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Abstract: Ochratoxin A (OTA) is positively correlated with an increased risk of developing cancer in
nephrotoxic and hepatotoxic patients. Therefore, it is of great significance for the highly sensitive,
highly selective, and timely detection of OTA. We described here an electrochemical aptasensor
for OTA analysis, which took advantage of the favorable properties of gold nanoparticles (AuNPs)
functionalized zinc oxide (ZnO) composites and the intercalative binding between methylene blue
(MB) and nucleic acid. There were two label-free aptamers: one to capture OTA and another serving
as complementary DNA (cDNA), enabling connection to the ZnO-Au composite’s immobilized
electrode. Once OTA was present, the aptamer could capture OTA and detach from the electrode
interface, thus, preventing MB from accessing electrode surface for efficient electron transfer; a
decreased peak current was monitored by differential pulse voltammetry. The aptasensor presented
nice analytical performance for OTA detection in the range of 0.1–30,000 pg·mL−1, with a detection
limit of 0.05 pg·mL−1. Moreover, the developed biosensor could be applied to actual sample (wine
and beer) analysis.

Keywords: food safety; electrochemical aptasensor; intercalative binding; zinc oxide-gold composites;
Ochratoxin A

1. Introduction

As a mycotoxin, Ochratoxin A is produced by Aspergillus and Penicillium under suitable
conditions and was first discovered in South Africa in 1965 [1]. Mycotoxins are mainly
Ochratoxin A, Ochratoxin B, and Ochratoxin C, among which OTA is most commonly detected
and has the highest toxicity [2]. The primary sources of OTA are food commodities
such as cereal grains (corn), dairy products, coffee beans, raisins, wine, fruits, vegetables
(garlic, yam, potatoes, onions, and tomatoes), and spices [3]. Moreover, OTA is difficult to
completely remove in food storage and processing due to its strong thermal and chemical
stability. Human ingestion of OTA-infected food may produce renal toxicity, hepatotoxicity,
teratogenicity, and immunotoxicity. In order to reduce the adverse effects of OTA on
human body, the Food Safety Organization of China has set strict limit standards for
OTA content in food [4]: wine (≤2 µg·kg−1); grain and its products, beans, roasted coffee
beans and roasted coffee (≤5 µg·kg−1); soluble coffee (≤10 µg·kg−1). Thus, the timely
detection of OTA is of great significance. Currently, the main methods used to detect
OTA are fluorimetric-visual assay [5], chromatography-tandem mass spectrometry [1],
high performance liquid chromatography-fluorescence [6], enzyme linked immunosorbent
assay [7], and electrochemical method [8]. Most sensors are time-consuming and rely on
expensive equipment, professional technicians, and complex pretreatment processes, and
are not suitable for field diagnosis of mycotoxins. Fortunately, electrochemical sensors,
with the merits of being highly sensitive, easy to operate, and easy to miniaturize, have
broad application prospects for the rapid detection of food contaminants.
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Bioactive and bioactive free-based electrochemical sensors have been used to detect
estrogens, glucose, toxins, and pathogenic bacteria in food. The mechanism of an electro-
chemical sensor is mainly composed of two parts: (1) Recognition by interaction with the
analyte; (2) Transduction, that is, when the interaction is converted into a readable signal [9].
The recognition or sensing element must be sensitive and specific to the detected object. An
electrochemical biosensor takes a bioactive unit (such as an enzyme, antibody, nucleic acid,
aptamer, etc.) as the recognition element, combined with a chemical and physical conver-
sion element (such as an electrode), and has high selectivity and sensitivity to the specific
analyte [9]. Compared with non-bioactive sensors, biosensors have the advantage of high
selectivity due to the existence of specific recognition elements. Moreover, biosensors play
a key role in the detection of biomolecules or their metabolites, and could achieve high
sensitivity, high accuracy, rapid, semi-automatic, and fully automated analysis.

As mentioned above, sensitivity is one of the crucial analytical properties of biosensors.
How to promote the sensitivity of biosensors remains a problem worth studying. The
researchers mainly used featured materials [10], unique nucleic acid structure [8], nucleic
acid amplification [11], and other signal amplification strategies to improve the sensitivity
of the sensor. Among these strategies, novel materials have been extensively applied to
sensing systems due to their excellent performance. There are commonly-used, in-sensor
novel materials including carbon-based materials, conducting polymers, covalent organic
frameworks, metal-organic frameworks, and metal oxides [12–16]. Although most materi-
als, especially nanostructured materials, have high specific surface areas that provide more
binding sites, their electrical conductivity is poor. The defects of a single material can be
overcome by the combination of two or more materials. At the present stage, transition
metal oxides are cost-effective and abundant materials, and can form composites with
noble metals that display excellent selectivity when coupled to biorecognition elements [17].
Zinc oxide (ZnO) has broad prospects in energy conversion and storage, photoelectric-
ity, and environmental remediation [18]. Bio-acceptable 0D and 1D ZnO nanostructures,
as sensors and assay platforms, have offered biomolecular selectivity and sensitivity for
cancer diagnosis and treatment and are going to emerge as breakthrough candidates for
the medical field [19]. Das et al. [20] researched the interaction of a fluorescent ZnO-Au
nanocomposite with deoxyribonucleic acid. The result indicated that the designed ZnO-Au
can be used as a fluorescent probe for nanomaterial-based DNA-binding study and to
distinguish, skillfully, between single-stranded DNA and double-stranded DNA. ZnO-
Au nanocomposites were also prepared for high-performance supercapacitors [21]. The
nanocomposites can be considered to be the most promising materials for the next genera-
tion of supercapacitors due to their high specific capacitance and good cycle stability. Yao
et al. [22] synthesized powdered ZnO-Au nanocomposites through a facile and controlled
method. The ZnO-Au nanocomposites exhibited excellent photocatalytic stability and can
be reusable as photocatalysts.

