure 2).
Processing is classified as production outcome and interruption/halting to reduce the
adversary impact present in communication networks. Adversary impact is due to the
cyber impacting risk identified in the industrial processing unit while observing production
output in any instance. Therefore, the normalization of data processing and production
monitoring follows a high-objective function ObjF and is expressed as

PO(t) =
αM(t)
Ni×t × 2

A
2 f uzzyopti

[
∃ × t− A

2

]
IH(t) =

βM(t)
Ni×t × 2

A
2 f uzzyoptj

[
∃ × t− A

2

] (7)

where,
f uzzyopti

= ObjF(t)
∣∣∣ A

2

∣∣∣F(t)l−1

and
f uzzyoptj

= ObjF(t)
−1
∣∣∣ A

2

∣∣∣F(t)l−1

 (8)

Based on the Equations (7) and (8), the variable f uzzyopti
and f uzzyoptj

represents the

admitted plan for performing a mimicking operation based on production outcomes and
interrupt/halt occurrence identification. The production factors such as process interrup-
tion ObjF(t) and production outcome ObjF(t)

−1 relies on the minimum and maximum
mimicking occurrences of f uzzyopti

and f uzzyoptj
. From the mimicking occurrence in the

industry 4.0, wireless communication networks for the high objective function based on
production outcome are computed. The variable A is used to denote the adversary impact
in the communication networks and also for the process of cyber risk detection. Now, the
source mitigation in industry 4.0 admits the above factors for detecting the cyber impacting
risk and is computed as

{[ObjF(t)] =
A
2
(∃)−IH

t2

[
f uzzyopti

− f uzzyoptj

]
and

{
[
ObjF(t)

−1
]
= 2

A
2
t

[∫ ∞
0

f uzzyopti
[(∃)−IH ]

t dt−
∫ 0
−∞

f uzzyoptj
[(∃)−A]

t dt
]
 (9)

The cyber-impacting risks {[ObjF(t)] are detected after performing the harmony search
algorithm. From this instance, two factors, production outcome and process interrup-
tion/halt, are extracted for further process classification. Equation (10) is used to evaluate
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the scheduled production outcome (SPO) and risk occurrence (ROC) measure for profitable
output and is represented as

SPO = 1
2π(∃×A)

∣∣∣∑i
t=1 (αM + βM)Thr

∣∣∣, ∀i ∈ A, j = i + 1
and

ROC = −∑maxout
i=minout

Thrlog SPOi

 (10)

where the variable maxout and minout are the maximum and minimum objective outputs of
SPO as identified. The log normalization of scheduled production outcome identifies the
overlapping functions in source mitigation as in Equation (11)

ROC[ObjF(t)] =
ROC

log
[

maxout−minout
t

] (11)

This log normalization process is performed for continuing the fuzzy operation and
cyber risk occurrence detection along with the various technology and time intervals. The
classification process is based on SPO and ROC[ObjF(t)] using fuzzy optimization. This
industrial processing unit classification helps to differentiate the outcome interrupt and
halted schedules for all either PO(t), or IH(t), or both processes. The risk occurrence
estimation from the previous intervals is diagrammatically presented in Figure 3.
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−1] =

2
𝐴
2

𝑡
[∫
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[(∃)−𝐼𝐻]

𝑡

∞

0
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[(∃)−𝐴]

𝑡
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0

−∞
]
}
 
 

 
 

  (9) 

The cyber-impacting risks ∁[𝑂𝑏𝑗𝐹(𝑡)] are detected after performing the harmony 

search algorithm. From this instance, two factors, production outcome and process inter-

ruption/halt, are extracted for further process classification. Equation (10) is used to eval-

uate the scheduled production outcome (𝑆𝑃𝑂) and risk occurrence (𝑅𝑂𝐶) measure for 

profitable output and is represented as 

𝑆𝑃𝑂 =
1

2𝜋(∃×𝐴)
|∑ (𝛼𝑀 + 𝛽𝑀)𝑇ℎ𝑟

𝑖
𝑡=1 |, ∀ 𝑖 ∈ 𝐴, 𝑗 = 𝑖 + 1

𝑎𝑛𝑑
𝑅𝑂𝐶 = −∑ 𝑇ℎ𝑟 log 𝑆𝑃𝑂𝑖  

𝑚𝑎𝑥𝑜𝑢𝑡
𝑖=𝑚𝑖𝑛𝑜𝑢𝑡

}  (10) 

where the variable 𝑚𝑎𝑥𝑜𝑢𝑡 and 𝑚𝑖𝑛𝑜𝑢𝑡 are the maximum and minimum objective out-

puts of 𝑆𝑃𝑂 as identified. The log normalization of scheduled production outcome iden-

tifies the overlapping functions in source mitigation as in Equation (11) 

