
Citation: Kausar, A.; Ahmad, I.;

Zhao, T.; Aldaghri, O.; Eisa, M.H.

Polymer/Graphene Nanocomposites

via 3D and 4D Printing—Design and

Technical Potential. Processes 2023, 11,

868. https://doi.org/10.3390/

pr11030868

Academic Editors: Mohammad

Boshir Ahmed, Md Ashraf Hossain,

Mohammad Shamsuddin Ahmed

and Jivan Thakare

Received: 11 February 2023

Revised: 3 March 2023

Accepted: 10 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Review

Polymer/Graphene Nanocomposites via 3D and 4D Printing—Design
and Technical Potential
Ayesha Kausar 1,2,3,* , Ishaq Ahmad 1,2,3, Tingkai Zhao 1,4, O. Aldaghri 5 and M. H. Eisa 5

1 NPU–NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering,
Northwestern Polytechnical University, Xi’an 710072, China

2 UNESCO–UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS,
Somerset West 7129, South Africa

3 NPU–NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering,
National Centre for Physics, Islamabad 44000, Pakistan

4 School of Materials Science & Engineering, Northwestern Polytechnical University, Xi’an 710072, China
5 Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh 13318, Saudi Arabia
* Correspondence: dr.ayeshakausar@yahoo.com

Abstract: Graphene is an important nanocarbon nanofiller for polymeric matrices. The polymer–graphene
nanocomposites, obtained through facile fabrication methods, possess significant electrical–thermal–
mechanical and physical properties for technical purposes. To overcome challenges of polymer–
graphene nanocomposite processing and high performance, advanced fabrication strategies have
been applied to design the next-generation materials–devices. This revolutionary review basically
offers a fundamental sketch of graphene, polymer–graphene nanocomposite and three-dimensional
(3D) and four-dimensional (4D) printing techniques. The main focus of the article is to portray
the impact of 3D and 4D printing techniques in the field of polymer–graphene nanocomposites.
Polymeric matrices, such as polyamide, polycaprolactone, polyethylene, poly(lactic acid), etc. with
graphene, have been processed using 3D or 4D printing technologies. The 3D and 4D printing
employ various cutting-edge processes and offer engineering opportunities to meet the manufactur-
ing demands of the nanomaterials. The 3D printing methods used for graphene nanocomposites
include direct ink writing, selective laser sintering, stereolithography, fused deposition modeling
and other approaches. Thermally stable poly(lactic acid)–graphene oxide nanocomposites have been
processed using a direct ink printing technique. The 3D-printed poly(methyl methacrylate)–graphene
have been printed using stereolithography and additive manufacturing techniques. The printed
poly(methyl methacrylate)–graphene nanocomposites revealed enhanced morphological, mechanical
and biological properties. The polyethylene–graphene nanocomposites processed by fused diffusion
modeling have superior thermal conductivity, strength, modulus and radiation- shielding features.
The poly(lactic acid)–graphene nanocomposites have been processed using a number of 3D print-
ing approaches, including fused deposition modeling, stereolithography, etc., resulting in unique
honeycomb morphology, high surface temperature, surface resistivity, glass transition temperature
and linear thermal coefficient. The 4D printing has been applied on acrylonitrile-butadiene-styrene,
poly(lactic acid) and thermosetting matrices with graphene nanofiller. Stereolithography-based
4D-printed polymer–graphene nanomaterials have revealed complex shape-changing nanostructures
having high resolution. These materials have high temperature stability and high performance for
technical applications. Consequently, the 3D- or 4D-printed polymer–graphene nanocomposites
revealed technical applications in high temperature relevance, photovoltaics, sensing, energy storage
and other technical fields. In short, this paper has reviewed the background of 3D and 4D print-
ing, graphene-based nanocomposite fabrication using 3D–4D printing, development in printing
technologies and applications of 3D–4D printing.
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1. Introduction

Graphene has been used as an effective nanocarbon nanofiller for the polymers [1].
Graphene has been filled in numerous thermoplastics–thermosets, rubbers and conduct-
ing polymeric matrices. The nanocomposite properties have been found to enhance with
small contents of graphene [2]. Various facile techniques have been used to attain the
polymer–graphene nanocomposites having fine nanoparticle dispersion and superior phys-
ical properties [3]. The progressive polymer–graphene nanomaterials have been found
useful in technical applications, such as energy, electronics, biomedical and engineering ap-
plications [4]. The three-dimensional (3D) and four-dimensional (4D) printing approaches
have been used to design the polymer–graphene nanomaterials [5–7]. The 3D printing
technique contains various processes, equipment and materials for the formation of three-
dimensional objects. This approach involves the formation of 3D-printed objects using
stereolithography, selective laser sintering, fused deposition modeling and other methods.
The 4D printing technology is quite similar to 3D printing, however it uses advanced
materials responsive towards heat, light, moisture, etc. The 3D and 4D printing techniques
have been found applicable for the fabrication of graphene-based nanocomposites [8,9].
The 3D- and 4D-printed polymer–graphene revealed exclusive nanostructures and superior
characteristics. The use of 3D and 4D printing for polymer–graphene nanomaterials led to
several industrial developments in this field [10,11].