Aptamers (mainly DNA and RNA) are screened from nucleotide libraries through
the in vitro technology of exponential enrichment ligand phylogeny and have high speci-
ficity for target molecules such as ions, antibiotics, proteins, and even the whole cell [23].
Aptamers have become a promising molecular recognition tool in biosensors due to their
essential characteristics of small size, low cost, high sensitivity, high selectivity and high
stability [24]. Although aptamers labeled by various functional groups or electroactive
molecules are also easily synthesized, labeling techniques will reduce the affinity of the
aptamers and increase the economic cost. Zhao et al. [25] utilized two aptamers labeled
with electroactive molecules to determinate patulin and OTA, respectively. Patulin and
OTA can be quantified at a linearity range of 10−9–0.1 µg·mL−1. Compared to labeled
aptamers, label-free aptamers with sandwich structure presented higher affinity for the
target. For example, the simultaneous use of two DNA aptamers for capturing thrombin is
a very powerful way to enhance the selectivity of sensing systems [26]. However, sandwich
structure requires two aptamers to bind to different sites, which is a complex and time-
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consuming operation. Therefore, researchers pay attention to the development of label-free
sensors based on targets-induced chain displacement.

With an effort to develop targets-induced, chain-displacement-based analysis, we
designed a highly sensitive aptasensor reliant on flower ZnO-Au composites and methylene
blue interaction with nucleic acid. In the presence of OTA, the original double-stranded
DNA on the electrode surface becomes single-stranded DNA, affecting the binding of
electroactive molecules with nucleic acids. We showed an application of targets-induced
chain displacement assay to the detection of OTA in wine and beer samples.

2. Experimental Section
2.1. Reagents

The main following reagents were used as received (all reagent grade): Zinc ni-
trate (Zn(NO3)2·6H2O, ≥99.0%, Shanghai Aibi Chemical Reagent Co., Ltd. Shanghai,
China); Chloroauric acid (HAuCl4·4H2O, 99%, Shanghai Chemical Reagent Co., Ltd. Shang-
hai, China); Tris(hydroxymethyl)aminomethane (Tris-HCl, >99.9%, Shanghai Sangon Bio-
engineering Co., Ltd. Shanghai, China); Methylene blue trihydrate (MB, Tianjin Kermel
Chemical Reagent Co., Ltd. Tianjin, China); 6-mercapto-1-hexanol (MCH, 97%), Tris-(2-
carboxyethyl) phosphine hydrochloride (TCEP, ≥98.0%) and Perfluorosulfonic acid-PTFE
copolymer (Nafion, 5%) were obtained from Sigma Aldrich Shanghai Co., Ltd (Shanghai,
China); Ethylenediaminetetraacetic acid (EDTA, 99.5%), Ochratoxin A (OTA, 98%), Zear-
alenone (ZEA), Patulin (PAT), and Deoxynivalenol were purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd (Shanghai, China).

TE buffer (pH = 8) mainly consisted of 10 mM Tris-HCl and 1 mM EDTA. Ultrapure
water (UP > 18.25 MΩ.cm@25 ◦C) was obtained from an ultrapure water machine system
and used throughout the experiments. Complementary DNA (cDNA, 5′-SH-(CH2)6-T-40-
T-CAC CCA CAC CCG ATC CTC AGC-3′), aptamer-OTA (aptamer, 5′-TGA GGA TCG
GGT GTG GGT GGC GTA AAG GGA GCA TCG GAC A-3′), BHQ2-aptamer-OTA, and
Cy3-cDNA were purchased from Takara Biotechnology (Beijing) Co., Ltd. (Beijing, China).

2.2. Apparatus

Scanning electron microscopy (SEM) was used to characterized the morphology,
layered structure, and size of ZnO-Au composites. SEM images were obtained using a
SU8010 instrument produced by Nippon Corporation, Japan. Samples were suspended in
ultrapure water and dispersed onto square, single-polished silicon wafers (3 × 3 mm) at a
thickness of 0.725 mm.

