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Abstract: Air-conditioning system operation pattern recognition plays an important role in the fault
diagnosis and energy saving of the building. Most machine learning methods need labeled data
to train the model. However, the difficulty of obtaining labeled data is much greater than that of
unlabeled data. Therefore, unsupervised clustering models are proposed to study the operation
pattern recognition of the refrigeration, heating and hot water combined air-conditioning (RHHAC)
system. Clustering methods selected in this study include K-means, Gaussian mixture model cluster-
ing (GMMC) and spectral clustering. Further, correlation analysis is used to eliminate the redundant
characteristic variables of the clustering model. The operating data of the RHHAC system are used to
evaluate the performance of proposed clustering models. The results show that clustering models,
after removing redundant variables by correlation analysis, can also identify the defrosting operation
mode. Moreover, for the GMMC model, the running time is reduced from 27.80 s to 10.04 s when the
clustering number is 5. The clustering performance of the original feature set model is the best when
the number of clusters of the spectral clustering model is two and three. The clustering hit rate is
98.99%, the clustering error rate is 0.58% and the accuracy is 99.42%.

Keywords: air conditioning system; pattern recognition; clustering; correlation analysis; defrosting
operation mode

1. Introduction

According to the report of the International Energy Agency, buildings currently ac-
count for 36% of global carbon dioxide emissions [1]. China has also put forward carbon
peak and carbon neutral targets, so energy conservation and emission reduction in various
energy industries will become increasingly important [2,3]. Building cooling, heating and
hot water supply account for a large proportion of building energy [4,5]. Therefore, the
combined air-conditioning system that can achieve cooling, heating and hot water produc-
tion will help achieve further energy-saving and emission-reduction goals. Analyzing the
operation data of a combined air-conditioning system and identifying the operation mode
through data mining will further help to improve the energy-saving potential.

At present, many researchers have carried out research on the refrigeration, heating
and hot water combined air-conditioning (RHHAC) system. Gong et al. [6] studied the
combined chiller system, which can provide a sanitary hot water supply and air condi-
tioning simultaneously. Zhao et al. [7] studied the heating performance of an air-source
heat pump with water tank for thermal energy storage. Byrne et al. [8,9] carried out the
experimental study of an air-source heat pump for simultaneous heating and cooling.
The research mainly consists of two parts, including basic concepts and performance ver-
ification and dynamic behavior and the two-phase thermosiphon defrosting technique.
In addition, the operating characteristics of the combined air-conditioning system under

Processes 2023, 11, 812. https://doi.org/10.3390/pr11030812 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11030812
https://doi.org/10.3390/pr11030812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-4350-1396
https://doi.org/10.3390/pr11030812
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11030812?type=check_update&version=1


Processes 2023, 11, 812 2 of 19

different operating conditions have also been studied, and especially the start-up char-
acteristics have been analyzed. In the hot-water mode, the exhaust pressure of the unit
reached 3.7 Mpa [10]. However, there is less research on the further in-depth analysis
of the operation data of the RHHAC system. In particular, data-mining methods have
been used more and more widely in the field of air conditioning [11–13], so it is necessary
to carry out data-mining research on the RHHAC system. The clustering method is an
unsupervised machine learning method [14–16] that can analyze the data without labeling
data and obtain valuable information [17]. Since labeled data are more difficult to obtain
than unlabeled data, the application of clustering methods will have advantages [18]. At
present, the widely used clustering methods mainly include K-means clustering [19–22],
Gaussian mixture model clustering (GMMC) [23–25] and spectral clustering (SC) [26–28].
Xia et al. [29] proposed the cluster model based on the K-means method to find out the
difference between the climate and the building thermal environment of three regions.
David et al. [30] proposed a new climate classification method based on K-means, and the
towns incorrectly classified were reduced between 0.128 and 7.702%. Nurseda et al. [31]
combined the K-means method and the association rule mining method to study the
balance of solar power generation. Islam et al. [32] proposed an enhanced brain tumor
detection scheme based on the K-means method and principal component analysis. A
framework using clustering methods for modeling time-varying operations in complex
energy systems was developed. Different clustering methods in the domain of the objective
function of two example operational optimization problems were compared [33]. Zhao
et al. [34] developed the Gaussian mixture model to preprocess historical data to obtain
steady-state measurements under various operating conditions. Further, the Gaussian
mixture model was used to optimize the energy management of heterogeneous building
neighborhoods [35]. Shen et al. [36] used the principal analysis and the Gaussian mixture
model to establish a building type clustering model, which is computationally efficient
and a more accurate reflection of the local urban microclimate. Wang et al. [37] proposed
an optimal scheduling strategy for an electricity–hydrogen–gas–heat integrated energy
system based on the spectral clustering method, and used the spectral clustering method
to describe the uncertainty of the system. Guo et al. [38] proposed multi-view spectral
clustering combined with simultaneous consensus graph learning and discretization. From
the above research, it can be concluded that the data-mining method can carry out knowl-
edge discovery from the operation data of the air-conditioning system. The data-mining
method has important potential for air-conditioning system operation pattern recognition.
However, there is no research on applying the clustering method to data analysis of the
RHHAC system. Therefore, this study focuses on the application of the clustering method
in the operation pattern recognition of the RHHAC system.