This review basically delivers fundamentals of graphene, polymer–graphene nanocom-
posites and 3D and 4D printing techniques. The main focus of this review is to portray
the design, features and potential of 3D- and 4D-printed polymer–graphene nanocompos-
ites. The review outline contains Section 1, i.e., Introduction; Section 2 on graphene and
polymer–graphene nanocomposites; Section 3 for essential features of 3D and 4D printing
techniques; Section 4 dedicated to 3D–4D printing polymeric–graphene nanocomposites;
Section 5 explaining the working principle or mechanism of 3D–4D printing technology
for polymeric–graphene nano-composites; Section 6 concerning the potential of 3D–4D
printing polymeric–graphene nanocomposites; and finally, Section 5 on viewpoint and con-
clusions. All the sections thoroughly and comprehensively describe the outlined contents.
In this leading-edge review, various notable prospects of the 3D–4D printing technology for
polymeric–graphene nano-composites have been highlighted. Especially, the design versa-
tilities, essential features and significance of 3D–4D-printed polymer–graphene nanocom-
posites have been stated. In this regard, indispensable aspects of various 3D–4D-printed
nanocomposite systems prepared using polymers and graphene have been considered. To
the best of knowledge, such a specific recent review on 3D–4D-printed polymer–graphene
nanocomposites has not been seen in literature before with such well-arranged and well-
interpreted recent literature and specified outline. However, on this particular review topic,
some previous research reports have been observed, yet the reported literature is not in a
compiled and updated form to portray the current state and potential of 3D–4D-printed
polymer–graphene nanocomposite technology. Furthermore, future advances in the field
of 3D–4D-printed nanocomposites are not possible for scientists–researchers before getting
prior knowledge of the recent assembled literature. Therefore, this revolutionary review is
designed to compile and discuss significant recent literature and advancements of these
nanocomposites fabricated by 3D–4D printing techniques. In a few words, this article
proposes a groundbreaking overview on the potential of polymer and graphene-based
nanomaterials manufactured using printing technologies. Despite the notable properties
and technical applications of the printing techniques, dedicated future research efforts are
required to form high-performance 3D–4D-printed polymer–graphene nanocomposite to
overcome the related challenges.

2. Graphene and Polymer–Graphene Nanocomposites

Graphene is a one-atom-thick two-dimensional nanocarbon [12]. Among carbon
nanoparticles, graphene has been designated as a significant nanofiller [13]. Graphene has
also been used as a source material to form other nanocarbons [14]. Graphene has a honey-
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comb lattice structure, consisting of sp2 hybridized carbon atoms [15]. In graphite, graphene
can be seen as stacked nanosheets, held together by van der Waals forces (Figure 1) [16,17].
Graphene has large specific surface area, high Young’s modulus, strength, thermal con-
ductivity, electron mobility and other essential characteristics [18]. Several modified forms
of graphene have also been prepared, such as graphene oxide and reduced graphene ox-
ide [19,20]. Graphene oxide is the most frequently explored oxidized form of graphene,
which is usually prepared by Hummer’s method [21]. Further, the reduction of graphene
oxide has been performed to obtain reduced graphene oxide [22].
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Several manufacturing approaches—such as non-covalent process [23], covalent re-
actions [24], chemical deposition [25], electrochemical way [26], electrophoresis [27], hy-
drothermal technique [28], solvothermal growth [29,30] and several physical deposition
techniques [31,32]—have been used to form graphene and functional graphene. The non-
covalent methods develop non-covalent interactions between graphene nanosheets and
other molecules. Graphene may develop π–π stacking interactions [33,34], electrostatic
connections [35] and hydrophobic interactions [36]. Covalent modification of graphene may
develop covalent bonding of nanosheets with different molecules through atom transfer
radical polymerization [37,38], click chemistry [39] and other methods. Then the in-situ
process has also been applied to develop the interactions of nanoparticles to the graphene
surface [40–42]. In polymeric nanocomposites, graphene and modified graphene forms
have been used as nanofillers. Owing to unique structure and properties, graphene has
wide-ranging applications in technical fields, including energy devices, electronics, biomed-
ical and nanocomposites [43,44]. Graphene dispersion has been considered important to
form high-performance polymer–graphene nanocomposites [45].

Graphene has been developed as a cost-effective nanofiller for polymers having
exciting physical properties [46]. Graphene has been filled in the polymers using several
facile fabrication methods [47]. In this regard, graphene dispersion and matrix-nanofiller
interactions have been used to enhance the compatibility of the nanocomposites [48]. The
functional forms of graphene have capability of better dispersion and interface formation
with the polymers. The resulting polymer–graphene nanocomposites have a number of
superior characteristics, such as electrical, mechanical, thermal, non-flammability and other
physical properties (Figure 2) [49].

Incidentally, several polymers and fabrication methods have been used to form
the polymer–graphene nanocomposites. Zhang et al. [50] formed the polyethylene gly-
col and graphene-based nanocomposites through solution technique. The nanocompos-
ites were investigated for graphene dispersion and thermal stability properties. Liu
and co-workers [51] produced the polyethylene glycol–graphene-derived nanocompos-
ites via freezing–drying method. The nanocomposites have been applied as biocom-
patible systems [52]. Zhang et al. [53] used the in-situ technique to manufacture the
polyaniline–graphene nanocomposite. The aniline monomer was adsorbed on the graphene
surface and then polymerized using initiator [54,55]. The resulting polyaniline–graphene
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nanocomposite was used to form the stretchable electronics [56,57]. Similarly, a number of
other thermoplastic, thermosets and rubbery polymers have been reinforced with graphene
to fabricate the nanocomposites [58]. Figure 3 portrays the multifunctional application
areas of the high-performance polymer–graphene nanocomposites.
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3. Features of 3D and 4D Printing Techniques

The 3D printing is an efficient fabrication technique to develop 3D-printed objects,
using appropriate processes [59]. Over past decades, 3D printing has emerged as a signif-
icant technology [60]. The controlled deposition of printable material is usually needed
for facile 3D printing. An important 3D process is the layered deposition technique, which
is also known as additive manufacturing [61,62]. The efficiency of 3D printing technique
depends upon the choice of printable material, morphology, cost, structural complexity and
selection of manufacturing process [63]. Moreover, in additive manufacturing technique,
the structural geometry depends on the complexity of method [64]. In addition to additive
method, the subtractive manufacturing approach has been effectively used to form the
3D-printed objects [65]. Stereolithography, selective laser sintering, fused deposition mod-
eling, laminated object manufacturing, selective layer melting, electron beam melting, etc.
have been used for the 3D printing. The printing processes have relative advantages and
disadvantages to be employed for the material fabrication. Figure 4 shows the commercially
available 3D printing processes having low cost and time effectiveness. Table 1 shows the
advantages and challenges related to the 3D additive manufacturing process.
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Table 1. Advantages and challenges of 3D additive manufacturing [64]. Reproduced with permission
from Elsevier.