Fourier transform infrared spectrometer (FTIR, TENSOR27, Brooke, Germany) was used
to characterize functional groups on the surface of samples in the range of 400–4000 cm−1.
Powder samples were mixed well with KBr and pressed into coin-shaped pellets for testing.

UV-visible absorption spectrum (UV-vis) was measured with an Agilent Cary-100
spectrophotometer (Agilent technology, America) at room temperature.

X ray powder diffractometer (XRD, D8 ADVANCE, Brooke, Karlsruhe, Germany)
data was recorded using graphite-monochromatic Cu-Kα radiation. Powder samples were
scanned with a 2-Theta range from 20 to 80 degree at a step width of 0.05 degree.

X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Kanagawa, Japan) was carried out
on a PHI 5000 Versaprobe III spectrometer with the calibrated C1s peak of 284.8 eV. The
samples preparation process was the same as SEM.

Fluorescence intensities were recorded on a F-4500 spectrofluorimeter (Hitachi, Japan).
The emission spectra were recorded within the wavelength range of 500–640 nm upon
excitation at 490 nm.

Electrochemical measurements (electrochemical impedance spectroscopy, EIS, and
differential pulse voltammetry, DPV) were carried out on a CHI 660D electrochemical work-
station (Shanghai Chenhua Instrument Co., Ltd., Shanghai, China) using a three-electrode
electroanalysis system. The three-electrode system consisted of a working electrode (glassy
carbon electrode, GCE, diameter = 3 mm), reference electrode (saturated silver/silver
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chloride), and auxiliary electrode (platinum filament). EIS was performed under initial
potential of 0.27 V (versus Ag/AgCl) in a frequency range of 100 kHz to 0.1 Hz, with
amplitude of 0.005 V and quiet time of 2 s. DPV was also implemented through setting
the scan potential range (−0.7 V to 0.1 V versus Ag/AgCl) and sensitivity (1 × 10−6 A/V),
defaulting other parameters such as potential increment of 0.004 V, amplitude of 0.05 V,
pulse width of 0.05 s, sample width of 0.0167 s, pulse period of 0.5 s, and quiet time of 2 s.

2.3. Fabrication of Aptasensor
2.3.1. Preparation of Flower-like ZnO-Au Composites

ZnO flower and AuNPs-functionalized ZnO flower were synthesized in an alkaline
and acid aqueous solution, respectively, by a modified reported method [27]. In the ZnO
flower synthesis process, 10 mL of 0.5 mol·L−1 zinc nitrate aqueous solution was added
into 10 mL of 4 mol·L−1 KOH aqueous solution drop by drop under continuous magnetic
stirring. The obtained solutions maintained 30 ◦C for 12 h under continuous magnetic
stirring. White ZnO flower could be attained through washing products using ethanol and
drying.

In addition, 586 µL of 10 mg·mL−1 chloroauric acid and 1 mL methanol were added
into 20 mL ultrapure water. The pH of mixed solution was adjusted to near neutral using
0.01 mol·L−1 NaOH under stirring. 30 mg of ZnO powder was then added to the neutral
solution and stirred for 1 h. The total solution was transferred to a stainless-steel autoclave
and kept at 120 ◦C for 1 h. After being slowly cooled down to room temperature, the
samples were collected by centrifugation and washed with ethanol and ultrapure water,
and then dried to obtain purple–red ZnO-Au composites.

2.3.2. Aptasensor Development

GCE, after being polished via Al2O3 powder with a diameter of 0.05 µm, was immersed
in ethanol and water solution for ultrasonic cleaning. The cleaned electrode was dried with
nitrogen gas for later use. 1 mg of prepared ZnO-Au composites were uniformly dispersed
in 1 mL of ultrapure water to obtain purple suspension (1 mg·mL−1). Then, 6 µL suspension
was dripped onto the electrode and dried at room temperature. At last, nafion@ZnO-
Au/GCE membrane was formed after 4 µL nafion solution (0.5%) dripped on ZnO-Au
composites modified GCE. Here, nafion was used not only as an immobilizing binder
that produced uniform composite film, but also a filtering membrane in electroanalytical
applications to improve selectivity of the sensor.

The electrode prepared above was used to conduct a series of incubation processes for
OTA analysis. Before immobilization, cDNA and aptamer were denatured via heating at
95 ◦C for 5 min and then ice-cooled for 5 min. First, 6 µL of 1 µmol·L−1 cDNA (including
0.05 mM TCEP in pH = 8.0 TE buffer) was dripped onto the prepared electrode and kept
under high humidity at room temperature overnight. Next, the modified surface was
rinsed with buffer solution and then passivated with 1 mmol·L−1 MCH in Tris-HCl buffer
(pH = 7.4) for 1 h. After washing, 6 µL of 1 µmol·L−1 aptamer was dropped on the
above electrode and incubated for 2 h for specific base pairing. After that, the modified
electrode was immersed in 20 µmol·L−1 MB solution and maintained for an appropriate
time. Finally, the modified electrode was cleaned with Tris-HCl buffer and dried to obtain
MB/aptamer/MCH/cDNA/nafion@ZnO-AuNPs/GCE.
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2.4. Electrochemical Detection

Differential pulse voltammetry was performed in 10 mL Tris-HCl buffer (pH = 7.4) in a
potential range of−0.7 V to 0.1 V (versus Ag/AgCl). Prior to differential pulse voltammetric
measurement, the modified electrode was incubated in Tris-HCl buffer containing OTA for
an appropriate time. The concentration of OTA was quantified through the reduction peak
current of MB.