In addition, different feature variable sets also have an important impact on the
complexity and running time of the model [39]. The correlation analysis approach can
eliminate the redundant characteristic variables in the model [40–42]. Therefore, the
correlation analysis method is used to eliminate the redundant characteristic variables in
this study.

The main contribution of this paper is to establish cluster models of a RHHAC system
using various clustering methods for system operation pattern recognition. The clustering
performance of the model with different clustering methods, different numbers of clusters
and different feature variable sets is analyzed. This method can be used for data mining
and energy-saving pattern recognition of air-conditioning systems, and plays an important
role in the fault identification and energy saving of air-conditioning systems.

The paper is organized as follows. Section 2 outlines the pattern recognition approach
based on clustering. Section 3 describes the experiment and data introduction of the
RHHAC system. Section 4 introduces the results and discussion of the clustering model in
detail. Finally, the paper is concluded in Section 5.
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2. Pattern Recognition Approach Based on Clustering

The pattern recognition approach proposed in this study is based on the unsupervised
clustering algorithm, as shown in Figure 1. The unsupervised clustering method can
identify valuable operating modes under the condition of unlabeled data. This section
introduces the principles of three unsupervised clustering methods and the redundant vari-
able elimination approach based on correlation analysis. Further, quantitative evaluation
indexes are proposed to evaluate the performance of different clustering models.
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2.1. Redundant Variable Elimination Strategy Based on Correlation Analysis

The correlation coefficient reflects the degree of linear correlation among different
variables. A positive correlation coefficient indicates a positive correlation among variables.
A negative correlation coefficient indicates a negative correlation among variables. The
larger the absolute value of the correlation coefficient, the stronger the correlation among
the variables, and vice versa, the weaker the correlation. The Pearson simple correlation co-
efficient method is used in this study, which describes the correlation between two variables
of different scales.

The correlation coefficient between the two variable data is defined as follows:

rxy =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

(1)

In the above formula, rxy is the value of the correlation coefficient, and the meaning of
different values is shown in Figure 2:
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Variables with high correlation contain redundant information, and too many feature
variables may increase the complexity of the model. Therefore, the correlation analysis
method is selected to eliminate redundant variables, thereby reducing feature variables.
When using the correlation analysis method to select feature variables, the choice of
threshold is very important for the performance of eliminating redundant variables. If the
threshold is too large, the performance of eliminating redundant variables will be poor. On
the contrary, there will be a risk of loss of useful information. When the absolute value of rxy
is larger than 0.8, there is a high correlation between the two variables. However, in order
to avoid excessive removal of feature variables and loss of effective information, when the
absolute value of the correlation between the 2 feature variables is larger than 0.9, 1 of the
2 feature variables will be removed to achieve the purpose of reducing redundant variables.

2.2. Clustering Method

Cluster analysis is an important statistical analysis method for studying classifica-
tion problems, and it is also an important algorithm in data mining. There are many
implementation forms of cluster analysis, usually by calculating the sample distance in
a multi-dimensional space. This research mainly uses the K-means method, Gaussian
mixture model clustering method and spectral clustering method.