Advantages Challenges

Formation of customized products from
small batches, as compared to traditional

mass production methods

• Production cost
• Production speed must be improved

Possibility to produce 3D models directly
without using any tools and molds is

not required.

• Modification of additive manufacturing
approach and other 3D printing approaches

• Development of additive manufacturing
beyond rapid prototyping

• Formation of direct components and products

Can be designed in the form of digital files
to easily share and facilitate the

modification and customization of
components and products

• To improve manufacturing efficiency
• To develop and standardize new materials

Material can be saved due to the additive
nature of the process. The waste materials
(powder, resin) during manufacturing can

be reused.

• Post processing is required
• To recycle the support structure materials by

minimizing the need through a good
build-up orientation

Possibility to achieve novel and
complex structures

• To develop multi-material and
multicolor systems

Very low porosity of final products

• Stepping effect may arise from placing one
layer on top of another for producing
finishing layers

• To validate mechanical and
thermal properties

Due to the distribution, the direct
interaction between local consumer or

client and producer is possible.

• Issues such as intellectual property rights and
nonlinear collaboration with ill-defined roles
and responsibilities

Efficient printing processes, such as FDM,
SLA, SLS, etc.

• Designers and engineers with deficit skills in
additive manufacturing and other 3D
printing approaches

Evolutions in printing technologies led to the invention of 4D printing [66]. Unlike
3D printing, 4D printing involves self-assembling of printed materials in response of
external stimuli [67]. The 4D printing processes have been found innovative due to stimuli
responsive programming [68]. Figure 5 proposes an outline of the 4D printing technology.
Compared with 3D printing, 4D printing comprises time dimensions and monitoring. The
4D printing technique has been used for the fabrication of multipurpose next-generation
sensors, actuators, self-assembling structures, robotics and other dynamic devices [69,70].
The 3D and 4D printing methods have been used in the fields of aerospace, automotive,
robotics, electronics, medical implants, etc. [71,72]. Both the 3D and 4D printing procedures
demand the control of manufacturing parameters, which in turn control the mechanical
and geometrical properties of the printed objects [73,74]. In addition to the polymers or
nanocomposites, the 3D and 4D printing techniques have also been used for metal-based
materials [75]. Consequently, the advanced printing technologies have potential for future
designing and manufacturing of the advanced materials [76].
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4. 3D–4D Printing Polymeric–Graphene Nanocomposites

Since past decades, significant advancements have been observed in the field of 3D and
4D printing technologies [77]. The 3D and 4D printing have been applied on thermoplastic
polymers, organic–inorganic nanomaterials, metals, alloys and other materials. The 3D- and
4D-printed graphene nanomaterials have been investigated for advanced characteristics,
processing, technical potential and challenges [78]. The 3D printing approaches used
for the graphene nanomaterials include direct ink writing [79], inkjet 3D printing [80],
selective laser sintering (SLS) [81], stereolithography (SLA) [82], fused deposition modeling
(FDM) [83], extrusion printing [84], binder-jet printing [85] and others. Figure 6 presents
set-ups for some important printing techniques used. Direct 3D printing is based on
extruding a viscous material from a pressurized syringe to create 3D shape (Figure 6a). The
syringe head can move in three dimensions, whereas the platform is stationary to form
layer by layer. FDM printer functions on controlled extrusion of thermoplastic filaments
(Figure 6b). In FDM, filaments melt into a semi-liquid state at nozzle and extruded layer
by layer on platform where it solidifies into final parts. The printed product quality is
controlled by varying the printing parameters. In stereolithography, a controlled UV-laser
is applied to resin reservoir for photocuring and formation of a patterned layer (Figure 6c).
Characteristic polymers used in SLA include acrylic and epoxy resins. Selective laser
sintering technique is similar to SLA, as both techniques are based on powder processing.
However, SLS uses a laser beam for controlled path scans and printing, instead of using a
liquid binder (Figure 6d). Using high-power lasers fuses powders by molecular diffusion.
The product resolution is unusually determined by powder particle size, laser power, scan
speed, etc.

Selection of an appropriate printing approach is important to attain the desired nano-
material with superior properties. Consequently, the performance of printed material
depends on the polymer matrix, graphene dispersion, graphene functionality, matrix-
nanofiller interaction, interface formation and printing parameters (type of process, print-
ing direction, ink viscosity, etc.). The 3D-printed polymer–graphene nanomaterials have
been studied for the electrical, thermal, mechanical and other essential physical char-
acteristics [86]. In this regard, thermoplastic polymers have been used for 3D printing.
Nevertheless, some thermosets and rubbery polymers have also been processed using 3D



Processes 2023, 11, 868 8 of 25

printing. The 3D direct ink writing process involves the extrusion of polymer–graphene
nanocomposite using the pressurized syringe [87].
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Reproduced with permission from Elsevier.

