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Abstract: The strategy of the nucleophilic substitution of hydrogen (SN
H) was first applied for the

metal-free C-H/C-H coupling reactions of 4H-imidazole 3-oxides with indoles. As a result, a series of
novel bifunctional azaheterocyclic derivatives were obtained in yields up to 95%. In silico experiments
on the molecular docking were performed to evaluate the binding possibility of the synthesized
small azaheterocyclic molecules to the selected biotargets (BACE1, BChE, CK1δ, AChE) associated
with the pathogenesis of neurodegenerative diseases. To assess the cytotoxicity for the synthesized
compounds, a series of in vitro experiments were also carried out on healthy human embryo kidney
cells (HEK-293). The leading compound bearing both 5-phenyl-4H-imidazole and 1-methyl-1H-indole
moieties was defined as the prospective molecule possessing the lowest cytotoxicity (IC50 > 300 µM
on HEK-293) and the highest binding energy in the protein–ligand complex (AChE, −13.57 kcal/mol).
The developed compounds could be of particular interest in medicinal chemistry, particularly in the
targeted design of small-molecule candidates for the treatment of neurodegenerative disorders.

Keywords: azaheterocycles; indoles; imidazoles; C-H functionalization; nucleophilic substitution of
hydrogen; PASE; in vitro cytotoxicity assay; neurodegenerative diseases; molecular docking

1. Introduction

Nowadays, as life expectancy increases, the number of people being affected by neu-
rodegenerative diseases is steadily growing as well. Such pathologies include Alzheimer’s
disease (AD), which is characterized by latent onset and the gradual progression of loss [1];
Parkinson’s disease (PD), which leads to impaired functioning of the musculoskeletal
system [2]; frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS), which is
characterized by the relentless progression of skeletal muscle weakness [3]; and Hunting-
ton’s disease (HD), which leads to a progressive motor disorder and cognitive disturbance
culminating in dementia and psychiatric disturbances [4].

There are several approaches in modern medical practice for the treatment of neu-
rodegenerative pathologies. One of them is the prevention of mitochondrial dysfunction,
which directly affects the pathogenesis of neurodegenerative diseases [5]. The next means
of therapy is the inhibition of acetylcholine (AChE) and butyrylcholine esterases (BChE),
which promote the progression of AD by rapidly hydrolyzing acetylcholine (ACh), which
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results in the termination of signaling at the cholinergic synaptic cleft [6]. Another approach
is the inhibition of casein kinase 1δ (CK1δ), a serine/threonine-selective enzyme that is
responsible for the regulation of signaling pathways in most types of eukaryotic cells [7].
Additionally, the inhibition of beta-secretase-1 (BACE1) prevents the formation of amyloid
plaques, which are one of the main causes of the progression of Alzheimer’s disease [8].
Therefore, the development of compounds as inhibitors of enzymes that have an impact on
the progression of neurodegenerative diseases is one of the key multidisciplinary tasks for
modern organic synthesis and medicinal chemistry.

It is well known that small molecules containing imidazole scaffolds have a wide
range of biological activities, including neuroprotective ones (Figure 1) [9]. For example,
compound I is an inhibitor of AChE, and imidazole-containing molecule II is an inhibitor of
the Monoamine Oxidase-B (MAOB) associated with Parkinson’s disease progression [6,10].
Meanwhile, compound III is an inhibitor of cyclooxygenase (COX), which directly affects
the progression of neurodegenerative diseases [11]. Imidazole derivatives modified by
azaheterocyclic fragments, particularly indole scaffolds, form a special class of bicyclic
compounds with various biological and pharmacological activities (antibacterial, anti-
depressant, antioxidant, etc.) [12]. For instance, compound IV is a protein kinase C inhibitor,
which is one of the targets for the treatment of AD [13], while the imidazole derivative V
is of interest as an effective 5-HT7 serotonin receptor agonist [14]. Thus, the development
of novel synthetic methodologies to obtain indolyl imidazole is a challenging task in the
design of new drug candidates for the therapy of neurodegenerative diseases.
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Figure 1. Active pharmaceutical ingredients (APIs) based on imidazole or indolyl-derived imidazole
scaffolds (Blue color indicates the imidazole ring, red color shows the indole moiety).

There have been a number of synthetic strategies to design indolyl-derived imidazole
compounds. For example, these promising molecular systems can be synthesized by con-
structing indole or imidazole cycles (Scheme 1a) [15–21]. Besides this, it is possible to use
direct coupling between these substrates for the synthesis of the desired compounds [22–25].
Moreover, both transitional-metal-catalyzed and metal-free couplings of imidazole and
indole are also utilized (Scheme 1b). For instance, our research group previously reported
C-H/C-H coupling of 2H-imidazole-1-oxides with indoles [26] (Scheme 1c). It is worth
mentioning that these processes were carried out following the Pot, Atom and Step Econom-
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ical (PASE) and green chemistry principles [27–29] (e.g., using non-toxic solvents, reducing
the number of by-products, etc.) One of the most progressive synthetic methodologies that
supports these principles is the C-H functionalization strategy. Subsequently, reactions of
the nucleophilic substitution of hydrogen (SN

H) are considered as special cases of chemical
transformations that have been successfully applied to modify both aromatic and non-
aromatic azaheterocyclic substrates [30–32]. At this time, this strategy was put into practice
only for the alkylation of 4H-imidazole 3-oxides (via the Grignard addition/oxidation
reaction sequence) [33]. However, there have not been any examples of heteroarylation
reported so far.
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Scheme 1. Synthetic strategies towards indolyl-substituted imidazoles (Blue color indicates the
imidazole ring, red color shows the indole moiety). State-of-the-art: (a) ring construction methods,
(b) direct coupling methods, (c) our previous work, and (d) this work [15,16,19,21–23].

This work deals with the synthesis of indolyl-substituted imidazole derivatives uti-
lizing SN

H modifications of 4H-imidazole 3-oxides (Scheme 1d), the virtual screening of
targets associated with neurodegenerative diseases, and the assessment of cytotoxic effects
to evaluate the possibility of the further study and application of these compounds.