𝑅𝑂𝐶[𝑂𝑏𝑗𝐹(𝑡)] =
𝑅𝑂𝐶

log[
𝑚𝑎𝑥𝑜𝑢𝑡−𝑚𝑖𝑛𝑜𝑢𝑡

𝑡
]
  (11) 
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The risk occurrence estimation is performed by mapping t and Ni for evaluating
F(X)New. This is different from the previous occurrences, ∀ ∃ = Ni analysis. If the case
fails, then IH in the specific t is estimated. This requires SPo checking under t and (t)−1

constraints from which Roc is identified. If Roc is identified under any i, then the process
is halted and is considered a risk (Refer to Figure 3). In this processing classification, the
threshold is identified at each processing level followed by has. The prediction plan and
communication networks are determined as per Equations (12) and (13), either satisfying
production outcomes or risk interrupts, respectively.

MO[SPO, ObjF(t)] = ∑∃i=1 PO + ∑t
j=1 IH −∑∃i=1 ∑t

j=1 NiObjF
and

µ[SPO, t] = A−MO [SPO ,ObjF(t)]

∑∃×t
i=1 A

−MO [SPO ,ObjF(t)]ij

 (12)
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In Equation (12), assume the mimicking operation set MO[.] is sequentially analyzed
using the objective function based on scheduled production outcomes. The variable µ[.] is
the initial training set identifying its impact at a different time interval. Similarly, the first
production outcome and training sets are given as

MO[ROC(ObjF(t))], SPO =

 ∑∃i=1 Ni − IH
1

f uzzyopti
, i f αM(t) ∈ [0, ∞]

∑∃i=1 Ni − IH f uzzyoptj
, i f βM(t) /∈ [0, ∞]

(13)

And,

µ[ROC(ObjF(t))] =
(IH)

−MO [SPO ,ObjF(t)]

∑∃×t
i=1 (IH)

−MO [SPO ,ObjF(t)]ij
(14)

In Equation (14), the fuzzy optimization detects the maximum or minimum objective
output of the processing and is performed such that MO[SPO, ObjF(t)] is evaluated for
the mimics operation ∈ ROC(ObjF(t)). The minimum interruption moves to maximum
interruption, whereas the maximum production outcome moves to a minimum, and a
fuzzy threshold is identified. This mimicking operation output helps to distinguish the
overlapping processes in an industry based on t instance to perform possible classification.
Based on Equations (13) and (14), the differences between both the scheduled production
outcome and process interruption/halt vary at each time of processing because the objective
of the proposed technique lies between these two factors. In this process, these two factors
are constant for improving risk detection in industry 4.0. Due to the importance of the two
factors, the available processing is converted into fuzzy factors in this condition. Therefore,
the fuzzy operation is performed, which functionally adjusts the outcome and risk factors,
and the number of processing iterations is considered as the input for FHS. In this case, this
consideration is used for performing fuzzy operations because the mimicking values differ
when the FHS starts functioning. The fuzzy operation based on two factors is defined by
Equations (15) and (16), where the final production outcome and process interruption/halt
change their measures in the range [0,1].

Z(PO) =
∑RHSA

i=1 θ
Hmp
i

(
Hmp1

i

)
∑

RHmp
i=1 θ

Hmp
i

(15)

where Hmp is the harmony search performing mimicking operations and RHSA is the
rules and regulations of fuzzy optimization corresponding to targeted objective output.
The variable Hmp1

i is the first output based on rule 1 corresponds to the harmony search
algorithm. The variable θ

Hmp
i is the disconnected risk-identified communication source for

rules and regulations corresponding to HSA.

Z(IH) =
∑

RThrat
i=1 θThrat

i

(
Thrat

1
i

)
∑

RThrat
i=1 θThrat

i

(16)

In Equation (15), Thrat is the threshold ratio identified from the processing and RThrat
is the number of rules and regulations followed by the fuzzy operation corresponding
to risk detection. Therefore, Thrat

1
i is the first threshold identified network along with

rules corresponding to mediate acceptable range. The variable θThrat
i is the disconnected

communication source network in industry 4.0 corresponding to risk detection. The
harmony search process is represented in Figure 4.
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Figure 4. Harmony Search Process.