The syringe head moves three dimensionally to deposit the layer-by-layer material.
The material viscosity and deposition speed define the product quality and properties of
the printed nanocomposite. Moreover, the FDM has been found effective for printing the
polymeric nanocomposite [88]. The thermoplastic polymers including poly(lactic acid),
polycarbonate, acrylonitrile butadiene styrene, etc. have been processed through FDM. In
this method, usually the melt extrusion of thermoplastic material and resulting filament
can deposit layer by layer of material. The material is then solidified to obtain the end
product. The product quality of FDM- based 3D-printed material relies on the printing
parameters. SLA is another widely used 3D printing process. The SLA has been applied for
the photopolymers and UV laser curing materials [89]. Using an SLA-based 3D-printing
approach, the acrylic polymers and epoxy resins have been printed. Generally, the high-
resolution objects have been developed via 3D printing, however it is an expensive method.
For powder processing, the SLS technique has been used [90]. Typically, the powder
material is sintered by heating with laser. The thermoplastic polymers, such as polyamide
and polycaprolactone, have been processed using the SLS technique. The product quality
and resolution of SLS-based 3D- printed objects depend on the particle size, laser power,
scan speed and other parameters.

All these 3D techniques have relative advantages and disadvantages, which need to be
considered before the selection of a printing process [91,92]. Qian and co-researchers [93]
used the 3D direct ink printing technique for the poly(lactic acid)–graphene oxide nanocom-
posite. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)
revealed enhanced melting temperature and thermal degradation temperature of the
poly(lactic acid)–graphene oxide nanocomposite, relative to the neat poly(lactic acid). The
enhancements in melting temperature of the 3D-printed poly(lactic acid)–graphene ox-
ide nanocomposite was attributed to nanofiller dispersion and plasticity performance.
Moreover, hydrogen bonding between the poly(lactic acid)–graphene oxide enhanced the
matrix-nanofiller compatibility and led to high thermal stability of the nanocomposites



Processes 2023, 11, 868 9 of 25

(compared with the pristine polymer). Consequently, mechanical testing revealed high
tensile strength of 3D-printed material, with 1.6 wt.% graphene oxide. The tensile strength
was found 67.4% higher than the neat printed polymer. The growth in the strength of
nanocomposites was due to homogeneous nanoparticle distribution in polymer using a
printing technique leading to fine reinforcement effects. Thus, the 3D direct ink printing
has been studied as an effective method to form high-performance nanocomposites.

Markandan and co-workers [94] fabricated the 3D-printed poly(methyl methacrylate)–
graphene nanocomposite via SLA process. The 0.02–0.05 wt.% nanofiller contents enhanced
the storage modulus and quasistatic failure strength of the poly(methyl methacrylate)–
graphene nanocomposite. The enhancement in strength properties were credited to the
facile SLA-based 3D printing approach used, causing better graphene dispersion and
matrix-nanofiller interactions. Zou et al. [95] fabricated the digital light processing based
3D-printed poly(methyl methacrylate)–graphene nanocomposite. Inclusion of 1.0 wt.%
graphene enhanced the microwave absorption performance of printed materials. At thick-
ness of 2.1 mm, the maximum reflection loss of −54.4 dB was observed. Graphene addi-
tion and printing technique was accountable for enhanced radiation absorption features.
Mangal et al. [96] fabricated 3D-printed poly(methyl methacrylate)–graphene nanocom-
posite with superior tribological properties. Inclusion of 0.1 wt.% nanofiller enhanced the
surface hardness as p < 0.001 due to matrix-nanofiller compatibility. Salgado et al. [97]
printed the poly(methyl methacrylate)–graphene nanomaterials using a liquid crystal dis-
play 3D printer. Inclusion of 0.01–0.5 wt.% graphene in bar-shaped specimens inhibited
the microbial growth. Aati et al. [98] used additive manufacturing technology to print 3D
poly(methyl methacrylate)–graphene nanomaterials. The 3D- printed nanocomposite with
0.25 wt.% graphene had enhanced antimicrobial features for dental applications. The 3D
printing technology offered feasibility of developing high performance biocompatible and
antimicrobial nanocomposites with improved properties.