2. Materials and Methods
2.1. Experimental Procedure

Nuclear magnetic resonance (NMR) spectra were recorded on the Bruker AV-300,
AV-400, DRX-500, and Bruker Avance II (400 MHz) spectrometers. All 1H NMR exper-
iments were reported in δ units, parts per million (ppm), and were measured relative
to residual chloroform DCCl3 (7.26 ppm) or DMSO (2.50 ppm) signals in the deuterated
solvent. All 13C NMR spectra were reported in parts per million (ppm) relative to DCCl3
(77.16 ppm) or DMSO-d6 (39.52 ppm) and all spectra were obtained with 1H decoupling.
All coupling constants J were reported in Hertz (Hz). The following abbreviations were
used to describe peak splitting patterns (s = singlet, d = doublet, t = triplet, dd = doublet of
doublet, m = multiplet, and br s = broadened singlet). The mass spectra were recorded on a
mass spectrometer, SHIMADZU GCMS-QP2010 Ultra, with sample ionization by electron
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impact (EI). The IR spectra were recorded using a Fourier-transform infrared spectrometer
(Bruker Corporation, 40 Manning Rd, Billerica, MA, USA) equipped with a diffuse reflec-
tion attachment. The elemental analysis was carried out on a Perkin Elmer Instrument
equipped with the CHN PE 2400 II analyzer and on an automatic CNS analyzer EuroEA
3000. The UV–Vis spectra were obtained for EtOH solutions using a Hewlett-Packard HP
8453 spectrophotometer. The melting points were determined on the FP 81 HT instrument
“METTLER TOLEDO”. The course of the reactions was monitored by TCL on 0.25 mm
silica gel plates (60F 254).

Toluene, hexachloroacetone, acetone, chlorobenzene, PEG-400, 2-Me-THF, hexane,
AcCl, TMS-Cl, ethyl chloroformate, oxalyl dichloride, EtOH, sodium bicarbonate, ethyl
acetate, and Na2SO4 were purchased from Sigma-Aldrich and used as received.

Moreover, 2-(hydroxyamino)-2-methyl-1-phenylpropan-1-one (1a), 1-(4-bromophenyl)-
2-(hydroxyamino)-2-methylpropan-1-one (1b), and 1-(4-fluorophenyl)-2-(hydroxyamino)-
2-methylpropan-1-one (1c), were prepared according to a literature procedure [34,35].

2.1.1. Synthesis of 1-Hydroxy-2,5-Dihydroimidazoles 2a–c and 4H-Imidazole
3-Oxides 3a–c

First, 1-hydroxy-5,5-dimethyl-4-phenyl-2,5-dihydro-1H-imidazole (2a) was synthe-
sized according to a slightly modified literature procedure [36]. To a suspension of 8.62 g
(40 mmol) of crystallized 2-(hydroxyamino)-2-methyl-1-phenylpropan-1-one hydrochloride
1a in 25 mL of EtOH, 30% aqueous ammonia solution (15 mL) was quickly added and the
mixture was stirred until a solution formed, after which 23.5 mL of 20% aqueous formalde-
hyde solution was added in one portion. The mixture was shaken until a homogeneous
solution was formed and placed in a cold-water bath for 1 min (to prevent boiling due to an
exothermic reaction). After the beginning of the formation of a precipitate of the product,
the reaction flask was kept for 15 h at room temperature and 1 d at +2 ◦C. The precipitate
was triturated, filtered off, washed with cold 40% aqueous EtOH (2 × 5 mL), and dried in
a vacuum to a constant weight. Colorless needles. Yield: 38.12 mmol (7.252 g, 95%). Lit.
yield: 26.08 mmol (4.962 g, 65%), mp = 183–185 ◦C (lit. mp = 184–185 ◦C). The 1H NMR
spectrum of 1-hydroxy-3-imidazoline 2a corresponds to the literature one [36].

4,4-Dimethyl-5-phenyl-4H-imidazole 3-oxide (3a). To a solution of 760 mg (4 mmol)
of N-hydroxy derivative 2a in 25 mL of chloroform, manganese dioxide was added
(1.391 g, 16 mmol), and the reaction mixture was intensively stirred for 20 min (moni-
toring the conversion of the starting substrate by TLC). The reaction mixture was filtered
through a glass filter with fine pores, the oxidant precipitate was washed with CHCl3
(3 × 3 mL), the combined filtrate was evaporated, and the yellow oily residue was shaken
with 5 mL of hexane and cooled at −12 ◦C for 1 d. The precipitate was triturated, quickly
filtered on a cold filter, and washed with ice-cold hexane (3 mL). Dark yellow crystals.
Yield: 3.40 mmol (640 mg, 85%). Lit. yield 2.80 mmol (527 mg 70%), mp = 70–72 ◦C
(lit. mp = 71–73 ◦C). The 1H and 13C NMR spectra of the sample corresponded to the
spectra given in the literature [37].

General procedure for the synthesis of 4-(4-halophenyl)-1-hydroxy-5,5-dimethyl-2,5-
dihydro-1H-imidazoles (Supplementary Materials, 2b,c). To a vigorously stirred suspension
of 20 mmol of 2-hydroxylaminoketone hydrochloride, 1b,c in 18 mL of EtOH ammonium
acetate (6.160 g, 80 mmol) was added, and, after 3 min, 6.00 g (40 mmol) of 20% aq
HCHO was added dropwise to the resulting thick suspension. It was kept for 6 h at room
temperature; the solvent was evaporated to a volume of 5 mL. Water (60 mL) was added to
the residue, the mixture was shaken until the oily residue solidified, the precipitate was
triturated till crystals formed, and the mixture was cooled at +3 ◦C for 72 h. The precipitate
was filtered off, washed with ice water (2 × 10 mL), and dried under a vacuum to a
constant weight.