2.2.1. K-Means Approach

The K-means algorithm is a dynamic clustering algorithm, which belongs to the
category of dynamic grouping. The basic idea is to randomly select K objects as the center
of the initial K sets for a database containing N data objects. Then, the center distances of
other samples in each set are calculated, and the set closest to the center sample is found.
The average method is used to calculate the new cluster center after adjustment. If there is
no change in the centers of two adjacent clusters, the sample clustering has been completed.

Calculation steps:

1. Select the number of clusters K.
2. Select K samples C1, C2, . . . , Ck as the initial cluster centers.
3. Calculate the distance d from other samples to the cluster center point, as shown in

the formula:

d =

√
n

∑
i=1

(xi − Cj i)
2 Cj ∈ C 1 < j < k (2)

In the formula, x is a certain sample, and Cj is the center of a certain cluster.

4. According to the principle of being closest to the center point, all samples are classified
into K categories.

5. Then, calculate the centroid of the cluster and use it as the new cluster center.
6. Repeat steps (3)–(5), and iterate until the cluster centers no longer change.
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2.2.2. Gaussian Mixture Model Clustering Method

Gaussian mixture model clustering is a clustering method that uses multiple Gaussian
models to represent data distribution. The clustering principle is as follows:

Assuming that the operating data sample of the combined air-conditioning system is
xi(i = 1, 2, . . . N), the Gaussian mixture model is shown in Equation (3):

P(x) =
K

∑
k=1

πk f (xk

∣∣∣∣∣µk, ∑
k
) (3)

In the Gaussian mixture model, π, µ and ∑ need to be estimated, and Equation (3) can
be transformed into Equation (4):

P(x
∣∣π, µ, ∑ ) =

K

∑
k=1

πk f (xk

∣∣∣∣∣µk, ∑
k
) (4)

The above three parameters can be estimated by the Expectation-Maximization (EM)
method. The specific steps are as follows:

1. Set the initial values of π, µ and ∑.
2. Calculate the posterior probability p(Znk):

p(Znk) =
πk f (xn|µk, ∑k)

K
∑

j=1
πj f (xn

∣∣∣µj, ∑j)

(5)

3. Calculate the posterior probability p(Znk):

µk =
1
fk

N

∑
n=1

p(Znk)xn (6)

4. Find the maximum likelihood value of ∑k:

∑
k
=

1
fk

N

∑
n=1

p(Znk)(xn − µk)(xn − µk)
T (7)

5. Calculate the maximum likelihood function of πk:

πk =
fk
f

(8)

6. Perform iterative calculations on steps (2)–(5) until convergence.

2.2.3. Spectral Clustering Method

Spectral clustering (SC) is a clustering algorithm based on spectrogram theory. The
main idea is to treat sample point data as points in space and connect the points with
lines. The weight value is lower when the distance between two points is far, and vice
versa. Then, the graph composed of all sample points is segmented. Furthermore, the
weights in the sub-pictures are as high as possible after the segmentation process, and the
weights among different sub-pictures are as low as possible, so as to achieve the clustering
performance. The specific steps are shown in Figure 3.



Processes 2023, 11, 812 6 of 19Processes 2023, 11, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Schematic diagram of spectral clustering. 

2.3. The Evaluation Index of Pattern Recognition Performance 
In order to be able to evaluate the performance of clustering quantitatively, this study 

mainly uses two types of evaluation indicators, the DUNN index and the clustering 
accuracy index. 

2.3.1. The DUNN Index 
The DUNN index is widely used in the evaluation of clustering performance. This 

index is the shortest distance between any two samples in different clusters, divided by 
the maximum distance between two samples in any one cluster, and the calculation 
method is shown in Equation (9). The larger the DUNN index, the better the clustering 
performance. 

{ }

{ }
' '

0

' '0 ,

DUNN=
i m

j n

i j l

i jm n K x
x

i jl K x x

min min x x

max max x x

< ≠ < ∀ ∈Ω
∀ ∈Ω

< ≤ ∀ ∀ ∈Ω

 
 − 
  

−
 

(9)

2.3.2. Clustering Accuracy 
In order to analyze the clustering performance more pertinently and accurately, this 

study proposes some new indicators to evaluate the clustering performance, mainly 
including the clustering hit rate, clustering error rate and accuracy. In the clustering result, 
the true category is Ψm, the expected cluster category is Ωm, the number of correct samples 
in the expected cluster category is NT, and the number of incorrect samples in the expected 

Figure 3. Schematic diagram of spectral clustering.