Jing et al. [99] designed FDM-based 3D printing low density polyethylene–graphene
nanocomposites. The FDM-based 3D-printed materials own high flexibility for struc-
tural designs. Moreover, superior mechanical properties were observed due to interfacial
bonding strength between matrix and nanofiller. In addition, graphene dispersion and
alignment by printing technique offered high electromagnetic interference shielding of
318 dB. The nanocomposites were suggested for the development of portable electronics
and smart devices. Mohan et al. [100] designed 3D-printed low-density polyethylene–
graphene nanoplatelets nanocomposites. Due to homogeneous nanofiller dispersion, the
reinforcement effect was observed in the form of increase in tensile strength by 13.2% and
flexural strength by 31.9%, relative to the non-printed compression molded nanocompos-
ites. Younes et al. [101] produced polyethylene Fe3O4@graphene using layer-based 3D
printing. Inclusion of Fe3O4@graphene and use of layer-based printing caused alignment
of nanocomposite with magnetic field. The 0.4–1.6 wt.% nanofiller revealed 90% alignment
in the matrix. The Young’s modulus of the nanocomposites was considerably enhanced
with nanofiller addition due to structure–mechanical property relationship and reinforce-
ment effect [102–104]. Jing et al. [105] designed the polyethylene–graphene nanoplatelet
nanocomposite using FDM-based 3D printing. Along the printing direction, through-
plane thermal conductivity of the polyethylene–graphene nanoplatelet was enhanced up
to 3.43 W m−1 K−1. However, lower thermal conductivity of the FDM-based 3D-printed
pristine polyethylene was observed ~0.40 Wm−1 K−1. The enhancement in thermal con-
ductivity was attributed to the development of complex morphology using FDM method
supporting the thermal transportation in the nanomaterials. Camargo et al. [106] applied
FDM-based 3D printing for the poly(lactic acid) and poly(lactic acid)–graphene nanocom-
posite. The 3D-printed materials were developed having complex geometries. The 3D
processed poly(lactic acid)–graphene nanocomposite revealed high tensile strength and
flexural strength, relative to neat printed polymer. Enhancement in the strength was sug-
gested to the maximum reinforcement effect due to the large surface area of contact between
the matrix and the nanofiller. The maximum reinforcement effect was obviously due to
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the FDM method applied. Ivanov et al. [107] developed poly(lactic acid) and poly(lactic
acid)–graphene nanocomposite via FDM-based 3D printing. Fine nanofiller dispersion led
to enhanced thermal conductivity of the nanocomposite, as compared to the pristine poly-
mer. Bustillos et al. [108] also fabricated the poly(lactic acid) and poly(lactic acid)–graphene
nanocomposite via FDM-based 3D printing technique. Figure 7 shows the morphology of
3D-printed scaffolds having interconnected porous structures. Well-defined pore size and
pore size distribution were observed. A gradient pore size was used to study the differ-
entiation and proliferation, as per the pore size distribution. Three-dimensional-printed
scaffold structures revealed porosity of 13.663.2% and full connectivity throughout the
structure. As compared to neat poly(lactic acid), inclusion of graphene nanofiller produced
rough and irregular surface due to porous nature of the PLA-graphene. Table 2 displays
the glass transition temperature (Tg) of 3D-printed and -non-printed poly(lactic acid) and
poly(lactic acid)–graphene nanocomposite. After 3D printing, an increase in Tg of the
filaments was observed due to the better interactions between the polymer and graphene
to form a stable structure. Moreover, crystallization was increased due to the nucleating
effect of the dispersed graphene nanoparticles. Figure 8 shows the load-displacement
curves obtained from nanoindentation of 3D-printed neat polymer and nanocomposite.
According to analysis, 3D-printed nanocomposite exhibited increase in elastic modulus
and resistance to displacement by 11% and 25%, respectively, as compared to neat polymer.
Due to effectiveness of FDM technique, the nanoparticle dispersion and bonding between
polymer and reinforcement were enhanced leading to improved mechanical properties.
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Table 2. Glass transition (Tg), crystallization (Tc) and melting temperatures (Tm) of
PLA and PLA-graphene filaments and 3D-printed samples [108]. PLA = poly(lactic acid);
PLA-graphene = poly(lactic acid)–graphene. Reproduced with permission from Wiley.

Sample Tg (C) Tm (C)

PLA filament 59.3 168.7

PLA-graphene filament 45.9 164.1

3D-printed PLA 60.7 168.5

3D-printed PLA-graphene 51.2 165.5



Processes 2023, 11, 868 11 of 25Processes 2023, 11, x FOR PEER REVIEW 12 of 26 
 

 

 
Figure 8. Representative load-displacement curves obtained from nanoindentation of 3D-printed 
poly(lactic acid) (PLA) and poly(lactic acid)–graphene (PLA-Graphene) [108]. Reproduced with per-
mission from Wiley. 

Kim et al. [109] applied conveyor-fused deposition-modeling-based 3D printing for 
the poly(lactic acid)–graphene nanocomposites. Moreover, high surface temperature and 
surface resistivity of 143.0 °C (for 25 V) and 118.0 Ω/sq, respectively, were observed for 
3D-printed honeycomb nanocomposite. The morphology of conveyor FDM-based 3D-
printed samples was studied using transmission electron microscopy (Table 3). The 3D-
printed samples revealed honeycomb morphology. Gloss and shine the poly(lactic acid)–
graphene nanocomposite micrographs appeared lesser than the pristine poly(lactic acid) 
sample. The results suggested that the brittleness of the polymer was decreased with the 
inclusion of the graphene nanofiller. According to TGA analysis, the nanocomposite fila-
ment had degradation temperature of 400 °C and char yield of 15%, indicating reasonably 
high thermal stability. The results revealed that the conveyor FDM-based 3D-printed 
nanocomposites were stable at high temperatures (Figure 9). 

Table 3. Morphology of 3D-printed honeycomb samples by transmission electron microscopy [109]. 
PLA–GR = poly(lactic acid)–graphene. Reproduced with permission from Springer. 

Sample Digital Images 
×6.5 

Magnification 

PLA 

  

PLA/GR 

  

Figure 8. Representative load-displacement curves obtained from nanoindentation of 3D-printed
poly(lactic acid) (PLA) and poly(lactic acid)–graphene (PLA-Graphene) [108]. Reproduced with
permission from Wiley.

Kim et al. [109] applied conveyor-fused deposition-modeling-based 3D printing for
the poly(lactic acid)–graphene nanocomposites. Moreover, high surface temperature and
surface resistivity of 143.0 ◦C (for 25 V) and 118.0 Ω/sq, respectively, were observed for 3D-
printed honeycomb nanocomposite. The morphology of conveyor FDM-based 3D-printed
samples was studied using transmission electron microscopy (Table 3). The 3D-printed
samples revealed honeycomb morphology. Gloss and shine the poly(lactic acid)–graphene
nanocomposite micrographs appeared lesser than the pristine poly(lactic acid) sample. The
results suggested that the brittleness of the polymer was decreased with the inclusion of the
graphene nanofiller. According to TGA analysis, the nanocomposite filament had degra-
dation temperature of 400 ◦C and char yield of 15%, indicating reasonably high thermal
stability. The results revealed that the conveyor FDM-based 3D-printed nanocomposites
were stable at high temperatures (Figure 9).