The initialization is performed using (N, t) for retaining i and IH(t) estimation. It
is to be noted that the above is performed under Hmpi for the RHSA used. Considering
the Optj under Thrat the µ

[
Spo, t

]
is used for training αMin∀t. Depending on the F(X)New

requirement the θi is computed ∀ObjF(t). This is required for PThrat pursued out of which
the least is used for Ni (Figure 4). Fuzzy optimization is performed based on the mimicking
operation, which helps to easily identify the processing interruption and halt occurrence.
The factors of process interruption and production outcome are calculated to be changed
using fuzzy optimization since these factors address controlling the exploitation and
exploration of the harmony search domain. The min and max changes in outcome and
risk in industry 4.0 are identified using the HSA algorithm, and this process is important
to tune the fuzzy optimized solution. The FHS can be useful in adjusting the mimicking
crossing/failing rate behind the threshold for identifying risk and disconnecting that source
by the algorithm to find the optimal output. Therefore, the variations in these factors are
identified to achieve a better decision. The improved harmony search algorithm (IHS) is
generated to gain new production outcomes that enhance the precision and convergence
rate of the fuzzy harmony search algorithm. To compute the control performances of
security threats in wireless communication networks, a new source is generated with the
mediated acceptable limit that ranges from Hmpi(0 < Hmpi < 1). Each fuzzy threshold
consists of minimum and maximum mimicking occurrence for respective production
outcome and risk.

This defines the possible objective output; the riskless and profitable outcome was
successfully decided on to join them for generating various fuzzy operations for the
mimicking of occurrences of outcome and risk. Based on the article, the recommended
values for the available factors from 0 to infinity, in this condition, the range 0 to ∞
and −∞ to 0, were used for better outputs using the fuzzy optimization. The fuzzy
harmony search for performing mimicking operations relies on ROC(ObjF(t)) ∈ [−∞, ∞]
and αM ∈ [0, ∞] or αM /∈ [0, ∞] for a better decision. The case of αM ∈ [0, ∞] satisfies
riskless industrial processing. From the above, αM /∈ [0, ∞] is identified as the threshold
occurring instances. With the use of the fuzzy harmony search technique and ERDAT,
the high objective function is required to detect and mitigate cyber risk detection. This
process classification helps the wireless communication industry 4.0 to reduce data analysis
time and production monitoring time while increasing cyber risk detection and profitable
outcome in the industries. Based on the prediction plan and rules, the fuzzy threshold
occurrence is identified to improve for FHS with a large number of profitable outcomes.
This proposed technique reduces maximum interrupt span and halted schedules. Therefore,
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the stored industry information is handled for further prediction planning for the next
source processing. In this case, M ∈ [∞,−∞] is considered for identifying the cyber risk
and preventing its impact on the industry. The mimicking crossing and failing behind
the threshold is identified for minimizing overlapping processes based on accumulated
and extracted factors from industry 4.0. The dataset from [30] is used for assessing the
proposed techniques’ performance. Precisely, the operations of a gas turbine control system
are recorded and presented for analysis using a hardware-in-the-loop emulator. Figure 5
presents the overview of the control system process with the rules associated.
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Figure 5. Overview of the Control System Process.

The component overview is presented in Figure 5 from the given dataset, along with
the rules and operations. It includes Io devices, PLC controller’s emersions marks level
indicators, etc. The rules associated with different levels that are associated with the
operations are presented. The rules are modified based on the operations and their out-
come. In this process, 114 rules are used for operating the gas turbine for a continuous 2 h
(Figure 5). The production outcome and risk mitigation are computed for improving the
wireless communication industry processing accuracy at different time intervals. The fuzzy
threshold is identified at the time of mimicking operation based on data processing and
production monitoring instances in industry 4.0. Therefore, the accumulated industrial
data processing is not prolonged for risk detection and mitigation. Further prediction
planning is used to forecast risk occurrence and mediate an acceptable range of mimicking
occurrences between the risk and scheduled production outcomes at t. Cyber risk detection
is maximized for optimal decisions without increasing the halted schedules and detection
time. The remaining processes maximize interrupt span based on outcome and risk for pre-
venting overlapping sources in smart industries. The changes in particular communication
production and risk are moved to new communication using FSA. Hence, the maximum
production outcome and minimum interruption are achieved for better decisions, thereby
reducing risk detection. Then the overall working process of the fuzzy harmony search
based cyber risk identification processing steps are described in Table 1.
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Table 1. Fuzzy harmony search based risk identification.

Step 1: Initialize the parameters of the fuzzy harmony search technique, such as the number of
solutions, number of iterations, and harmony memory size.
Step 2: Initialize the fuzzy sets for the input variables, such as the security level, threat level, and
network performance.
Step 3: Conduct a risk analysis and identification to identify potential cyber risks in industry
based communication process.
Step 4: Generate an initial harmony memory by randomly selecting solutions within the search
space.
Step 5: Evaluate the fitness of each solution in the harmony memory using the fuzzy logic rules
and objective function.
Step 6: Update the harmony memory by replacing the worst solutions with new solutions
generated through the fuzzy logic rules and improvisation strategies.
Step 7: Update the fuzzy sets based on the performance of the solutions in the harmony memory.
Step 8: Repeat steps 5–7 until the termination criteria, such as the maximum number of iterations
or a threshold fitness value, is reached.
Step 9: Conduct a risk analysis and identification of the solutions in the final harmony memory to
identify potential cyber risks and their likelihoods.
Step 10: Select the best solution in the final harmony memory as the optimal solution for the risk
identified in the industrial IoT applications.