2.3. The Evaluation Index of Pattern Recognition Performance

In order to be able to evaluate the performance of clustering quantitatively, this
study mainly uses two types of evaluation indicators, the DUNN index and the clustering
accuracy index.

2.3.1. The DUNN Index

The DUNN index is widely used in the evaluation of clustering performance. This
index is the shortest distance between any two samples in different clusters, divided by the
maximum distance between two samples in any one cluster, and the calculation method is
shown in Equation (9). The larger the DUNN index, the better the clustering performance.

DUNN =

min
0<m 6=n<K

 min
∀xi∈Ωm
∀xj∈Ωn

{∥∥xi − xj
∥∥}


max
0<l≤K

max
∀xi′ ,∀xj′∈Ωl

{∥∥∥xi′ − xj′
∥∥∥} (9)

2.3.2. Clustering Accuracy

In order to analyze the clustering performance more pertinently and accurately, this
study proposes some new indicators to evaluate the clustering performance, mainly includ-
ing the clustering hit rate, clustering error rate and accuracy. In the clustering result, the
true category is Ψm, the expected cluster category is Ωm, the number of correct samples in
the expected cluster category is NT, and the number of incorrect samples in the expected
cluster category is NF. The cluster hit rate Ch reflects the ratio of the number of clustered
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correct samples in the expected cluster category, divided by the number of samples in the
true category, and the calculation method is shown in Equation (10). In order to avoid a
large number of wrong samples in the expected clustering category, the clustering accuracy
index is also introduced. The accuracy Cp is the number of correct samples of the expected
clustering category, divided by the number of samples of the expected clustering category.
The calculation method is shown in Equation (11). In addition, the clustering error rate F
represents the number of error samples in the expected cluster category, divided by the
number of samples in the expected cluster category. The calculation method is shown in
Equation (12). The higher the clustering hit rate and accuracy, the better. The lower the
clustering error rate, the better.

Ch =
NT

N(Ψm)
(10)

Cp =
NT

N(Ωm)
(11)

F =
NF

N(Ωm)
(12)

3. Experiment and Data Introduction
3.1. Introduction of Experimental Subjects

A RHHAC system is a system with refrigeration, heating, hot water and multiple
complex operation modes. For example, a RHHAC system can produce hot water while
cooling. Therefore, the structure of the RHHAC system has been improved compared with
the ordinary air-conditioning system. The RHHAC system, mainly through two four-way
reversing valves and two electronic expansion valves to realize the transformation of the
refrigerant flow path, realizes the switching of various working conditions, such as cooling,
cooling and hot water at the same time, in heating and hot-water modes. Figure 4 shows
the schematic diagram of the RHHAC system structure and the refrigerant flow path
layout under cooling mode conditions. The compressor type of the experimental system is
QXA-C18B030, and the rated power is 1.5 kW. The type of the electronic expansion valve is
DPF (TS1) 1.3C-01. The water tank capacity is 150 L. The RHHAC system implementation
site diagram is shown in Figure 5. The RHHAC experimental system mainly includes an
indoor unit, outdoor unit, heating water tank, environmental room and data acquisition
device. The biggest feature of the RHHAC system is that it can meet the needs of users for
hot water while realizing the cooling and heating functions.
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3.2. Data Collection and Processing

The experimental condition is that the outdoor temperature is 7 ◦C and the indoor
temperature is 20 ◦C. Further, the initial temperature of the water tank is 30 ◦C., and the
operating mode of the RHHAC system is the hot-water mode. The experiment collects
a total of 50 variables in temperature, pressure and various control parameters. After
removing invalid variables and some control parameters, 17 variables are retained, and the
details of the selected variables are listed in Table 1. All sensors are installed by the unit
itself. Table 2 lists the information of the temperature sensor and the pressure sensor. The
data collection time interval is 1 s, and the collected data is transmitted to the computer
through the host computer and stored. The experiment lasted 3.49 h, and 12,551 samples
were collected. Each sample contains 17 selected variables.

Table 1. Details of collected experimental data.