Table 3. Morphology of 3D-printed honeycomb samples by transmission electron microscopy [109].
PLA–GR = poly(lactic acid)–graphene. Reproduced with permission from Springer.
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The 4D printing techniques have been investigated for nanocomposite processing [110].
Figure 10 shows various processes and aspects of the 4D printing technique. Frequently
used 4D printing processes include direct ink writing, FDM, SLA and micro-stereolithography.
The 4D-printed complex nanostructures have been studied for different external stimuli. As
discussed above, 4D printing is an extended form of 3D printing with time constraint and
stimuli response features. The 4D-printed nanocomposites have been used to design the
smart shape memory objects. Using smart nanomaterials, such as graphene nanocomposites
and shape programming, usually results in unique shape change mechanisms for develop-
ing the 4D-printed objects. Wei et al. [111] applied the FDM-based 4D printing to form the
acrylonitrile–butadiene–styrene, poly(lactic acid) and graphene-derived nanocomposites.
The 5.6 wt.% graphene contents were successfully reinforced in 4D-printed materials for
computer-based models. The resulting nanocomposite had a linear thermal coefficient
of 75 ppm◦C−1. Thus, the use of appropriate printing process enhanced the capability of
material to appropriately expand under the effect of temperature elevation. Zarek and
co-workers [112] applied the SLA-based 4D printing technique to fabricate the printed
polymer–graphene nanomaterial. The 4D-printed nanocomposite revealed unique and
complex shape-changing structures, indicating the success of the SLA method (Figure 11).
The shape memory behavior has shown the applicability of the 3D process for various
printed models. The digital models were generated by commercial computer-aided design
(CAD) software (Autodesk Inventor, Mill Valley, CA, USA) modified with the printer soft-
ware. The printed structures have rigid wax-like surface, at room temperature. Above Tm,
the structures are flexible and elastomeric. The Tm of polycaprolactone was 55 ◦C. Under
deformation, the structures were fixed by cooling below Tm. Reheating the structures
recovered the original printed shape. The shape memory program was triggered by using
a heat gun and rising temperature up to 70 ◦C. The thermoset shape memory vascular
stents were printed. The design had submillimeter thicknesses and a large number of voids.
Moreover, a scaled Eiffel Tower and bird were printed. Thus, high resolution and complex
models were obtained with this approach.
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Figure 11. 4D shape-changing structures printed using stereolithography with a molten
macromethacrylate can impart shape memory to nearly any object: (a) A model cardiovascular
stent with a length of 3 cm, strut thicknesses of 600 µm and open cells of 2.5 mm × 2.5 mm, reverting
to its original shape at 70 ◦C. Printing such a model stent takes 1 h with the Asiga printer; (b) an
Eiffel Tower model, 6 cm tall, reverting to its original shape at 70 ◦C; and (c) a bird with a 3-cm wing
span reverting to its original shape at 70 ◦C [112]. Reproduced with permission from Wiley.
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Pyrolytic carbon microelectrodes have been considered as a promising alternative
to conventional metallic counterparts for technical applications [113]. The laser printing
technology has been used to convert graphene oxide or pyrolytic carbon into graphene-
like materials. The highly oriented pyrolytic graphite and graphene-based nanomaterials
have been applied as screen printing electrodes and other carbon electrode materials [114].
Chyan et al. [115] used a multiple pulsed laser technique to convert a wide range of
substrates into laser-induced graphene (LIG). The CO2 laser beam was applied to ini-
tiate the formation of graphene on the biodegradable substrates, such as cloth, paper,
potato skins, coconut shells and cork. Using LIG on these substrates renders the derived
nanomaterial useful for flexible micro-supercapacitors on renewable materials. Moreover,
high-temperature engineering polymers, such as Kevlar, Kapton, polysulfones, poly(ether
imide), etc., have been converted into LIG. In addition, crosslinked polystyrene has been
used as substrates for LIG formation. Ludvigsen et al. [116] fabricated pyrolytic carbon
microelectrodes by selective pyrolysis of SU-8 photoresist using irradiation with continu-
ous wave semiconductor-diode laser. The SU-8 precursor was effectively converted into
pyrolytic carbon upon laser irradiation. The highly porous structures were suggested for
electrode application in electrochemical energy storage and biosensing.

5. Working Principle or Mechanism of 3D–4D Printing Technology for
Polymeric–Graphene Nanocomposites

The 3D printing permits the formation of tailored structures from polymers and
nanomaterials without using any molds or machining structures, as used in conventional
manufacturing processes. Since, the conservative fabrication methods have several pro-
cessing restrictions for large-scale production; 3D printing enables rapid manufacturing
based on the CAD to form customized objects for desired application [117]. 3D printing
has been commonly associated with additive manufacturing, layered manufacturing, rapid
prototyping and solid fabrication. 3D printing processes produce 3D objects with high
shape complexity. Additive manufacturing is mostly preferred by engineers. Figure 12
shows the basic principle of 3D printing. The basic principle involves the development of a
product idea and then the transformation of digital data using CAD [118]. The CAD is used
to create a virtual object, which is then digitally sliced. The preprocessed CAD model is
scanned for virtual layered data, which is transferred to the 3D printer. Afterwards, the 3D
printing of final product is performed after postprocessing. The CAM is performed layer
by layer with characteristic layer thickness of 15–500 µm. For thick layers, postprocessing
is used to eliminate support structures and to enhance the surface properties for desired
applications. Thus, 3D printing has been widely used for the manufacturing of complex 3D
objects through the fusion of layered materials [119]. The rise in 3D printing has enhanced
the rapid prototyping due to cost effectiveness and fast conversion rates of CAD [120]. Due
to characteristics, flexibility and the facile nature of 3D printing, this technique has been
widely used in sensors, supercapacitors, tissue engineering, textiles, metamaterials and
robotics [121–123].