The first analysis is for the actual risk counts detected and the rule estimation, as given
in Figure 6.
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Figure 6. Count and Span Analysis. (a) Count. (b) Span Analysis.

Based on the provided data, the RMSA = 59, 78, 86 is varied for estimating the count
and span. As the RMSA increases, Thrat and PThrat varies for which the detection is per-
formed. Therefore the ∃ is performed for maximum halts under varying t. In the HS
process the Po(t) for the varying αM and βM is analyzed in Figure 7.

The analysis is performed for Po(t) under the varying αM (Range: −0.4 to +0.3) and
FM (Range: −0.4 to 1) in Figure 7. This is determined using the f uzzyopti,j wherein (i, j)
classifications are performed using Hmpi. In the varying processes (level 1 and level 2), if
Thrat > θThrat

i then F(X) is retained and therefore the Po(t) and IH(t) as in Equation (7) is
obtained. It satisfies the maximum conditions in the HAS due to which risks are thwarted
(Figure 7). In the final analyses, the High Po(t) and Objp(t) are analyzed for different risk
factors, as presented in Table 2.
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Figure 7. Po(t) Analyses. (a) Po(t) for the varying αM. (b) Po(t) for the varying βM.

Table 2. Po(t) and ObjF(t) Analyses.

Operation Device Risk Factor Mo[.] HighPo(t) ObjF(t)
−1 ObjF(t)

1 C Long term attack decreases 3 No

2 IO Attempt to maintain previous sensor value 8
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mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 

null hypothesis and alternative hypothesis. The null hypothesis is that there is no signifi-

cant difference in the effectiveness of the fuzzy harmonic approach and existing risk de-

tection methods. The alternative hypothesis is that the fuzzy harmonic approach is signif-

icantly better than existing risk detection methods. 

Calculate T-value: Calculate the T-value using the following formula: 

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (14) 

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and 

S2 are the standard deviations of the two groups, and n1 and n2 are the sample sizes of 

the two groups. Then degrees of freedom have been determined (df) using the following 

formula: 

df = n1 + n2 − 2  (15) 

No

3 C A long-term attack that decreases the SP value 98 Yes No

4 MS Decreases or increases the CV value. Restore normal 5
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munication process. During the analysis, the fuzzy harmonic approach is utilized to eval-

uate the industrial performance to detect the risk factor. The collected risk related infor-

mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 

null hypothesis and alternative hypothesis. The null hypothesis is that there is no signifi-

cant difference in the effectiveness of the fuzzy harmonic approach and existing risk de-

tection methods. The alternative hypothesis is that the fuzzy harmonic approach is signif-

icantly better than existing risk detection methods. 

Calculate T-value: Calculate the T-value using the following formula: 

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (14) 

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and 

S2 are the standard deviations of the two groups, and n1 and n2 are the sample sizes of 

the two groups. Then degrees of freedom have been determined (df) using the following 

formula: 

df = n1 + n2 − 2  (15) 

No

5 IO Decreases or increases the CV restore as a form of the
trapezoidal profile while hiding SP changes of HMI 45 No

6 MS Decreases or increases the CV restore as a form of the
trapezoidal profile while hiding SP changes of HMI 61 No

7 MS A long-term attack that decreases the SP value 78
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The interrupt reduces as the 𝑀 increases; out of 114, 68 are mimic classifying 𝛼𝑀 

and 𝛽𝑀 . This classification provides 𝐻𝑚𝑝𝑖  for further interval analysis such that 

𝐹(𝑋)𝑁𝑒𝑤 identifies the risks (Figure 8). According to the discussions, the steps for con-

ducting the T-test is given as follows. 

t-Test Analysis 

Initially, industrial processes are analyzed with the help of the industrial wireless 

communication process. The cyber risk related data is collected with the help of the com-

munication process. During the analysis, the fuzzy harmonic approach is utilized to eval-

uate the industrial performance to detect the risk factor. The collected risk related infor-

mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 

null hypothesis and alternative hypothesis. The null hypothesis is that there is no signifi-

cant difference in the effectiveness of the fuzzy harmonic approach and existing risk de-

tection methods. The alternative hypothesis is that the fuzzy harmonic approach is signif-

icantly better than existing risk detection methods. 