No. Variables Unit Maximum Minimum Average Value

1 Input power (W) W 2072.60 352.40 1517.96
2 Power factor (WF) - 0.97 0.47 0.94
3 Discharge pressure (Pdis) Mpa 3.69 0.47 2.31
4 Suction pressure (Psuc) Mpa 1.23 0.13 0.45
5 Intermediate pressure (Pint) Mpa 3.64 0.86 2.26

6 Pressure after electronic expansion
valve 1 throttling (Peev1) Mpa 3.18 0.19 0.67

7 Pressure after electronic expansion
valve 2 throttling (Peev2) Mpa 1.71 0.21 0.47

8 Discharge temperature (Tdis) ◦C 104.50 50.20 74.35
9 Suction temperature (Tsuc) ◦C 20.80 −30.70 −0.48

10 Temperature after electronic
expansion valve 1 (Teev1)

◦C 48.30 −28.10 5.56

11 Temperature after electronic
expansion valve 2 (Teev2)

◦C 25.20 −22.50 −8.80

12 Water tank temperature (Twb) ◦C 54.70 24.90 34.03
13 Outdoor temperature (Tod) ◦C 11.10 −0.10 3.67
14 Indoor temperature (Tid) ◦C 22.80 19.00 20.30
15 Defrost temperature (Tdf) ◦C 17.10 −15.00 −5.23
16 Outdoor fan outlet temperature (Todf) ◦C 21.43 0.02 3.74
17 Indoor fan outlet temperature (Tidf) ◦C 32.68 0.21 20.57

Table 2. Information and accuracy of sensors.

No. Sensors Type Brand Range Accuracy

1 Temperature Thermal resistance UNIOHM −30~120 ◦C ±1%
2 Pressure Strain mode Huadian 0~10 Mpa ±0.2%
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4. Results and Discussion
4.1. Correlation Analysis Results

Figure 6 shows the results of the correlation analysis of the RHHAC system operating
data. The lower left part of the figure is the specific correlation coefficient value, and the
upper right part represents the correlation between variables in the form of a graph. The
depth of the color represents the value of the correlation coefficient, and the deflection
direction of the ellipse indicates that the variables are positively correlated or negatively
correlated. By analyzing the correlation between the various variables, there are a total
of 6 sets of variables with a correlation of more than 0.90. They mainly include W–Pdis,
W–Pint, Pint–Pdis, Teev2–Peev2, Tdf–Teev2 and Todf–Tod. There is also overlap between these
variable sets. Based on the consideration of eliminating more variables and better reflecting
the operation of the system, the five variables of Pdis, Pint, Peev2, Tdf and Todf are eliminated.
The feature variable set after the correlation eliminates redundant variables (cor-feature)
contains 12 variables, namely, W, WF, Psuc, Peev1, Tdis, Tsuc, Teev1, Teev2, Twb, Tod, Tid and Tidf.
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4.2. Clustering Result Analysis

Firstly, the original feature variable set (ori-feature) is used for cluster analysis. A total
of 17 variables are included; detailed variable information is listed in Table 1.

The collected data are first used for K-means clustering analysis. The number of
clusters is selected as two and three, and the results are shown in Figure 7. In order to
present the clustering performance of high-dimensional data in a two-dimensional graph,
the principal component result is used as the horizontal and vertical axis. The contribution
of the abscissa is 30%, and the contribution of the ordinate is 25.5%. When clustering
into two categories, it can be seen that the two categories are more distinct. Only in the
middle three regions, the two categories have an intersection, and the data are divided
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into two types, the upper left and the lower right. When the data are clustered into three
categories, the boundaries of the three categories are also obvious, and there is not too much
crossover between each category. There is not much overlap between the various categories.
Through the comparative analysis of the two clustering results, it can be seen that cluster
1 is consistent. Cluster 2 and cluster 3, when the model clustered into three categories,
correspond to cluster 2 when the model clustered into two categories.
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Figure 7. K-means clustering performance when numbers of clusters are two and three.