The concept of 4D printing is considered an extension of 3D printing with the in-
clusion of time dimension. The materials capable of changing shapes are fabricated by
multi-material 3D printing approaches, whereas 4D printing is not widely applied for
such materials. The 4D printing has more specific thorough ways for mentioning the
functionality or shape change induced after printing [124]. 4D printing is 3D printing
of self-transforming materials when exposed to stimulus like heat, light, pressure or en-
ergy [125]. The smart materials responding to external stimulus obtained by 4D printing
have been used in sensors and actuators [126]. Moreover, various research efforts have
been performed to combine 3D printing with smart materials to manufacture 4D objects,
responsive to external stimuli post printing. The stimuli responsive 3D fabricated structures
are labeled with fourth dimension of time to yield 4D-printed structures [127]. The shape
changes in 4D-printed structures have been attained through external stimuli to produce
shrinkage, folding or expansion. The 4D-printed shape memory polymers have been
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applied as smart materials for auto-responsive 4D-printed objects. Various principles, such
as object composition related to smart materials, inhomogeneity and different properties,
govern for the 4D printing of structures [128]. 4D printing has been characterized according
to parameters, including temperature, pressure, light, solvents, pH, humidity, etc., to induce
transformation [129]. The principles of 4D printing define the properties of smart materials
including mechanical properties, glass transition, rate of recovery, etc. [130].
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The nanofiller reinforcement in polymer matrices has been generally used for the de-
velopment of nanocomposite properties and processing feasibility [131]. The nanoparticle
reinforcements have been used in the 3D printing of extrusion and powder bed-based
printing techniques. The characteristics of included nanoparticles have been considered
important to enhance the mechanical properties of the nanocomposites [132]. The addition
of nanofillers in polymers for SLS or FDM techniques permits fabrication of cylindrical and
cubical-shaped structures with enhanced properties, relative to the structures fabricated
with pristine polymers [133]. Consequently, nanoparticle-reinforced polymer nanocom-
posites offer 3D and 4D printing of various structures for real-world applications [134].
Inclusion of nanofiller showed better heat transfer rates and mechanical properties of
nanocomposites using stereolithography, compared with the pristine polymers [135]. The
3D–4D nanocomposites produced using FDM technique revealed adjustable dielectric per-
mittivity, strength and other physical properties, relative to neat polymer [136]. Thus, the
flexibility of FDM printing enables facile tuning of 3D patterns [137]. The 3D–4D-printed
polymer nanocomposites are still an open research topic for more promising properties and
results in the near future.

6. Potential of 3D–4D Printing Polymeric–Graphene Nanocomposites

The 3D and 4D printing techniques have advantages of low cost and controlled
fabrication parameters for developing high-performance materials [138]. These printing
technologies have been applied in the fields of aerospace–automotive, robotics, electronics,
biomedical and other industries [139]. The 3D and 4D printing techniques have been ap-
plied to develop graphene-based nanocomposites for high temperature applications [140].
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High temperature 3D–4D-printed polymer–graphene nanomaterials were designed hav-
ing superior thermal conductivity properties [141,142]. The 3D–4D-printed graphene
heaters have been developed by applying the Joule heating effect [143]. Joule heating is
the generation of heat by passage of electric current through materials. The Joule effect
is desirable in electronics, laptops, smartphones, microprocessors, etc. [144]. The Joule
heating effect in the graphene nanocomposites produces fewer micro-voids and has pre-
ferred graphene orientation [145]. The heaters were functional at the high temperature of
3000 K. The 3D- or 4D-printed graphene heaters have a high heating rate of ~20,000 Ks−1.
Chowdhury et al. [146] performed 4D printing of graphene-filled tert-Butyl Acrylate with
diethylene glycol diacrylate. The shape recovery was carried out through heating above
70 ◦C, keeping the external strains constant. High temperature and natural convection to
the atmosphere was observed for shape memory process. The nanocomposites were appli-
cable to soft robotics as it was found responsive towards temperature-based stimuli [147].

Another important application of the 3D- and 4D-printed polymer–graphene has
been observed in photovoltaics [148,149]. In this regard, graphene-based inks have been
developed for printing the objects [150]. The 3D- or 4D-printed graphene architectures
revealed significantly high energy conversion efficiency of ~87.5% for solar cell [151].
Li et al. [152] designed printed graphene-modified carbon counter electrodes for dye-
sensitized solar cell (DSSC). The electrode was printed on FTO glass. The DSSC has
power conversion efficiency of 6.53% and fill factor of 0.66. Thus, inexpensive, stable
and efficient DSSC was obtained. Solar cells based on ink jet-printed polymer–graphene
nanocomposites have been reported [153]. For better solar cell efficiency, morphology
and microstructure of polymer–graphene need to be controlled. Moreover, nanomaterial
film of uniform width and thickness has been preferred [154]. FDM or inkjet printing
technique has been found useful for high efficiency DSSC. In this regard, regular FDM-
based 3D printers have been found cost-effective and efficient. The 3D-printed poly(3-
hexylthiophene):1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 revealed power conver-
sion efficiency of 4–5%. Finn et al. [155] tested the 3D-printed solar cell material for
mechanical fatigue using bending and torsion loadings. The results revealed that using
printing techniques has considerably enhanced the lifetime and efficiency of 3D solar cells.