2.5. Real Sample Analysis

Wine and beer samples, obtained from a local store, were degassed with nitrogen gas
before being applied to electrochemical analysis. Testing was performed by spiking OTA
into samples at a series of concentrations of 0.1, 1, 100, and 1000 pg·mL−1.

3. Results and Discussion
3.1. Principle of the OTA Aptasensor

The OTA aptasensor described herein was used to detect OTA by integrating ZnO-Au
composites and nucleic acid interaction with MB. Sulfhydryl-labeled cDNA was linked to a
ZnO-Au modified electrode via Au-S covalent bond. Double-strand DNA (dsDNA) was
obtained by the complementation of aptamer and single-strand DNA (ssDNA or cDNA).
MB attached to dsDNA via intercalative binding to generate high peak current [28], due
to the electron transfer of MB/MBH2 (MBH2: reduced state of MB) on electrode sensing
surface. Once OTA was present, the aptamer could capture OTA and detach from the
electrode interface. Then, the double-strand DNA (dsDNA) was changed to single-strand
DNA (ssDNA). In this case, the MB molecules would have detached from the dsDNA
and released into the solution, preventing MB/MBH2 from accessing the electrode surface
for efficient electron transfer; a weak peak current of MB was obtained. The changes in
peak current dependency, with the scan rate before and after the release of MB, further
proved that the electrode reaction changed from a surface-controlled process to a diffusion-
controlled one (Figure S1). DPV with the scan potential range of −0.7 V to 0.1 V (versus
Ag/AgCl) could be used to detect the reduction peak of MB. The entire fabrication and
sensing application of the developed biointerface is illustrated in Scheme 1.
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Scheme 1. Schematic illustration of the fabrication steps: (A) Sensing roadmap; (B) OTA sensing
based on ZnO-Au composites/aptamer assembled on GCE.

Due to aptamer-specific capture OTA, the original dsDNA on the electrode is changed
into ssDNA, which affects the binding of MB with nucleic acid. MB is one of the most
commonly used cationic dyes and is easily detected via UV-vis. Thus, UV-vis was used to
investigate MB in different systems. The aqueous solution of MB had a strong absorption
peak at 664 nm, which was assigned to MB monomer (Figure S2). The other acromion at
about 613 nm belonged to MB dimer [29]. After intercalating of the MB into DNA (dsDNA
or ssDNA), the absorption intensity of the MB monomer was weakened and accompanied
by a slight redshift. This effect was attributed to intercalative binding of MB and bases. Both
MB and DNA molecules contain unique aromatic structures. When the π electrons of two
molecules were combined, the empty π* orbital (MB) was coupled to the π orbital (base),
thereby decreasing the required energy for the π−π* electron transition, which resulted in
a redshift. At the same time, the empty π* orbital was partially filled with electrons, which
reduced the probability of π−π* transition and weakened the absorption intensity [30].
Significantly, compared with the combination of MB and ssDNA, the intercalative binding
between MB and dsDNA was stronger than the binding of MB and ssDNA. The principle
of the designed aptasensor is based on the target–object induced chain displacement, which
leads to the change in the number of electroactive molecules on the sensing interface.
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3.2. Characterization of Composites and Modified Electrode

The SEM microstructure of the materials obtained from hydrothermal reaction is
presented in Figure 1A–D. The ZnO material was comprised of a great many hierarchical,
flower-like structures with an array of oriented, tapered branches (Figure 1A). Each tapered
petal with an extremely smooth surface was in the length of 1–2 µm (Figure 1B). The SEM
micrographs of ZnO-Au hybrids were shown in Figure 1C,D. The local view of magnified
SEM image (Figure 1D) revealed that spherical gold nanoparticles had been successfully
attached to ZnO materials. It was obvious that the tapered-branches morphology of ZnO
appeared marginally coarsened after the attachment of gold nanoparticles (AuNPs), leading
to a decrease in length and width, which could be the corrosion effect of chloroauric acid.
Because the surface roughness of materials is positively related to its specific surface area,
the obtained ZnO-Au composites provide larger surface area to promote the electron
transfer in electrochemical sensing systems.
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Figure 1. (A,B) SEM images of ZnO materials at low and high magnification; (C) SEM images of
ZnO-Au composites; (D) Local magnification image of ZnO-Au composites; (E) FTIR spectra and (F)
UV-visible absorption spectra of ZnO flowers and ZnO-Au composites.