4-(4-Bromophenyl)-1-hydroxy-5,5-dimethyl-2,5-dihydro-1H-imidazole (2b). Colorless
fine needle-shaped crystals. Yield 19.44 mmol (5.230 g, 97%), mp = 142–143 ◦C (Hex-
ane/EtOAc, 1:1). Rf 0.5 (CHCl3/MeOH, 10: 1). 1H NMR (400 MHz, DCCl3): δ 7.76 (br s,
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1H); 7.62 (d, J = 7.5 Hz, 2H); 7.52 (d, J = 7.5 Hz, 2H); 4.98 (s, 2H); 1.43 (s, 6H) ppm. 13C {1H}
NMR (100 MHz, DCCl3): δ 174.7 (C); 131.5 (CH); 129.3 (CH); 124.8 (C); 83.6 (CH2); 77.1 (C);
74.7 (C); 23.3 (CH3); 20.7 (CH3) ppm. IR (solid, KBr): ν 3641, 3165 (OH), 1620, 1589 (C=N),
1462, 1072, 1005, 835 cm−1. Anal. Calcd. for C11H13BrN2O: C, 49.09; H, 4.87; Br, 29.69;
N, 10.41. Found: C, 49.17; H, 5.09; Br, 29.72; N, 10.53.

4-(4-Fluorophenyl)-1-hydroxy-5,5-dimethyl-2,5-dihydro-1H-imidazole (2c). Color-
less needles. Yield: 18.20 mmol (3.79 g, 91%), mp = 109-110 ◦C (Hexane/EtOAc, 3:2).
Rf 0.55 (CHCl3/MeOH, 10: 1). 1H NMR (300 MHz, DCCl3): δ 7.90 (br s, 1H); 7.77 (ddd,
J = 7.5, 5.0, 1.5 Hz, 2H); 7.07 (ddd, J = 8.0, 7.5, 1.5 Hz, 2H); 4.98 (s, 2H); 1.44 (s, 6H) ppm.
13C {1H} NMR (75 MHz, DCCl3): δ 174.6 (C); 163.9 (d, J = 256 Hz, C); 129.8 (d, J = 9 Hz,
CH); 128.8 (d, J = 3.2 Hz, C); 115.4 (d, J = 22.5 Hz, CH); 83.4 (CH2); 74.6 (C); 22.9 (CH3);
20.6 (CH3) ppm. 19F NMR (282.4 MHz, DCCl3): δ 52.99 (s, 1F) ppm. IR (solid, KBr,):
ν 3424 (OH), 1614, 1601 (C=N), 1512, 1456, 1321, 1221, 1159, 1009, 850 cm−1. Anal. Calcd.
for C11H13FN2O: C, 63.45; H, 6.29; F, 9.12; N, 13.45. Found: C, 63.22; H, 6.24; F, 9.38;
N, 13.34.

5-(4-Bromophenyl)-4,4-dimethyl-4H-imidazole 3-oxide (3b). To a vigorously stirred so-
lution of 4.79 g (17.8 mmol) of 1-hydroxy-2,5-dihydroimidazole, 2b in 50 mL of chloroform
was added in one portion of manganese dioxide (3.097 g, 35.6 mmol) and the suspension
was stirred for 60 min, after which 0.774 g (8.9 mmol) of fresh MnO2 was introduced.
After additional stirring for 40 min (complete conversion of the initial substrate was moni-
tored by TLC), the inorganic precipitate was filtered through a glass filter with fine pores,
washed with 5 × 5 mL of chloroform and 2 × 6 mL of a mixture of CHCl3/EtOH, 5: 1,
and the combined filtrate was evaporated to a thick oily residue. The latter was subjected
to flash chromatography on silica gel, eluent CHCl3/MeOH, 30:1, and a yellow-greenish
fraction with Rf = 0.35 was collected; then, the solvent was evaporated to form a crystalline
residue of 3b.

Dark yellow long crystals. Yield 16.02 mmol (4.280 g, 90%), mp = 136.5 ◦C (dec.,
hexane-EtOAc, 2:1). Rf 0.8 (CHCl3/MeOH, 10: 1). 1H NMR (500 MHz, DCCl3): δ 7.78
(s, 1H); 7.76 (d, J = 8.5 Hz, 2H); 7.55 (d, J = 8.5 Hz, 2H); 1.61 (s, 6H) ppm. 13C {1H} NMR
(125 MHz, DCCl3): δ 176.05 (C); 138.26 (CH); 132.20 (CH); 129.27 (C); 128.05 (CH); 126.36
(C); 79.13 (C); 23.68 (CH3) ppm. IR (solid, KBr): ν 1614, 1583 (C=N), 1522 (C=N-C=N-O),
1491, 1468, 1456, 1267, 1068, 1003, 831, 754 cm−1. UV (in EtOH, (lg ε)): λ 241 (3.74), 363
(4.05) nm. Anal. Calcd. for C11H11BrN2O: C, 49.46; H, 4.15; Br, 29.91; N, 10.49. Found: C,
49.81; H, 4.02; Br, 29.72; N, 10.45.

5-(4-Fluorophenyl)-4,4-dimethyl-4H-imidazole 3-oxide (3c). One portion of 3.48 g
(40 mmol) of manganese dioxide was added to a solution of 4.160 g (20 mmol) of 1-hydroxy-
2,5-dihydroimidazole 2c in 50 mL of chloroform and the suspension was intensively stirred
for 45 min, after which 0.87 g (10 mmol) of fresh MnO2 was added. Again, the addition
of a portion of fresh MnO2 (0.87 g, 10 mmol) was repeated after stirring the mixture for
1 h. The completeness of the initial substrate’s conversion was monitored by TLC. The
total duration of stirring of the reaction mixture was 5.5 h. The precipitate of inorganics
was filtered off through a glass filter with fine pores, washed with 5 × 8 mL of CHCl3
and 8 mL of CHCl3/EtOH, 5:1, and the combined filtrate was evaporated until the residue
began to crystallize. The semisolid substance was triturated with 15 mL of hexane and the
mixture was cooled at +3 ◦C for 1 d. The precipitate of the product was quickly filtered
off on a cold filter, washed with ice-cold hexane (2 × 10 mL), and dried in a vacuum to a
constant weight.