Besides, the 3D and 4D-printed nanomaterials have been reported for the energy
storage application [156]. Consequently, the 3D- and 4D-printed graphene-based nano-
materials own high specific surface area, electrical conductivity, charge transportation
and chemical stability properties for supercapacitors and other energy storage–production
devices [157,158]. Integration of aligned graphene in 3D- and 4D-printed objects usually
generates continuous electron transfer pathways, leading to high electrical conductiv-
ity [159]. The 3D- and 4D-printed poly(lactic acid)–graphene nanomaterials have been
developed for supercapacitors [160,161]. Le et al. [162] produced inkjet-printed graphene
electrodes for flexible micro-supercapacitors. The printed electrodes revealed high specific
energy and specific power of 6.74 Wh/kg and 2.19 kW/kg, respectively. The electrochemical
performance of the printed graphene electrodes was also found superior to the traditional
synthesized polymer–graphene electrodes. Tang et al. [163] developed hybrid ink based
on Fe2O3/graphene. The micro-supercapacitor electrodes were fabricated using direct ink
writing with Fe2O3/graphene. The micro-supercapacitor electrodes had maximum areal
capacitance of 412.3 mF cm−2, high energy density of 65.4µWh cm−2 and capacitance reten-
tion of 89%. Zhou et al. [164] performed 4D printing of poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate/graphene oxide electrodes for supercapacitors. Due to the ap-
plication of printing method, the supercapacitor revealed gravimetric capacitance of
21.7 F g−1 and capacitance retention of ~85.8%. Zhu et al. [165] used graphene oxide-based
composite ink for 3D printing. The obtained supercapacitor electrode had power densities
if >4 kW·kg−1 and capacitive retention of 90%. Thus, 3D- and 4D-printed graphene-based
materials have significantly expanded the design and performance space for manufacturing
high-performance energy storage devices.
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Lithium batteries have appeared as a promising energy storage technology due to their
high energy density and capacity. Alteration of electrode design using printing techniques
has been found effective for increasing the energy density and capacity of batteries [166,167].
Fu et al. [168] formed 3D-printed lithium-ion battery electrodes using graphene oxide-based
composite inks. The printed electrode had mass loading of 18 mg cm−2. Qiao et al. [169]
fabricated 3D-printed graphene oxide-based Li-ion battery electrode. The printed electrode
had high areal capacity of 14.6 mA h cm−2. Moreover, the printed electrode revealed high
cycling stability of 100 cycles and good rate capability of 1000 mA g−1. Consequently, the
3D- or 4D-printed battery electrodes have overcome the challenges of high-rate performance
and long cycling stability.

Afterwards, the 3D- and 4D-printed graphene-based nanomaterials have been used
in sensors [170]. Especially, the 3D- or 4D-printed graphene nanocomposites have been
applied for the strain sensors [171], flexible wearable electronic sensors [172,173] and
electrochemical sensors [174]. Kumar et al. [175] fabricated 3D-printed poly(vinylidene
fluoride)–graphene nanocomposites as piezoelectric and magnetic sensors. For the printed
sensors, dielectric property of D33 = 47.6pC/N and magnetization of 0.0853 × 10−5 emu/gf
have been observed. Maurya et al. [176] reported direct mask-less 3D-printed graphene-
based strain gauges. The strain sensors were capable of analyzing tire-road interactions
under load, variable driving speeds and tire pressure. Mahmud et al. [177] used 4D print-
ing technique to form graphene based wearable and implantable sensing devices. The
successful growth of 4D materials fulfills the requirements of cost-effective implantable
sensing devices. Hence, using 3D and 4D printing technologies offers high design flex-
ibility, tailored functions adaptability to the environment, and programmable 3D or 4D
smart devices.

Thus, the high-performance 3D- or 4D-printed graphene nanocomposites revealed
essential applications in high temperature materials, solar cell, supercapacitors, batteries
sensors and wearable electronics [178–181].

7. Viewpoint and Conclusions

Graphene is an important nanocarbon nanomaterial. The remarkable features of
graphene have been incorporated in the 3D- and 4D-printed graphene-based nanomaterials.
The 3D and 4D printing techniques involve processes such as direct ink writing, inkjet
3D printing, FDM, SLA, etc. However, these processes have relative advantages and
limitations when used for various materials. Therefore, choice of an appropriate printing
process and parameter optimization has been found indispensable. The 3D- and 4D-
printed objects integrated with the polymer–graphene nanocomposites own design and
fabrication versatilities and distinct morphological properties. Consequently, the 3D-
and 4D-printed graphene-based nanomaterials have been applied for the multifunctional
microscale devices. The 3D- and 4D-printed graphene nanocomposites have been explored
for the high temperature materials, energy and sensing applications, so far. Future efforts
are obviously needed for large-scale industrial applications of the 3D- and 4D-printed
graphene nanocomposites for technical fields.

Succinctly, this overview highlights the high-performance 3D- and 4D-printed polymer–
graphene nanocomposites. The 3D and 4D printing techniques for nanocomposite have
advantageous properties and potential, compared with the traditional printing techniques.
Applications of 3D- and 4D-printed polymer–graphene nanocomposites have been ob-
served in energy devices, electronics and high temperature materials. In the future, advance-
ments in 3D and 4D printing technologies may lead to high-tech devices and systems. In
this review, we presented outlines related to 3D and 4D printing graphene-based nanocom-
posites considering various printing procedures. The relationships between fabrication
process, structural characteristics and applications of graphene-based nanocomposites have
been summarized intensely. The 3D or 4D printing methods for manufacturing depend on
the intrinsic properties of graphene-based materials. In these nanocomposites, graphene-
based solution and melt have been used as convenient starting materials. However, in
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solution-based material complex post-treatment methods have been needed to evaporate
the solvent. FDM has been widely used to process various thermoplastic and thermoset-
ting matrices with graphene. Among all 3D printing processes, SLA seems to be a more
promising method due to high resolution and interaction between graphene and laser. SLS
and FDM have been widely used for graphene powder for nanocomposite prototyping
and printed objects. These nanomaterials revealed enhanced thermal, mechanical and
other physical properties. Similarly, 4D printing approaches have been applied to develop
complex multifunctional 3D shapes with high resolution. In all of these 3D and 4D methods,
basic relationship between materials characteristics and processing parameters have been
found important. In the near future, new 3D and 4D printing concepts, versatile printing
materials, processing approaches and manifold applications need to be researched.
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