ZnO flower and ZnO-Au composites were evaluated by FTIR and UV-vis. The FTIR
spectra of ZnO and ZnO-Au composites were recorded in Figure 1E. The pure ZnO flower
presented a sharp characteristic band at 514 cm−1 from the stretching of Zn-O. The stretch-
ing modes of Zn-OH and C-O groups were observed at 885 cm−1 and 1384 cm−1, respec-
tively. The bands at 3361 cm−1 corresponded to the stretching and bending vibrations of
the O-H group. The profile of the ZnO-Au NPs displayed a slight peak at 669 cm−1 due
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to the attachment of AuNPs to ZnO flower [21]. There was a slight change in the peaks,
which confirmed the coverage of ZnO by AuNPs. The UV-vis absorption spectra of ZnO
flower and ZnO-Au composites were presented (Figure 1F), such as a sharp peak around
376 nm due to the excitonic absorption of ZnO and the broad hump around 568 nm of Au
because of the surface plasmon resonance. The main absorption in the composites occurred
in ZnO rather than gold, due to the low concentration of AuNPs in the composites as well
as the high absorbance of ZnO. Moreover, a slight decrease in the absorption intensity at
about 376 nm was observed for the ZnO-Au composites, which indicated the presence of
AuNPs on the ZnO surface [31]. The UV-vis results further demonstrated the associative
interaction between ZnO flower and AuNPs, which was consistent with the results of the
FTIR spectra.

Impedance characterization was used to compare the electrical conductivity of elec-
trode materials using [Fe(CN)6]−3/−4 as a redox probe (Figure S3A). According to Randle
theory [32], the electrolytic cell can be simulated to obtain the model circuit including
charge-transfer resistance (Rct), Warburg impedance (Zw), solution resistance (Rs), and
double-layer capacitance (Cd). In the Nyquist plots, semicircle diameter and straight line
corresponds to Rct and Zw, respectively. The Rct values are obviously different during
modification of different materials on the electrode surface. It can be seen that the Rct value
of 345 Ω for bare GCE showed a high electron transfer behavior between the electrode
interface and redox probe. The Rct value of the electrode interface increased to 598 Ω after
the modification of ZnO on the GCE, due to relatively poor conductivity of ZnO. The ZnO-
Au composites modified GCE presented a lower Rct (448 Ω), when compared with ZnO
modified GCE (598 Ω), owing to the strong electrical conductivity of AuNPs. The effective
electrode surface areas were also investigated by recording the anodic and cathodic peak
currents of different electrodes at a scan rate of 50 mV/s. The effective electrode surface
areas in each case were determined based on the Randle–Sevcik equation [33]. The effective
surface area of ZnO-Au and ZnO bare GCE were found to be 0.071 cm2 and 0.056 cm2, re-
spectively, compared to 0.034 cm2 for bare GCE. Therefore, ZnO-Au composites/GCE with
larger surface area and high electrical conductivity can be used to fabricate electrochemical
aptasensors.

XRD patterns for 2-Theta values between 20–80◦ for ZnO and ZnO-Au samples sin-
tered in air and argon are shown in Figure 2A. The diffraction peaks of ZnO-Au composites
were completely consistent with the standard cards of ZnO (JCPDS No. 75-0576) and Au
(JCPDS No. 01-1172), which indicated the successful synthesis of ZnO-Au with pure phase
products. The XRD patterns of ZnO showed that the peaks at 31.84◦, 34.502◦, 36.336◦,
47.652◦, 56.73◦, 63.014◦, 66.54◦, 68.118◦, 69.259◦, 72.757◦, and 77.16◦ corresponded to the
crystal faces of (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), and (202),
respectively. Besides, there were diffraction peaks at 38.268◦, 44.599◦, 64.677◦, and 77.547◦