Calculate T-value: Calculate the T-value using the following formula: 

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (14) 

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and 

S2 are the standard deviations of the two groups, and n1 and n2 are the sample sizes of 

the two groups. Then degrees of freedom have been determined (df) using the following 

formula: 

df = n1 + n2 − 2  (15) 

No

8 IO Attempt to maintain previous sensor value 78
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The interrupt reduces as the 𝑀 increases; out of 114, 68 are mimic classifying 𝛼𝑀 

and 𝛽𝑀 . This classification provides 𝐻𝑚𝑝𝑖  for further interval analysis such that 

𝐹(𝑋)𝑁𝑒𝑤 identifies the risks (Figure 8). According to the discussions, the steps for con-

ducting the T-test is given as follows. 

t-Test Analysis 

Initially, industrial processes are analyzed with the help of the industrial wireless 

communication process. The cyber risk related data is collected with the help of the com-

munication process. During the analysis, the fuzzy harmonic approach is utilized to eval-

uate the industrial performance to detect the risk factor. The collected risk related infor-

mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 

null hypothesis and alternative hypothesis. The null hypothesis is that there is no signifi-

cant difference in the effectiveness of the fuzzy harmonic approach and existing risk de-

tection methods. The alternative hypothesis is that the fuzzy harmonic approach is signif-

icantly better than existing risk detection methods. 

Calculate T-value: Calculate the T-value using the following formula: 

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (14) 

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and 

S2 are the standard deviations of the two groups, and n1 and n2 are the sample sizes of 

the two groups. Then degrees of freedom have been determined (df) using the following 

formula: 

df = n1 + n2 − 2  (15) 

Yes No

9 MS A short-term attack that decreases the CV value 65 No No

10 C A long-term attack that decreases the SP value 28
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and 𝛽𝑀 . This classification provides 𝐻𝑚𝑝𝑖  for further interval analysis such that 

𝐹(𝑋)𝑁𝑒𝑤 identifies the risks (Figure 8). According to the discussions, the steps for con-

ducting the T-test is given as follows. 

t-Test Analysis 

Initially, industrial processes are analyzed with the help of the industrial wireless 

communication process. The cyber risk related data is collected with the help of the com-

munication process. During the analysis, the fuzzy harmonic approach is utilized to eval-

uate the industrial performance to detect the risk factor. The collected risk related infor-

mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 

null hypothesis and alternative hypothesis. The null hypothesis is that there is no signifi-

cant difference in the effectiveness of the fuzzy harmonic approach and existing risk de-

tection methods. The alternative hypothesis is that the fuzzy harmonic approach is signif-

icantly better than existing risk detection methods. 

Calculate T-value: Calculate the T-value using the following formula: 

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (14) 

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and 

S2 are the standard deviations of the two groups, and n1 and n2 are the sample sizes of 

the two groups. Then degrees of freedom have been determined (df) using the following 

formula: 

df = n1 + n2 − 2  (15) 

No

11 IO Attempt to maintain previous sensor value 94 Yes No

12 MS A long-term attack that decreases the SP value 103
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and 𝛽𝑀 . This classification provides 𝐻𝑚𝑝𝑖  for further interval analysis such that 

𝐹(𝑋)𝑁𝑒𝑤 identifies the risks (Figure 8). According to the discussions, the steps for con-

ducting the T-test is given as follows. 

t-Test Analysis 

Initially, industrial processes are analyzed with the help of the industrial wireless 

communication process. The cyber risk related data is collected with the help of the com-

munication process. During the analysis, the fuzzy harmonic approach is utilized to eval-

uate the industrial performance to detect the risk factor. The collected risk related infor-

mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 

null hypothesis and alternative hypothesis. The null hypothesis is that there is no signifi-

cant difference in the effectiveness of the fuzzy harmonic approach and existing risk de-

tection methods. The alternative hypothesis is that the fuzzy harmonic approach is signif-

icantly better than existing risk detection methods. 

Calculate T-value: Calculate the T-value using the following formula: 

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (14) 

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and 

S2 are the standard deviations of the two groups, and n1 and n2 are the sample sizes of 

the two groups. Then degrees of freedom have been determined (df) using the following 

formula: 

df = n1 + n2 − 2  (15) 

Yes

13 C Attempt to maintain previous sensor value 82 No No

14 IO A short-term attack that decreases the CV value 8 No

15 IO Attempt to maintain previous sensor value 29
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The interrupt reduces as the 𝑀 increases; out of 114, 68 are mimic classifying 𝛼𝑀 

and 𝛽𝑀 . This classification provides 𝐻𝑚𝑝𝑖  for further interval analysis such that 

𝐹(𝑋)𝑁𝑒𝑤 identifies the risks (Figure 8). According to the discussions, the steps for con-

ducting the T-test is given as follows. 

t-Test Analysis 

Initially, industrial processes are analyzed with the help of the industrial wireless 

communication process. The cyber risk related data is collected with the help of the com-

munication process. During the analysis, the fuzzy harmonic approach is utilized to eval-

uate the industrial performance to detect the risk factor. The collected risk related infor-

mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 

null hypothesis and alternative hypothesis. The null hypothesis is that there is no signifi-

cant difference in the effectiveness of the fuzzy harmonic approach and existing risk de-

tection methods. The alternative hypothesis is that the fuzzy harmonic approach is signif-

icantly better than existing risk detection methods. 