In order to further analyze the clustering results, each cluster is analyzed separately.
The parameters that can better characterize the operation of the RHHAC system are
selected, which mainly include the compressor discharge temperature, compressor suction
temperature and defrost temperature. Figure 8 shows the results when the clustering is
two categories. The figure shows the distribution of the operation data of two categories.
Figure 9 shows the data distribution of cluster 1 when the number of clusters is 3. The
other two categories have no clear knowledge information, so they are not displayed. First
of all, it can be seen from Figure 8 that the data distributions of the two clusters have
obvious differences. Cluster 1 compressor suction and discharge temperature fluctuate
sharply, while cluster 2 compressor suction and discharge temperature change smoothly.
The difference in defrosting temperature is even more obvious. The defrost temperature
of cluster 1 changes regularly, which is worthy of further analysis. Comparing with the
result of Figure 9, the changes in the two cases are similar. In addition, the changes in the
suction and discharge temperature in cluster 1 of Figures 8 and 9 are also similar, which
also illustrates that these two clusters are the same cluster and have the regular change
period. Combining with the operating characteristics of the RHHAC system, it is found
that cluster 1 is the defrosting process of the RHHAC system. It can also be seen from the
figure that this cluster contains a total of four defrosting processes.
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Figure 8. The K-means clustering result when the number of clusters is 2.
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Figure 9. The K-means clustering result cluster 1 when the number of clusters is three.

4.3. Clustering Performance of Different Clustering Models

In order to carry out a more in-depth study on the clustering of the RHHAC system
operating mode, this study uses three clustering methods to cluster the data of the RHHAC
system, namely, K-means clustering, Gaussian mixture model clustering and spectral
clustering. The cluster model data set includes the original feature variable set (ori) and the
feature variable set after the correlation analysis removes redundant variables (cor). The
number of clusters includes two, three, four and five, a total of four clustering situations.

4.3.1. K-Means Clustering Results

In order to analyze the clustering performance more intuitively, a clustering category
diagram is used to show the clustering results of the RHHAC system data with different
numbers of clusters. Figure 10 shows the comparison of the clustering results of the K-
means algorithm. By analyzing the operating status of the system, the defrosting operation
mode is artificially marked, as shown in the figure. The black line is the artificial marking
state, the state 0.5 is the defrosting state, and the state −0.5 is the normal running state. The
defrosting status marks in the results of other models are consistent with this. It can be seen
from the figure that when the original feature variable set is used, there is a corresponding
defrost category for different cluster numbers, which are cluster1, cluster1, cluster1 and
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cluster5. The model can effectively cluster the defrost categories and has a good consistency.
For the cor-feature set model, it is found that when the number of clusters is two and three,
the clustering performance is poor, and the defrost category cannot be identified. When
the number of clusters is four and five, the clustering performance is improved, and the
defrosting operation modes can be identified, which are cluster 1 and cluster 4, respectively.
These results show that the clustering method can identify the mode of defrosting operation.
When the number of clusters is small, the clustering performance of the K-means model
with the ori-feature set is better than the cor-feature set model.
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Figure 10. Comparison of the K-means clustering model results. (The “stats” represents the defrosting
operation mode of the system. The “ori” represents clustering using original data sets. The “cor”
represents the data set after removing redundant variables for clustering.).

4.3.2. Gaussian Mixture Model Clustering Results

Figure 11 shows the clustering results of the GMMC model. First, the model results of
the ori-feature set are analyzed. When the number of clusters is 2, it can be found from the
figure that cluster 2 clustered by GMMC is more consistent with the defrost category. Yet, it
is obviously different from the result of the K-means algorithm, that is, the range of cluster
2 clustered by the GMMC algorithm exceeds the actual defrost category. From another
perspective, the GMMC algorithm recognizes part of the normal operating state data as
the defrosting category. Comparing the situation with other cluster numbers, there is a
category corresponding to the defrost mode in the results of these models. The distribution
of these categories is also relatively similar; these categories are cluster 2, cluster 3, cluster
3 and cluster 3. Then, the clustering performance of the cor-feature set is compared and
analyzed. When the number of clusters is different, the clustering performance of the model
is consistent with the results of the ori-feature set model. The corresponding clusters of
defrosting mode obtained by clustering are cluster 2, cluster 3, cluster 3 and cluster 3. From
these results, it can be concluded that for the GMMC model, removing redundant variables
through correlation analysis will not affect the clustering performance of the model.
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Figure 11. Comparison of the GMM clustering model results (The “stats” represents the defrosting
operation mode of the system. The “ori” represents clustering using original data sets. The “cor”
represents the data set after removing redundant variables for clustering.).