Yellow-orange needles. Yield: 18.73 mmol (3.862 g, 94%), mp = 115–116 ◦C (hexane).
Rf 0.7 (CHCl3/MeOH, 10:1). 1H NMR (300 MHz, DCCl3): δ 7.98–7.87 (m, 2H); 7.78 (s,
1H); 7.15–7.07 (m, 2H); 1.61 (s, 6H) ppm. 13C {1H} NMR (150 MHz, DCCl3): δ 176.4 (C);
164.6 (d, J = 253.5 Hz, C); 138.4 (CH); 129.1 (d, J = 9 Hz, CH); 126.9 (d, 4JCF = 3 Hz, C); 116.3 (d,
J = 22.5 Hz, CH); 79.1 (C); 23.8 (CH3) ppm. 19F NMR (282 MHz, DCCl3): δ 55.68 (s, 1F) ppm.
IR (solid, KBr): ν 1603 (C=N), 1527 (C=N-C=N-O), 1512, 1227, 843, 573 cm−1. UV (in EtOH,
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(lg ε)): λ 233 (3.86), 276 (3.44), 359 (4.07) nm. Anal. Calcd. for C11H11FN2O: C, 64.07; H,
5.38; F, 9.21; N, 13.58. Found: C, 64.09; H, 5.34; F, 9.53; N, 13.66.

2.1.2. General Procedure for the Synthesis of Hydrochloride Salt of Indolyl Imidazole
Derivatives (5a–d)

To a vigorously stirred mixture of 4H-imidazole-3-oxide 3a (0.5 mmol) and indole, 4a–e
(0.5 mmol) in toluene (5 mL) at 0 ◦C acetyl chloride (0.5 mmol) was added. Subsequently,
the resulting mixture was warmed to room temperature and subjected to continued stirring
for an additional 30 min. Then, the resulting precipitate 3 was filtered off and washed with
hexane (10 mL).

3-(4,4-Dimethyl-5-phenyl-4H-imidazol-2-yl)-1-methyl-1H-indole hydrochloride (5a).
Light-brown solid. Yield: 0.24 mmol (81 mg, 48%), mp = 138–139 ◦C. Rf 0.12 (hexane/EtOAc,
7:3). 1H NMR (400 MHz, DMSO-d6): δ 7.92–7.90 (m, 2H); 7.79 (d, J = 7.9 Hz, 1H);
7.53–7.50 (m, 2H); 7.41 (d, J = 8.2 Hz, 1H); 7.33 (s, 1H); 7.16 (t, J = 8.2 Hz, 1H); 7.04 (t,
J = 8.2 Hz, 1H); 6.34 (s, 1H); 3.76 (s, 3H); 1.53 (s, 3H), 1.41 (s, 3H) ppm. 13C {1H} NMR
(DMSO-d6): δ 174.4; 169.6; 136.9; 132.3; 130.6; 128.6; 128.3; 127.9; 126.5; 121.2; 120.3; 118.8;
111.4; 109.6; 87.6; 74.1; 32.4; 19.1 ppm. IR (DRA): ν 3053, 2933, 1761, 1614, 1463, 1367, 1319,
1212, 1072, 1009, 940, 821, 734, 698, 598 cm−1. MS (EI): m/z 301 [M] + Anal. Calcd. for
C20H20ClN3: C, 71.10; H, 5.97; Cl, 10.49; N, 12.44. Found: C, 70.96; H, 5.98; N, 12.42.

5-(Benzyloxy)-3-(4,4-dimethyl-5-phenyl-4H-imidazol-2-yl)-1H-indole hydrochloride
(5b). Brown solid. Yield: 0.21 mmol (90 mg, 42%), mp = 136–137 ◦C. Rf 0.12 (hexane/EtOAc,
7:3). 1H NMR (400 MHz, DMSO-d6): δ 11.01 (br s, 1H); 7.94 (d, J = 8.7 Hz, 2H); 7.55–7.53 (m,
3H); 7.42–7.39 (m, 3H); 7.35–7. (m, 4H); 6.83 (dd, J = 8.8, 2.4 Hz, 1H); 6.36 (s, 1H); 5.06 (d,
J = 6.7 Hz, 2H); 1.55 (s, 3H); 1.39 (s, 3H). ppm. 13C {1H} NMR (DMSO-d6): δ 175.3; 169.6;
152.0; 137.8; 131.7; 131.6; 131.1; 128.8; 128.3; 128.1; 127.6; 127.5; 126.5; 125.0; 112.1; 112.0;
103.6; 87.4; 74.2; 69.7; 21.1; 19.1 ppm. IR (DRA): ν 3127, 2410, 1756, 1617, 1579, 1453, 1359,
1212, 1017, 921, 837, 811, 746, 675, 551 cm−1. MS (EI): m/z 393 [M] +. Anal. Calcd. for
C26H24ClN3O: C, 72.63; H, 5.63; Cl, 8.25; N, 9.77; O, 3.72. Found: C, 72.93; H, 5.61; N, 9.74.