Calculate T-value: Calculate the T-value using the following formula: 

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (14) 

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and 

S2 are the standard deviations of the two groups, and n1 and n2 are the sample sizes of 

the two groups. Then degrees of freedom have been determined (df) using the following 

formula: 

df = n1 + n2 − 2  (15) 

No No

16 C A long-term attack that decreases the SP value 64 No

17 MS Attempt to maintain previous sensor value 98
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The interrupt reduces as the 𝑀 increases; out of 114, 68 are mimic classifying 𝛼𝑀 

and 𝛽𝑀 . This classification provides 𝐻𝑚𝑝𝑖  for further interval analysis such that 

𝐹(𝑋)𝑁𝑒𝑤 identifies the risks (Figure 8). According to the discussions, the steps for con-

ducting the T-test is given as follows. 

t-Test Analysis 

Initially, industrial processes are analyzed with the help of the industrial wireless 

communication process. The cyber risk related data is collected with the help of the com-

munication process. During the analysis, the fuzzy harmonic approach is utilized to eval-

uate the industrial performance to detect the risk factor. The collected risk related infor-

mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 

null hypothesis and alternative hypothesis. The null hypothesis is that there is no signifi-

cant difference in the effectiveness of the fuzzy harmonic approach and existing risk de-

tection methods. The alternative hypothesis is that the fuzzy harmonic approach is signif-

icantly better than existing risk detection methods. 

Calculate T-value: Calculate the T-value using the following formula: 

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (14) 

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and 

S2 are the standard deviations of the two groups, and n1 and n2 are the sample sizes of 

the two groups. Then degrees of freedom have been determined (df) using the following 

formula: 

df = n1 + n2 − 2  (15) 

Yes No

18 IO A short-term attack that decreases the CV value 78 No

19 MS 91 Yes No

20 C 89
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The interrupt reduces as the 𝑀 increases; out of 114, 68 are mimic classifying 𝛼𝑀 

and 𝛽𝑀 . This classification provides 𝐻𝑚𝑝𝑖  for further interval analysis such that 

𝐹(𝑋)𝑁𝑒𝑤 identifies the risks (Figure 8). According to the discussions, the steps for con-

ducting the T-test is given as follows. 

t-Test Analysis 

Initially, industrial processes are analyzed with the help of the industrial wireless 

communication process. The cyber risk related data is collected with the help of the com-

munication process. During the analysis, the fuzzy harmonic approach is utilized to eval-

uate the industrial performance to detect the risk factor. The collected risk related infor-

mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 

null hypothesis and alternative hypothesis. The null hypothesis is that there is no signifi-

cant difference in the effectiveness of the fuzzy harmonic approach and existing risk de-

tection methods. The alternative hypothesis is that the fuzzy harmonic approach is signif-

icantly better than existing risk detection methods. 

Calculate T-value: Calculate the T-value using the following formula: 

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (14) 

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and 

S2 are the standard deviations of the two groups, and n1 and n2 are the sample sizes of 

the two groups. Then degrees of freedom have been determined (df) using the following 

formula: 

df = n1 + n2 − 2  (15) 

Yes No

Note:
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communication process. The cyber risk related data is collected with the help of the com-

munication process. During the analysis, the fuzzy harmonic approach is utilized to eval-

uate the industrial performance to detect the risk factor. The collected risk related infor-

mation is prepared and analyzed using statistical methods. Define Hypotheses: Define the 
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The risk is focused on Io devices or controllers (c) or the monitoring systems (MS).
Based on the risk factor, Mo is initialized that is handled under M and Ni∀t. If the Spo is high
then Roc is less, however, the variations are less for different operation levels. Therefore
objp(t)

−1 maximum is achieved as high compared to Objp(t). At some time instance such
as Thrat > θThrat

i the n ObjP(t)
−1 is also high. This indicates fewer outages for the varying

processes. Based on the M, the interrupt analyses are presented in Figure 8.
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The interrupt reduces as the M increases; out of 114, 68 are mimic classifying αM
and βM. This classification provides Hmpi for further interval analysis such that F(X)New
identifies the risks (Figure 8). According to the discussions, the steps for conducting the
T-test is given as follows.

t-Test Analysis

Initially, industrial processes are analyzed with the help of the industrial wireless
communication process. The cyber risk related data is collected with the help of the
communication process. During the analysis, the fuzzy harmonic approach is utilized to
evaluate the industrial performance to detect the risk factor. The collected risk related
information is prepared and analyzed using statistical methods. Define Hypotheses: Define
the null hypothesis and alternative hypothesis. The null hypothesis is that there is no
significant difference in the effectiveness of the fuzzy harmonic approach and existing
risk detection methods. The alternative hypothesis is that the fuzzy harmonic approach is
significantly better than existing risk detection methods.