4.3.3. Spectral Clustering Results

Figure 12 shows the clustering results of the spectral clustering algorithm. For the
clustering model established by the ori-feature set, when the number of clusters is two and
three, cluster 2 and cluster 1 in the clustering result are consistent with the actual defrost
category. It can be seen from the figure that no excessive operating data are identified as the
defrost category. Yet, when the number of analysis clusters is four and five, category 2 and
category 3 in the clustering result correspond to the actual defrost category. It can be seen
from the figure that although defrosting can be identified, the clustering results contain
more running data. Yet, when the number of clusters is four and five, cluster 2 and cluster
3 in the clustering result correspond to the actual defrost category. It can be seen from the
figure that although the defrost category can be identified, the clustering result contains a
lot of normal running data. For the cor-feature set model, when the number of clusters is
three and four, the model can identify the defrosting operation mode accurately. Yet, when
the other two cluster numbers are selected, the cluster performance is poor. Therefore,
combining the clustering performance of the two feature sets, the best number of clusters
is three.

4.4. Comparative Analysis of Clustering Performance

In order to analyze the clustering performance of each algorithm in different numbers
of clusters more specifically, the DUNN index is used to evaluate the results of different
numbers of clusters, as shown in Figure 13. For the K-means algorithm, as the number
of clusters increases, the DUNN index gradually decreases, while for the GMMC and
SC algorithms, the DUNN index fluctuates. In addition, for the K-means algorithm and
the SC algorithm, the DUNN index of the cor-feature set model is basically higher than
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that of the ori-feature set model. Yet, for the GMMC algorithm, the DUNN index of
the cor-feature set model is lower than that of the ori-feature set model. The overall
analysis found that the DUNN index of the model is higher when the number of clusters is
small, which corresponds to the above clustering results. Yet, for the clustering models of
different methods, the DUNN index cannot accurately evaluate the clustering performance
of the model.
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Figure 12. Comparison of the SC clustering model results (The “stats” represents the defrosting
operation mode of the system. The “ori” represents clustering using original data sets. The “cor”
represents the data set after removing redundant variables for clustering.).
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Figure 13. The DUNN index value under different numbers of clusters.
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Table 3 lists the clustering accuracy rate of different clustering methods with different
numbers of clusters. It can be seen from the overall results that the hit rate of clustering
is relatively high. Among them, for the GMMC model with different numbers of clusters,
the hit rate reached 100%, that is, the categories obtained by the cluster method completely
included the defrosting operation mode data. Yet, from another aspect, the non-defrosting
categories included in the clustering results are also worthy of attention. For the GMMC
algorithm also, although the hit rate is higher, the error rate is also higher. When the
number of clusters is 5, the clustering error rate reaches 77.94%, that is, the clustering
result contains a large amount of running data. Further, this study also uses the clustering
accuracy evaluation index, and it can be concluded that the model clustering accuracy is
not high for the GMMC algorithm. Therefore, it is effective and accurate to use the three
indicators of hit rate, error rate and accuracy to evaluate the clustering performance of
the model.

Table 3. Performance of different clustering models.

Number of Clusters 2 Clusters 3 Clusters 4 Clusters 5 Clusters

K-means

ori

True 98.99% 98.99% 98.99% 98.99%

False 11.79% 10.65% 11.11% 7.90%

Precision 88.21% 89.35% 88.89% 92.10%

cor

True 98.13% 93.53% 98.99% 98.99%

False 93.58% 88.60% 10.07% 8.27%

Precision 6.42% 11.40% 89.93% 91.73%

GMMC

ori

True 100% 100% 100% 100%

False 77.33% 77.28% 77.38% 77.94%

Precision 22.67% 22.72% 22.62% 22.06%

cor

True 100% 100% 100% 100%

False 77.06% 76.83% 77.96% 77.92%

Precision 22.94% 23.17% 22.04% 22.08%

SC

ori

True 98.99% 98.99% 99.14% 98.99%

False 0.58% 0.58% 73.70% 73.70%

Precision 99.42% 99.42% 26.30% 26.30%

cor

True 7.48% 98.99% 91.51% 46.47%

False 10.34% 1.43% 7.02% 4.44%

Precision 89.66% 98.57% 92.98% 95.56%

Combining the three evaluation indexes, we compare and analyze the performance of
the ori-feature set and cor-feature set model under different methods. First, for the K-means
method, the clustering performance of the cor-feature set model is better when the number
of clusters is four. Then, for the GMMC method, the clustering performance of the cor-
feature set model and the ori-feature set model is not significantly different. Finally, for the
SC method, the clustering performance of the ori-feature set model is better. This result also
shows that the clustering model still has a good clustering effect and greatly reduces the
complexity of the model after eliminating redundant variables through correlation analysis.