3-(4,4-Dimethyl-5-phenyl-4H-imidazol-2-yl)-1H-indole hydrochloride (5c). Dark-brown
solid. Yield: 0.32 mmol (105 mg, 65%), mp = 133–134 ◦C. Rf 0.1(hexane/EtOAc, 7:3).1H
NMR (DMSO-d6): δ 11.18 (br s, 1H); 7.95–7.92 (m, 2H); 7.74 (d, J = 7.9 Hz, 1H);
7.55–7.50 (m, 2H); 7.39 (d, J = 8.1 Hz, 2H); 7.09 (t, J = 7.5 Hz, 1H); 6.99 (t, J = 7.5 Hz,
1H); 1.56 (s, 3H); 1.44 (s, 3H). ppm. 13C {1H} NMR (DMSO-d6): δ 172.0; 169.6; 136.5; 131.6;
131.1; 128.8; 128.1; 126.2; 121.2; 120.0; 118.7; 111.5; 94.1; 87.0; 74.2; 21.1; 19.1 ppm. IR (DRA):
ν 3137, 2916, 2429, 1778, 1630, 1463, 1382, 1335, 1302, 1247, 1171, 933, 830, 756, 679 cm−1.
MS (EI): m/z 287 [M]+. Anal. Calcd. for C19H18ClN3: C, 70.47; H, 5.60; Cl, 10.95; N, 12.98.
Found: C, 70.24; H, 5.58; N, 12.92.

Ethyl 3-(4,4-dimethyl-5-phenyl-4H-imidazol-2-yl)-1H-indole-2-carboxylate hydrochlo-
ride (5d). Yellow solid. Yield: 0.105 mmol (41.6 mg, 21%), mp = 70–71 ◦C. Rf 0.1 (hex-
ane/EtOAc, 7:3).1H NMR (400 MHz, DCCl3) δ 8.96 (br s, 1H); 7.85–7.82 (m, 2H); 7.69 (d,
J = 7.8. Hz, 1H); 7.40–7.34 (m, 3H); 7.24 (s, 1H); 7.09 (s, 1H); 6.97 (t, J = 7.6 Hz, 1H); 4.33 (q,
J = 7.2, 6.4 Hz, 2H); 1.56 (s, 3H); 1.56 (s, 3H); 1.31 (t, J = 7.1 Hz, 3H) ppm. 13C NMR (101
MHz, DCCl3): δ 207.1; 176.2; 161.6; 135.9; 132.7; 130.9; 128.8; 128.1; 127.7; 125.5; 125.2; 123.6;
120.9; 118.0; 111.9; 85.4; 61.3; 31.0; 19.0; 14.5 ppm. IR (DRA): ν 3327, 2983, 1760, 1675, 1542,
1460, 1324, 1256, 1201, 1013, 908, 803, 773, 744, 694 cm−1. MS (EI): m/z 359 [M] +. Anal.
Calcd for C22H22ClN3O2: C, 66.75; H, 5.60; Cl, 8.95; N, 10.61; O, 8.08. Found: C, 66.58; H,
5.61; N, 10.59.

2.1.3. General Procedure for the Synthesis of Indolyl Imidazole Derivatives (6e–h)

To a vigorously stirred mixture of 4H-imidazole-3-oxide 3a–c (0.5 mmol) and indole,
4a–e (0.5 mmol) in toluene (5 mL) at 0 ◦C acetyl chloride (0.5 mmol) was added. Subse-
quently, the resulting mixture was warmed to room temperature and subjected to continued
stirring for an additional 30 min. Then, the resulting precipitate 5 was filtered off, dissolved
in EtOH (5 mL), and quenched with NaHCO3 (5% w/v H2O) to obtain pH 7–8. Water was
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added (50 mL) and the resulting mixture was extracted with EtOAc (3 × 15 mL), dried over
Na2SO4, and evaporated in vacuo. Then, the resulting crude solid was purified by manual
column chromatography using Hexane/EtOAc (8/2) as an eluent and the formed eluate
was evaporated in vacuo to obtain compounds 6 as solids.

3-(5-(4-Bromophenyl)-4,4-dimethyl-4H-imidazol-2-yl)-1H-indol-5-ol (6e). Dark-green
solid. Yield: 0.43 mmol (162.3 mg, 85%), mp = 135–136 ◦C. Rf 0.28 (hexane/EtOAc, 7:3).
1H NMR (400 MHz, DCCl3): δ 8.08 (s, 1H); 7.89 (d, J = 8.6 Hz, 2H); 7.71 (dd, J = 5.7, 3.3 Hz,
3H); 7.53 (dd, J = 5.7, 3.4 Hz, 3H); 6.35 (s, 1H); 1.60 (s, 3H); 1.52 (s, 3H). ppm. 13C {1H} NMR
(101 MHz, DCCl3): δ 170.3; 150.1; 132.3; 132.0; 131.6; 130.6; 129.8; 125.5; 113.1; 112.5; 112.3;
111.9; 107.0; 105.2; 89.0; 25.0; 19.4. ppm. IR (DRA): ν 3327, 2925, 2855, 1729, 1607, 1581, 1464,
1381, 1274, 1123, 1072, 935, 795, 699, 650 cm−1. MS (EI): m/z 381 [M]+, 383 [M+2]+. Anal.
Calcd. for C19H16BrN3O: C, 59.70; H, 4.22; Br, 20.90; N, 10.99; O, 4.19. Found: C, 59.66; H,
4.23; N, 11.01.

3-(5-(4-Fluorophenyl)-4,4-dimethyl-4H-imidazol-2-yl)-1H-indole (6f). Light-brown
solid. Yield: 0.32 mmol (97.6 mg, 64%), mp = 185–186 ◦C. Rf 0.3 (hexane/EtOAc, 7:3).
1H NMR (400 MHz, DCCl3): δ 8.25 (s, 1H); 7.92 (dd, J = 8.6, 5.6 Hz, 2H); 7.86 (d, J = 7.9 Hz,
1H); 7.34 (d, J = 7.7 Hz, 2H); 7.18–7.11 (m, 3H); 6.40 (s, 1H); 1.61 (s, 3H); 1.54 (s, 3H). ppm.
13C {1H} NMR (101 MHz, DCCl3): δ 170.2; 164.4 (d, J = 251.4 Hz); 136.7; 130.4 (d, J = 8.5 Hz);
129.0 (d, J = 4.0 Hz); 126.7; 124.1; 123.9; 122.6; 122.4; 120.7; 120.1; 115.8 (d, J = 21.7 Hz); 111.2;
88.4; 25.1; 19.3 ppm. 19F NMR (376 MHz, DCCl3) δ -114.11 (F) ppm. IR (DRA): ν 3327, 1748,
1604, 1509, 1458, 1430, 1367, 1204, 1150, 1008, 845, 813, 746, 639, 588 cm−1. MS (EI): m/z 305
[M] +. Anal. Calcd. for C19H16FN3: C, 74.74; H, 5.28; F, 6.22; N, 13.76. Found: C, 74.49; H,
5.29; N, 13.74.