which, respectively, corresponded to (111), (200), (220), and (311) crystal faces of Au. As
far as the (101) plane of ZnO crystals is concerned, it is a nonpolar surface and its surface
energy is higher than that of the (100) plane, which means that AuCl4– at an appropriate
concentration can be preferentially absorbed on (101) plane-forming Au NPs [34]. Figure 2B
showed an XPS full spectrum from ZnO-Au sample, including the binding energy peaks
of Zn, O, and Au. The detailed Zn (2p) spectrum (Figure 2C) revealed two peaks, which
were assigned to the following groups: 2p1/2 zinc peak at 1044.8 eV and 2p3/2 zinc peak
at 1021.7 eV with the separation distance of 23.1 eV, indicating the presence of Zn2+ [27].
Figure 2D is the detailed O (1s) spectrum, which can be decomposed into two peaks located
at 530.1 eV and 531.7 eV, respectively, indicating the presence of two different O in the
material. The peak at 530.1 eV was attributed to the lattice oxygen of ZnO, while the
peak at 531.7 eV belonged to the oxygen of the hydroxyl group (OH) on the surface of
ZnO [21]. Figure 2E showed 83.1 eV and 86.9 eV corresponding to Au (4f7/2) and Au
(4f5/2), respectively. Notably, the binding energy of Au (4f7/2) showed a negative shift
of 0.9 eV compared with 84.0 eV of Au block [35], due to the electron transfer from ZnO
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to Au [36]. XPS and XRD characterization further confirmed the successful synthesis of
ZnO-Au composites for binding to the DNA.
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The stepwise modification of the electrochemical aptasensor was characterized using
EIS (Figure S3B). Results showed that the EIS of ZnO (curve c) enlarged significantly with
a bigger Rct, compared with GCE (curve a). This result suggests that ZnO hinder the
charge transfer from the redox probe of [Fe(CN)6]3−/4− to the GCE surface due to the
poor conductivity of ZnO. While for the Au–ZnO/GCE (curve b), an obvious decrease
of the diameter of the semicircle (1654 Ω) was observed, implying that the existence of
AuNPs could improve electrical conductivity and accelerate the electron transfer rate [37].
Previous study has shown that Au NPs formed on oxide supports are catalytically more
active for oxidation reactions because of the polarization toward the support caused by
Au NPs at the interface [38]. Then, the cDNA was bonded to the electrode by gold-sulfur
bonds, leading to the increase of Rct value (2114 Ω) due to the negative charge from
the phosphate backbone of nucleic acid [39]. After MCH modification of the electrode
the Rct value (2340 Ω) increased, which indicated that the transfer of electroactive ions
([Fe(CN)6]3−/4−) to the electrode interface was impeded. The Rct (3253 Ω) increased upon
the complementation of Aptamer and cDNA to form double-stranded DNA. As one active
substance, MB (Rct = 2710 Ω) may facilitate the charge transfer [39]. However, after the
modified electrode interacted with the OTA, the aptamer carrying OTA detached from
the electrode surface and the Rct value was reduced (2534 Ω). This phenomenon may be
ascribed to the reduction of steric hindrance effect. It appeared that the changes of EIS
demonstrate the success of each modification step.
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3.3. Optimization

In order to improve the analytical performance of the electrochemical aptasensor, the
incubation time of aptamer/MCH/cDNA/nafion@ZnO-Au/GCE in MB solution and the in-
cubation time of MB/aptamer/MCH/cDNA/nafion@ZnO-Au/GCE in electrolyte containing
OTA were investigated. As the incubation time of aptamer/MCH/cDNA/nafion@ZnO-
Au/GCE in MB solution increases, the value of ∆I = IOTA − Ino OTA decreases gradually
(Figure S4A). Therefore, 40 min was selected as the optical incubation time for the modified
electrode in MB solution. Analogously, 20 min was selected as the optimal incubation time for
the functional electrode in electrolyte containing OTA (Figure S4B).

3.4. Analytical Performance

Dynamic Range and Limit of Detection. Under optimized conditions, DPV was used to
detect the range of OTA concentrations (0–50,000 pg·mL−1) due to its high sensitivity. In
Figure 3A, the reduction peak current of MB gradually decreased as concentration OTA
increased. Figure 3B showed a clear linear relationship between ∆I and lgCOTA in the
range of 0.1–30,000 pg·mL−1 with a detection limit of 0.05 pg·mL−1 (S/N = 3:1). The
linear regression equations were ∆I (µA) = −0.2275lgCOTA(pg·mL−1) − 1.0745, with the
regression coefficient of 0.9993. The error percentages for each determination in Figure 3
were in the range of 94.3% to 108.4%. To further verify the proof of concept of the OTA
sensing, fluorescence measurements during the capture of OTA by the aptamer and release
of the OTA-aptamer conjugates were also designed. The aptamer and cDNA were modified
with the BHQ2 quencher and Cy3 fluorophore, respectively. In the absence of OTA, BHQ2-
aptamer is quenched by Cy3-cDNA, due to the formation of the double-strand DNA,
and the fluorescence is turned off. In the presence of OTA, the BHQ2-aptamer capturing
OTA releases from the double-strand DNA, causing the regeneration of fluorescence of
the Cy3-cDNA. The fluorescence measurement showed that the fluorescence intensity
in the solution increased along with the increasing OTA concentration (Figure 4A). The
calibration curve of fluorescence intensity as a function of concentration (0–50,000 pg·mL−1)
was plotted. Figure 4B is the linear relationship between the fluorescence intensity and the
logarithm of OTA concentration within the range of 20–500 nM (R2 = 0.990). The calculated
detection limit was 16.5 nM. The above results further proved the flexibility of the proposed
sensing concept and exhibited even better sensing ability for OTA determination.
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Figure 3. (A) Differential pulse voltammograms of a series of OTA concentrations (0, 0.01, 0.1, 1,
10, 100, 1000, 10,000, 30,000, 50,000 pg·mL−1) using MB/Apt/MCH/cDNA/ZnO-Au/GCE were
carried out under optimal conditions. (B) Calibration curve of anodic current (n = 5) obtained from
(A) showing a linear range from 0.1 to 30,000 pg·mL−1.
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Compared with other OTA sensors, the analytical performance of the aptasensor was
better than other kinds of methods for OTA determination (Table 1). Specially, the excellent
sensitivity of the aptasensor was mainly attributed to the superior material utilized and
electroactive molecules attached to nucleic acid structure. Some materials have been applied
for the detection of OTA, such as carbon nanomaterials, metal-organic framework materials,
quantum dots, metal/metal oxide nanomaterials, and upconversion nanomaterials (Table 1).
Different types of materials have their own outstanding properties. Among these materials,
ZnO-Au composites have outstanding properties with high specific surface area, easy
functionalization, physicochemical stability, and high electronic conductivity that enable
sensors based on this material to perform highly sensitive OTA analysis.