Calculate T-value: Calculate the T-value using the following formula:

T = (X1 − X2)/(sqrt((S12/n1) + (S22/n2))) (17)

In Equation (16) X1 and X2 are the means of the two groups being compared, S1 and S2
are the standard deviations of the two groups, and n1 and n2 are the sample sizes of the two
groups. Then degrees of freedom have been determined (df) using the following formula:

df = n1 + n2 − 2 (18)

Determine the critical value of T using a T-table or statistical software. This is based on
the desired significance level (usually 0.05 or 0.01) and the degrees of freedom. Compare
T-value and Critical Value: Compare the calculated T-value with the critical value. If the
calculated T-value is greater than the critical value, then the null hypothesis can be rejected,
and the alternative hypothesis is accepted. This means that the fuzzy harmonic approach is
significantly better than existing risk detection methods.

Interpret Results: Interpret the results and draw conclusions about the effectiveness of
the fuzzy harmonic approach for cyber risk detection in industrial wireless communication.
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4. Discussion

The discussion is presented using the metrics risk detection, outcome interrupt, halted
schedules, max. interrupt span and detection time. The variants are schedules (up to 15)
and interrupt (up to 60). The comparative methods are A-HIDS [23], SLE-AD [17], and KD-
TCNN [18]. Compared to these methods, the introduced approach uses the fuzzy set and
harmony optimization algorithm function which improves the overall risk identification
and detection rate. In addition, fuzzy set and optimization problem solves the optimization
problem and minimizes the detection rate.

4.1. Risk Detection

This proposed technique achieves high cyber risk detection in different wireless
communication-based technologies and relies on production outcome and risk for improv-
ing profitable outcomes (Refer to Figure 9). The prediction plan for internal and external
operations is made as security threats are high in industry 4.0; the cyber risk is mitigated
due to the wireless nature and remote operability. The overlapping sources and cyber
security mitigation is identified in processing units through a fuzzy harmony search al-
gorithm. Based on the cyber threat mitigation in different technologies analyzed with
the already stored industrial data, this assessment is performed for better decisions in
the particular communication processing. Therefore, the identification of security threats
in processing units of industry 4.0 improves the profitable outcome for preventing risks
based on accumulated data, and hence fuzzy optimal operation is achieved. The varying
threshold value is identified for further prediction plans for sequential production achieved.
In the proposed technique, the harmony search algorithm mimics the adversary impacts
based on production outcome and process interruption identification maximizing cyber
risk detection.
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4.2. Outcome Interrupt

The classification of production outcome and process interruption/halt is performed
for all the secure industrial operations and planned outcomes are observed from industry
4.0 for improving communication security. This proposed technique is aided for satisfying
maximum interrupt span with fewer risk mitigation admits using the fuzzy operation.
With the use of fuzzy harmony search and ERDAT, a high objective function is achieved
to detect and mitigate cyber risk detection. Using this mimicking operation, the fuzzy
threshold varies, each source mitigation instance is identified through fuzzy harmony
search. If any risk occurrence is identified, a new communication network is processed
for identifying adversary impact. In this article, the outcome interrupt is less for either
production outcome or risk interrupts. In this manuscript, this process classification helps
the wireless communication industry 4.0 to reduce data analysis time and detection time
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for increasing cyber risk mitigation and profitable outcome in the industries. For high data
processing and profitable outcome, fuzzy optimization is performed to identify the risk in
communication networks and prevent its impact. The fuzzy threshold occurred production
is discontinued; the new source is generated for processing in which the mimic operation
achieves less outcome interrupts, as represented in Figure 10.
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4.3. Halted Schedules

In Figure 11, the production outcome and process interruption/halting changes for
each communication network is computed to prevent further adversary impacts. Fuzzy
optimization is performed based on mimicking operations and helps identify the process-
ing interruption and halt occurrence in industries. If any disconnection takes place, the
harmony search algorithm generates a new source for products that enhance the accuracy
and convergence rate of data processing and production monitoring observed from the
industry. In this process, the overlapping takes place and the search performs mimics
operations for high objective functions identified through FHS. Improving communication
security using cyber risk detection is observed from industry 4.0 for updating the previous
security with current cyber threat mitigations. The fuzzy optimization used for achieving
maximum or minimum objective output based on admit of the above factors is computed
continuously. In this process, classification is performed to prevent risks with high security
in industry 4.0.
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4.4. Maximum Interrupt Span