3-(5-(4-Fluorophenyl)-4,4-dimethyl-4H-imidazol-2-yl)-1-methyl-1H-indole (6g).
Note: in 13C NMR, one signal of the aromatic carbon atom is missing, probably due to

overlapping in the area of 130–120 ppm. Light-brown solid. Yield: 0.475 mmol (152 mg,
95%), mp = 156–157◦C. Rf 0.32 (hexane/EtOAc, 7:3).1H NMR (400 MHz, DCCl3): δ 7.95
(dd, J = 8.6, 5.5 Hz, 2H); 7.89 (d, J = 7.9 Hz, 1H); 7.33 (m, 2H); 7.21–7.15 (m, 3H); 6.42 (s, 1H),
3.80 (s, 3H); 1.64 (s, 3H); 1.57 (s, 3H). ppm. 13C {1H} NMR (101 MHz, DCCl3): δ 174.9; 170.5;
164.7 (d, J = 251.5 Hz); 137.8; 130.7 (d, J = 8.5 Hz); 129.4 (d, J = 3.3 Hz); 128.7; 127.4; 122.3;
121.1; 120.0; 116.1 (d, J = 21.7 Hz); 109.7; 88.6; 75.2; 33.3; 19.7. ppm. 19F NMR (376 MHz,
DCCl3): δ -109.92 ppm. IR (DRA): ν 2971, 1749, 1614, 1505, 1367, 1318, 1212, 1151, 1097,
1072, 1009, 841, 740, 639, 563 cm−1. MS (EI): m/z 319 [M] +. Anal. Calcd. for C20H18FN3 C,
75.21; H, 5.68; F, 5.95; N, 13.16. Found: C, 75.45; H, 5.67; N, 13.18.

5-(Benzyloxy)-3-(5-(4-fluorophenyl)-4,4-dimethyl-4H-imidazol-2-yl)-1H-indole (6h).
Light-brown solid. Yield: 0.4 mmol (167 mg, 81%), mp = 194–195 ◦C. Rf 0.35 (hexane/EtOAc,
7:3).1H NMR (400 MHz, DCCl3): δ 8.41 (s, 1H); 7.91 (dd, J = 8.6, 5.4 Hz, 2H); 7.47 (dd,
J = 7.1, 2.2 Hz, 3H); 7.38 (m, 3H); 7.14 (t, J = 8.6 Hz, 2H); 7.04 (t, J = 7.9 Hz, 1H); 6.73
(d, J = 7.7 Hz, 1H); 6.38 (s, 1H); 5.20 (s, 2H); 1.60 (s, 3H); 1.53 (s, 3H). ppm. 13C {1H}
NMR (101 MHz, DCCl3): δ 174.8; 170.2; 164.4 (d, J = 251.6 Hz); 145.4; 137.2; 130.4 (d,
J = 8.6 Hz); 129.0 (d, J = 3.4 Hz); 128.9; 128.7; 128.3; 128.1; 128.0; 127.4; 123.4; 120.5; 115.8 (d,
J = 21.7 Hz); 113.7; 103.5; 88.4; 70.4; 21.3; 19.4 ppm. 19F NMR (376 MHz, DCCl3) δ -114.18.
ppm. IR (DRA): ν 3638, 3328, 2955, 1741, 1574, 1504, 1445, 1369, 1261, 1223, 1099, 1005, 843,
812, 787 cm−1. MS (EI): m/z 411 [M] +. Anal. Calcd. for C26H22FN3O: C, 75.89; H, 5.39; F,
4.62; N, 10.21; O, 3.89. Found: C, 75.91; H, 5.38; N, 10.26.

2.2. Molecular Docking Studies

To evaluate potential in silico biological activity, protein–ligand complexes with
known inhibitors were downloaded from the RCSB database: (1) BACE1 in complex with
CHEMBL4473080 (IC50 = 1.7 nM, PDB: 6jse); (2) BChE in complex with SCHEMBL34046
(IC50 = 300 nM, PDB: 6eqp); (3) CK1δ in complex with CHEMBL489156 (IC50 = 1000 nM,
PDB: 1eh4); (4) AChE in complex with CHEMBL95 (IC50 = 105 nM, PDB: 7e3i).

Molecular docking was carried out in the selected target proteins in the Arguslab
4.0.1 software using the Lamarckian genetic algorithm GADock and the empirical scor-
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ing function AScore with default parameters. Binding sites were defined relative to the
corresponding native ligands. Validation of the docking protocol was carried out by re-
docking native ligands with following results: RMSD6JSE = 1.98 Å, RMSD6EQP = 1.60 Å,
RMSD1EH4 = 2.00 Å, RMSD7E3I = 1.98 Å. Docking scores for native ligands are also given
in Table 1.

Table 1. Results from the protein–ligand docking for targets responsible for the progression of
neurodegenerative diseases (Bold for the best docking score).

Docking Score (kcal/mol)

Structure BACE1
6jse

BChE
6eqp

CK1δ
1eh4

AChE
7e3i

5a −11.60 −10.96 −9.78 −13.57
5b −12.57 * −11.58 −13.09 −13.33
5d −10.04 −12.89 −11.53 −12.42
6g −10.77 −10.66 −10.21 −11.59
6h −11.27 −12.22 −10.99 −12.69

CHEMBL4473080 −11.27 - - -
SCHEMBL34046 - −8.93 - -
CHEMBL489156 - - −9.45 -

CHEMBL95 - - - −8.50
* Ligands with the lowest (best) docking score for each target are marked in bold.