Based on the above analysis, it is concluded that the clustering performance of the
ori-feature set model is the best when the number of clusters of the SC algorithm model is
two and three. The hit rate is 98.99%, the error rate is 0.58%, and the accuracy is 99.42%.
When the number of clusters of the K-means model is five, the clustering performance of
the ori-feature set is the second. For the GMMC model, its clustering performance is worse
than the other two clustering methods.
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4.5. The Clustering Model Running Time Analysis

Figure 14 shows the running time results of the model when the number of clusters
is different. All models are run on a desktop computer with a CPU of Intel Core I7-6700
3.4 GHz, two memories of 8 G and a Windows 10 64-bit operating system. For the K-means
algorithm, the running time of the model gradually increases as the number of clusters
increases. For the GMMC method, when the ori-feature set is used, the running time of
the model increases as the number of clusters increases. Yet, when the cor-feature set is
used, the running time of the model is relatively stable. Compared with the ori-feature set
model, the running time is greatly reduced. For the SC method, as the number of clusters
increases, the running time of the model tends to decrease. There is little difference in
the running time of models with different feature sets. When comparing and analyzing
different clustering algorithms, the running time of the K-means algorithm is the shortest,
which is less than 1 s. The running time of the SC algorithm is relatively long, more than
12 h, and the running time far exceeds the K-means algorithm and the GMMC algorithm.
From the perspective of different feature sets, for the GMMC method, the running time
of the cor-feature set model is greatly reduced. Especially when the number of clusters is
5, the running time of the model is reduced from 27.80 s to 10.04 s, a reduction of 63.88%.
However, the running time is slightly increased under some other models.
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Figure 14. Comparison of the model running times with different numbers of clusters.

5. Conclusions

In this study, data mining is carried out based on the operating data of the RHHAC
system. The following conclusions are drawn:

1. The operation data of the RHHAC system are analyzed by the clustering method.
Different clustering methods can identify the defrosting operation mode.

2. Correlation analysis can eliminate redundant feature variables in the model. The cor-
feature set model can also identify the defrosting operation mode under the condition
of fewer feature variables. Some models are even better than the ori-feature set model.
The running time of the model is also improved with different feature sets. Especially
for the GMMC method when the number of clusters is 5, the model running time is
reduced from 27.80 s to 10.04 s, which is a reduction of 63.88%.

3. The DUNN index cannot evaluate the clustering performance of the model very
accurately. Analyzing the clustering performance evaluation indexes proposed in
this study, the clustering performance of the ori-feature set model is the best when
the number of clusters of the SC algorithm is two and three. The clustering hit rate
is 98.99%, the clustering error rate is 0.58%, and the accuracy is 99.42%. When the
number of clusters of the K-means model is five, the clustering performance of the
ori-feature set is the second. For the GMMC model, its clustering performance is
worse than the other two clustering methods.
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The clustering model established in this study can effectively identify the operation mode
of the RHHAC system. In the future, clustering will be further used to carry out relevant
research on identifying energy-saving modes and fault modes of air-conditioning systems.
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Nomenclature

Ch cluster hit rate
Cj center of a certain cluster
Cp clustering accuracy
cor feature variable set after the correlation analysis removes redundant variables
f eigenvector
F clustering error rate
K number of clusters
ori original feature variable set
Pdis discharge pressure
Psuc suction pressure
Pint intermediate pressure
Peev1 pressure after electronic expansion valve 1 throttling
Peev2 pressure after electronic expansion valve 2 throttling
rxy value of the correlation coefficient
Ψm true category
Tdis discharge temperature
Tsuc suction temperature
Teev1 temperature after electronic expansion valve 1
Teev2 temperature after electronic expansion valve 2
Twb water tank temperature
Tod outdoor temperature
Tid indoor temperature
Tdf defrost temperature
Todf outdoor fan outlet temperature
Tidf indoor fan outlet temperature

Greek symbols
π weighting coefficient
µ the mean
∑ covariance matrix
Ωm expected cluster category
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