The maximum interrupt span across different communication technologies is identified
for ease of computing production outcome and risk routinely for improving communi-
cation security as illustrated in Figure 12. In this proposed cyber risk detection method,
satisfying less maximum interrupt span in production outcome processing is identified
using mediate acceptable range through mimicking operation at different communication
networks. For instance, production outcome and risk occurrence are addressed to pre-
vent fuzzy threshold, which mimics the adversary impact using production factors such
as process interruption/halt and production outcome. Cyber risk mitigation is due to
identifying adversary impacts and maximum interrupt span in the production process,
whereas the optimal decision is made for the admitted plan is preceded using the above
Equations (6)–(11). In this proposed technique, the mimicking operation is computed to
enhance the fuzzy harmony search algorithm. Instead, the accumulated data processing
for profitable outcomes in industry 4.0 prevents risks through the fuzzy operation. Based
on the prediction plan, the maximum and minimum objective function is achieved.
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4.5. Detection Time

In Figure 13, the fuzzy harmony search extracts data observed from the industry
and then processes it to gain better decisions to identify security threats in communica-
tion networks. The FHS can be useful in adjusting the mimicking crossing/failing rate
behind the fuzzy threshold for identifying risk and then disconnecting the risk occurred
processing in that source, using the algorithm to find the optimal outcome. The data
processing and production monitoring are the two main factors performed through fuzzy
operation for improving communication security and risk detection, as it does not require
interruption/halting, the source is detected. The fuzzy harmony search algorithm is used
for performing a mimicking operation based on the condition ROC(ObjF(t)) ∈ [−∞, ∞]
and αM ∈ [0, ∞] or αM /∈ [0, ∞] for a better decision. The aforementioned two factors are
processed using fuzzy optimization for identifying threshold and risk occurrence between
the risk and scheduled production outcome. If the accumulated data processing is analyzed
in this technique, high production outcome is achieved. The successful profitable outcome
is satisfied using the fuzzy harmony search, for which the proposed technique satisfies less
detection time. The comparative analysis is summarized in Tables 3 and 4 for the varying
schedules and Interrupts.
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Table 3. Comparative Analysis of Schedules.

Metrics A-HIDS SLE-AD KD-TCNN ERDAT

Risk Detection (%) 68.4 78.74 85.38 94.527

Outcome Interrupts 29 21 10 5

Halted Schedules 4 3 2 1

Max. Interrupt Span
(min) 51.27 38.05 28.73 20.264

Detection Time (s) 20.75 16.42 12.15 8.611

Table 4. Comparative Analysis of Interrupts.

Metrics A-HIDS SLE-AD KD-TCNN ERDAT

Risk Detection (%) 71.61 78.34 85.03 91.148

Outcome Interrupts 29 20 12 5

Halted Schedules 14 3 2 1

Max. Interrupt Span
(min) 50.97 40.89 32.34 20.863

Detection Time (s) 21.17 17.55 12.28 8.954

The proposed technique achieves 8.52% high-risk detection, 12.5% fewer outcome
interrupts, 8.3% fewer halted schedules, 8.08% less interrupt span, and 7.94% less detec-
tion time.

The proposed technique achieves 8.55% high-risk detection, 12.59% fewer outcome
interrupts, 8.3% fewer halted schedules 7.69% less interrupt span, and 7.8% less detec-
tion time.

5. Conclusions

This article introduced an explicit risk detection and assessment technique for handling
adversary impacts in industrial communication networks. An Explicit Risk Detection and
Assessment Method (ERDAT) reduces cyber threats in the manufacturing process, to
improve communication security. The method employs a fuzzy harmony search algorithm
to detect the threat and mitigate its effects. The harmony search algorithm simulates the
effect of an opponent by manipulating variables related to production, such as the initiation,
continuation, and termination of a process, and the results of that production. The search
procedure uses an operation that is similar to the output of the approved plan to maximize
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the value of the objective function. The factors used in conjunction with fuzzy logic to
determine a cyber risk represent a financial or non-financial hazard. An acceptable range is
calculated by dividing the number of times the risk and planned production outcomes are
similar from least to greatest to get the fuzzy threshold. Risks associated with the imitating
crossing or falling beneath the threshold for the interruption/halting of production are
therefore recognized and their source determined. For security reasons, the detecting
communication source has been cut off from the manufacturing process. This helps to
achieve 8.52% high-risk detection, 12.5% fewer outcome interrupts, 8.3% fewer halted
schedules, 8.08% less interrupt span, and 7.94% less detection time. Future research and
development have focused on side-channel research utilizing machine learning approaches
to identify minimal attacks, as the attacker may have exploited a weakness unknown to
security organizations. Side-channel analysis will help identify and prevent cyber–physical
assaults by finding nil vulnerabilities early in the attack lifecycle.
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