2.3. In Vitro Studies
2.3.1. Cell Culture

Experiments were carried out on cultured human embryonic kidney 293 cells (Hek-
293, ATCC CRL 1573) [38] obtained from a shared research facility, the “Vertebrate Cell
Culture Collection” (Institute of Cytology RAS, St. Petersburg, Russia). The cells were
cultured using DMEM/F-12 medium containing 10% fetal bovine serum (FBS) at 37 ◦C, 5%
CO2 and 98% humidity. Subculturing using 0.25% trypsin solution was performed when
the culture reached ≥ 90% confluency. DMEM/F-12 and FBS Qualified were purchased
from Gibco™, Thermo Fisher Scientific, USA. Trypsin was purchased from Biolot Ltd., St.
Petersburg, Russia.

2.3.2. Viability Assessment

The compounds were dissolved in DMSO. The solutions were diluted with DMEM/F-
12 culture medium with 10% fetal bovine serum to the studied concentrations: 4, 8, 16, 32,
64, 128, 256, 512 µM (5a, 5d) and 2–256 µM (5b, 6g and 6h). In all cases, the concentration
of DMSO in the final solution did not exceed 1%.

Cells were seeded in 96-well plates at a concentration of 4 × 103 cells per well. After
24 h, test compounds were added to the wells in a given concentration range. Then, the cells
were incubated for 24 h, after which a solution of MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazolium bromide) was added to the cultures at 20 µL (5 mg/mL) per well.
After 2 h, the medium was removed from the wells and 200 µL of a mixture of DMSO and
propanol-2, 1:1, was added. Optical density was measured on a plate spectrophotometer at
a wavelength of 570 nm.

2.3.3. Statistical Analysis

Statistical data processing was carried out in the RStudio program (2022.07.1+554)
using the R package (version 4.2.1). The cytotoxicity index (IC50) was calculated by plotting
dose–response curves using the “drc” package [39].
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3. Results and Discussion
3.1. Synthesis

The synthetic study was started by expanding the range of heterocyclic substrates 3,
4H-imidazole 3-oxide derivatives, to be involved in the key heteroarylation reaction. It
should be noted that cyclic aldonitrones in the series of 4H-imidazoles are extremely rare,
with only three examples of such compounds being reported in the literature [37,40]. By
modifying the procedure for the preparation of 5-aryl-substituted 4H-imidazole 3-oxides
based on available 2-hydroxylamino ketones 1, azaheterocyclic substrates 3 were obtained
in almost quantitative yields via two-stage synthesis (Scheme 2).
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4H-imidazole 3-oxides, which is involved in the C-H/C-H couplings).

Next, novel indolyl-derived imidazoles 6 were prepared by using the direct transi-
tion metal-free C-H/C-H coupling reactions of 4H-imidazole 3-oxides 3 with indoles 4.
These transformations were shown to proceed according to the “addition–elimination”
scheme of the nucleophilic substitution of hydrogen (SN

H AE). According to the previously
reported synthetic scheme for the C-H/C-H coupling reactions of 2H-imidazole 1-oxide
with indoles [26], which proceeded via the same SN

H AE scheme, the C(3) atom of indole
is involved in the formation of new C-C bonds. However, there are a few examples in
which the C(2) atom of the indole ring is a nucleophilic center, with special conditions being
required to provide the C-C bond formation therein [41]. As a result, the desired indolyl
imidazoles were isolated as hydrochloride salts 5. The latter were shown to be readily
removed by quenching them with NaHCO3 (5% w/v in H2O) to give the corresponding
base forms 6 (Scheme 3).
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To define the optimal conditions, the reaction between 4H-imidazole 3-oxide 3a and
1-methylindole 4a was chosen as a model one (Scheme 4). The key reaction parameters,
such as time, activating agent, temperature and solvents, were evaluated (for detailed
optimization, see Supplementary Materials). Firstly, the desired compound 5a was obtained
in a 25% yield in toluene, using acetyl chloride as an activating agent (Table 2, Entry 1).
Reducing the reaction time from 4 to 0.5 h led to a significant increase in the yield to
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48% (Table 2, Entries 2 and 3). Most likely, the salt was not sufficiently stable in the
reaction conditions. On the other hand, the use of other activating agents, such as ethyl
chloroformate or oxalyl chloride, led either to the trace yield of 5a or to only the starting
materials (Table 2, Entries 4 and 5). All attempts to replace toluene with a greener solvent,
such as PEG-400 or 2-MeTHF (Table 2, Entries 6 and 9), provided a lower yield of the
reaction products.
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Table 2. Optimization of the C-H/C-H coupling reaction of 4H-imidazole 3-oxide 3a with indole 4a
(bold for the best result of optimization).

Entry a Solvent Activating Agent (Equiv) Temperature (◦C) Time (h) Yield (%)

1 Toluene AcCl (1.0) 0 ◦C to rt 4 25 b

2 Toluene AcCl (1.0) 0 ◦C to rt 0.5 48 b

3 Toluene AcCl (1.0) 0 ◦C to rt 2 35 b

4 Toluene Ethyl chloroformate (1.0) 0 ◦C to rt 0.5 20 b

5 Toluene Oxalyl chloride (1.0) 0 ◦C to rt 0.5 0 c

6 PEG-400 AcCl (1.0) 0 ◦C to rt 4 10 b

7 Hexane/Toluene (1/1) AcCl (1.0) 0 ◦C to rt 4 15 b

8 2-Me-THF AcCl (1.0) 0 ◦C to rt 4 0 c

9 Anisole AcCl (1.0) 0 ◦C to rt 4 0 c

a All reactions were carried out using 1 mmol of each substrate. b Isolated yield. c The only starting materials
were recovered.