Table 1. List of the analytical performances of the proposed sensor with other kinds of methods for
OTA determination.

Detection Method Material Real Sample Linear Range
(pg·mL−1) LOD (pg·mL−1) Reference

LC NA Beer, wine, and
juice 1000–50,000 25 [40]

UHPLC-MS/MS NA Tea 500–70,000,000 500 [41]
UHPLC-(ESI+)-MS/MS NA Coffee beverages 300–70,000 300 [42]

LC-MS/MS NA Pig and poultry
matrices 250–250,000 1000 [43]

Chemiluminescence
method

Anti-OTA
antibodies-magnetic

beads
Grains 5–405 2.05 [44]

Colorimetric method G-quadruplex/hemin
DNAzyme Rice 0.404–40.4 3.5 [45]

Surface-enhanced
Raman spectroscopy Fe3O4 NPs Soybean, grape,

and milk 40.4–16,160 12 [46]

Fluorescence method UCNPs Beer and wheat 5000–100,000 1860 [47]

Fluorescence method Magnetic beads-
exonuclease Wheat and corn 500–75,000 28 [48]

Fluorescence and
absorbance dual-mode

immunoassay
G-quadruplex-TMB Corn, oats, and rice 49–25,000 28 [49]

Electrochemiluminescence
method

Au-CaCO3
nanocomposites Beer and wheat 10–100,000 5.7 [50]

Electrochemical method Hairpin Aptamer Wheat 1000–500,000 0.58 [51]

Electrochemical method Aptamer-graphene
oxide nanosheets Wheat 10–50,000 5.6 [52]
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Table 1. Cont.

Detection Method Material Real Sample Linear Range
(pg·mL−1) LOD (pg·mL−1) Reference

Electrochemical method Aptamer-MoS2 Wine 0.5–1000 0.23 [53]

Electrochemical method Aptamer-Au
nanoparticles NA 1–1000 0.5 [54]

Electrochemical method
OTA

Antibody-palladium
nanoparticles

Coffee 500–2000 96 [55]

Electrochemical method GO-DNA complex Oat and rice 0.01–1000 0.005 [56]
Electrochemical method ZnO-Au composites Wine & Beer 0.1–30,000 0.05 This work

LC: liquid chromatography. LC-MS/MS: liquid chromatography–triple quadrupole mass spectrometry. UHPLC-
(ESI+)-MS/MS: ultra-high-pressure liquid chromatography/electrospray ionization tandem mass spectrometry.
UHPLC-MS/MS: ultra-high-pressure liquid chromatography-mass spectrometry. Graphene oxide: GO. UCNPs:
Upconversion nanoparticles. NA: not available.

The specificity is an extremely critical parameter for a designed aptasensor. To evaluate
the specificity of the aptasensor, DPV was performed on the electrolyte (including OTA)
with interference substances. ZEA, PAT, and DON were selected as interference substances
due to reports that they coexist with OTA in food [39]. As shown in Figure 5, there was
no significant signal in the presence of low concentration interference (0.1 pg·mL−1). The
interference substances (>0.1 pg·mL−1) produced a constant signal background, which
may be related to the low nonspecific recognition of the aptamer and the adsorption on
the electrode surface. The interference substances (1 pg·mL−1) all produced less than 25%
of the OTA signal. High concentrations (100 pg·mL−1 or 10,000 pg·mL−1) of interfering
substances produce less than 12% OTA signal. Therefore, we can guarantee that the
biosensor is able to detect OTA in the presence of ZEA, PAT, and DON. Stability over
time and repeatability are essential factors in the practical application of aptasensors.
The functionalized electrodes were stored at 4 ◦C for 18 days to test the stability of the
sensor. The developed biosensor can retain more than 92.6% of the initial response signal,
which was probably due to the partial decomposition and conjugation of the aptamers
on the electrode surface. In addition, five parallel experiments were performed to detect
1 pg·mL−1 OTA for testing the repeatability of the sensing system. The relative standard
deviation (RSD) was 3.8%, indicating the good repeatability of the biosensor. Due to
aptamer specific capture OTA, the original dsDNA on the electrode is changed into ssDNA,
thereby leading the regeneration of the cDNA linked ZnO-Au modified electrode. After
that, the aptamer of the capture probe can once again bind to the cDNA-linked, ZnO-Au
modified electrode for reuse. Results showed that the aptasensor only exhibited a slight
downward trend in terms of performance after five times of reuse. The relative weak
reproducibility and troublesome electron-transfer pathways of electrochemical sensing are
still the main drawbacks that should be improved, especially for the application in complex
food samples. However, it is expected that further miniaturization, including implantable
devices, the functionalization of novel nanomaterials that contain more homogeneously
binding sites with high affinity for the targets, as well as the combination of ink printing of
nanomaterials, will solve the above challenges.
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deoxynivalenol for different concentrations.