With the best identified, optimal conditions in hand, eight novel indolyl-derived
4H-imidazoles were obtained in 21–95% yields (Figure 2). It should be noted that com-
pounds 5a–d, containing a phenyl ring in the imidazole moiety, are able to be isolated only
as hydrochlorides, since the corresponding free forms are unstable in solutions. On the
contrary, molecules 6e–h, bearing bromine or fluorine atoms in the para-position of the
phenyl ring, are not decomposed, but contain some impurities, and therefore need to be
purified by column chromatography. All the novel compounds were fully characterized by
1H, 13C, 19F NMR, mass spectrometry, IR and elemental analysis, with the structures being
completely confirmed.

Based on the results of our previous works [26,42,43], a plausible reaction mechanism
was proposed (Scheme 5, an example for coupling of 3a and 4a). At the first stage, acetyl
chloride is attached to the N-oxide group of 4H-imidazole 3-oxide 3a to form structure 3.1.
It is most likely to undergo the nucleophilic attack from the C-H bond of indole 4a with
the formation of intermediate 3.2. Subsequently, the elimination of acetic acid leads to the
indolyl-substituted 4H-imidazoles 5a in the hydrochloride salt form.



Processes 2023, 11, 846 11 of 17

3.2. In Silico Studies

As mentioned in the Introduction, biological targets, such as BACE1, AChE, BChE and
CK1δ, are actively discussed in publications focused on the design of drug candidates for
the treatment of neurodegenerative diseases. Potential biological activity regarding these
target proteins was determined by molecular docking in the ArgusLab 4.0.1 [44] software
based on the corresponding protein–ligand complexes BACE1, BChE, CK1δ and AChE
with the known inhibitors (Figure 3).
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Figure 3. Examples of inhibitors of BACE1 (CHEMBL4473080, PDB: 6jse), BChE (CHEMBL34046,
PDB: 6eqp), CK1δ (CHEMBL489156, PDB: 1eh4), AChE (CHEMBL95, PDB: 7e3i).

The docking results in comparison with the known inhibitors (native ligands) are
presented in Table 1.

Docking scores for most compounds were found to be lower than scores for native
ligands. According to SwissADME [45], all compounds have sufficient absorption, distri-
bution, metabolism and excretion (ADME) characteristics, except for 6h, with WlogP > 5
and satisfactory blood–brain barrier (BBB) permeability values [46] (for detailed values, see
ESI). However, the calculated positions of the compounds differ from the native ligands in
terms of their locations in the active sites (Figure 4a,b).
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Figure 4. Leading compounds (opaque with bonds as cylinders and atoms as spheres) compared
with native ligands (transparent with bonds as cylinders) in the corresponding targets (transparent,
cyan): (a) 5b in BACE1; (b) 5d in BChE; (c) 5b in CK1δ; (d) 5a in AChE. – Atom colors are presented
according to CPK ( Corey–Pauling–Koltun) color scheme.
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Docked leading compounds 5b (Figure 5a) and 5a (Figure 5c) in the active sites of CK1δ
and AChE, respectively, were shown to have several common non-covalent interactions
with respect to the corresponding native ligands (Figure 5b,d)
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Thus, compounds 5b and 5a could be regarded as the most promising inhibitors
for CK1δ and AChE target proteins, respectively, which also have satisfactory calculated
ADME values including BBB permeability in the series of obtained compounds.

3.3. In Vitro Studies

To evaluate the toxicity effect for the obtained compounds, the MTT test was performed
on HEK-293 cells. Based on the results, the IC50 values were calculated (Table 3).

Table 3. Cytotoxicity index (IC50 ± SE, n = 30) for the obtained compounds on human embryo kidney
cells (HEK-293) (µM).

Entry Compound IC50 ± SE

1 5a 306.85 ± 37.65
2 5b 59.58 ± 3.63
3 5d 66.60 ± 4.98
4 6g 181.68 ± 20.69
5 6h >256
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According to the experimental results, compounds 5b and 5d were found to be charac-
terized as the most toxic for HEK-293 cells. This fact seems to limit the possibility for further
applications, despite the revealed high affinity for biological targets. However, compounds
5a, 6g and 6h demonstrated relatively low toxicity towards cultured cells. At the same time,
the cytotoxicity index for 6h exceeded the range of the studied concentrations, limited by
the solubility of the compound. Nevertheless, at the maximum concentration of 256 µM,
cell viability was already reduced by more than 30% compared to the control values. In
addition, increasing cell viability at low concentrations was observed in the presence of
compounds 5b and 6h (Figure 6).
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Thus, regarding the results of both in silico and in vitro assays, compound 5a,
3-(4,4-dimethyl-5-phenyl-4H-imidazol-2-yl)-1-methyl-1H-indole hydrochloride, could be
considered as a candidate for further studies of its possible neuroprotective activity.

4. Conclusions

In summary, the SN
H strategy has been successfully applied for the heteroarylation of

4H-imidazole 3-oxides for the first time to afford a series of novel indolyl-derived
4H-imidazoles of various architectures. Notably, 4H-imidazole 3-oxides have been found
to be less reactive than 2H-imidazole 1-oxides in the same chemical transformation with
indoles, possibly because of the less electrophilic character of the C(2) carbon atom in
the heterocyclic system. The obtained compounds have shown satisfactory results in
in silico experiments for binding to biological targets (BACE1, BChE, CK1δ, AChE) ap-
plied in the computer-aided design of drug candidates for the therapy of neurodegen-
erative diseases. In vitro experiments have been also performed to assess the cytotoxi-
city of the synthesized indolyl-derived 4H-imidazole 3-oxides towards healthy human
cells. The leading compound bearing 5-phenyl-4H-imidazole and 1-methyl-1H-indole
moieties has been defined as the candidate molecule possessing the lowest cytotoxicity
(IC50 > 300 µM towards human embryo kidney cells, HEK-293) and highest binding energy
for the protein–ligand complex (AChE, −13.57 kcal/mol). Thereby, the obtained results
from sequential interdisciplinary research, including chemical design, synthesis, charac-
terization and in silico and in vitro cytotoxicity studies, could be regarded as the basis for
the further investigation of the designed compounds in enzyme and model animals, as
relevant steps in the development of drug candidates.
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