To evaluate the feasibility of the sensing system, the modified electrode examined OTA
in a real sample. We selected wine and beer that are susceptible to OTA infection during
actual processing as actual samples. A series of concentrations of OTA (0.1–1000 pg·mL−1)
were added to the processed samples for recovery experiments. The results of the recov-
ery experiment are shown in Table 2. The recovery rate measured was in the range of
102.2–110%, and the RSD varied from 22.7% to 4.3%. It was worth noting that the recovery
rate in actual samples was above 100%, which may be correlated with the nonspecific
adsorption of the matrix. The results proved that this sensor can be used for OTA analysis
in wine and beer samples. To further confirm the obtained accuracy and validity, the results
were compared to the gold standard HPLC method and ELISA method. The recovery rate
spiked samples for HPLC ranged from 98.6% to 103.8%, with an RSD of less than 4.0%
(Table S1). Thus, the designed aptasensor enabled the effective quantitative detection of
OTA in actual samples.

Table 2. Recovery Assay Data.

Spiked OTA
(pg·mL−1)

Real Sample
(pg·mL−1) RSD (n = 5) Recovery (n = 5)

Beverage 1 Beverage 2 Beverage 1 Beverage 2 Beverage 1 Beverage 2

0.1 0.11 0.106 3.8% 2.7% 110.0% 106.0%
1 1.095 1.05 3.6% 3.5% 109.1% 104.5%

100 105.2 106.0 3.4% 4.2% 105.2% 106.0%
1000 1022.0 1057.0 3.28 4.3% 102.2% 105.7%

Beverage 1: wine; Beverage 2: beer. n: number of measurements.

4. Conclusions

In a nutshell, we designed an electrochemical biosensor reliant on ZnO-Au composites
and targets induced the changes in the interaction between methylene blue and nucleic
acids. The MB/aptamer/MCH/cDNA/nafion@ZnO-Au modified GCE provides high
specific surface area, favorable conductivity, high selectivity, excellent sensitivity, long-term
stability, and favorable repeatability. The biosensor has achieved OTA analysis in actual
samples. Moreover, applications of this setup are not limited to OTA detection and are
expected to be used as a template to detect other toxins.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11030864/s1, Figure S1: The CV curves at different scanning
rates from 10 to 200 mV s−1 for the prepared electrode (A) before and (B) after the release of MB.
(C) Plots of peak currents vs. scan rates corresponding to (A). (D) Plots of peak currents vs. square
root of scan rates corresponding to (B); Figure S2: UV-visible absorption spectra of MB: (a) 10 µM
pure MB, (b) after incubation with 10 µM MB and 0.5 µM dsDNA, (c) after incubation with 10 µM
MB and 0.5 µM ssDNA; Figure S3: (A) Electrochemical impedance spectroscopy for bare GCE, ZnO-
Au/GCE, and ZnO/GCE (a–c) in 1.0 mM [Fe(CN)6]−3/−4 + 0.1 M KCl solution through applying
initial potential of 0.27 V vs Ag/AgCl reference electrode and an amplitude of 5 mV in a frequency
range of 10−2–105 Hz. The insertion diagram is an equivalent circuit model of the EIS analysis. (B)
Electrochemical impedance spectroscopy after each fabrication step recorded: (a’) ZnO-Au/GCE, (b’)
nafion/ZnO-Au/GCE, (c’) cDNA/nafion/ZnO-Au/GCE, (d’) MCH/cDNA/nafion/ZnO-Au/GCE,
(e’) OTA/MB/aptamer/(d’), (f’) MB/aptamer/(d’), (g’) aptamer/(d’).; Figure S4: Optimization
experiment of (A) incubation time of aptamer/MCH/cDNA/nafion@ZnO-Au/GCE in 20 µM MB
and (B) incubation time of MB/aptamer/MCH/cDNA/nafion@ZnO-Au/GCE in 0.1 pg·mL−1 OTA;
Table S1: Recovery assay data of electrochemical aptasensor, HPLC and ELISA.
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