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Abstract: The growing demand for various types of paper highlights the importance of optimizing
the kraft pulping process to achieve desired paper properties. This work proposes a novel multiscale
model to optimize the kraft pulping process and obtain desired paper properties. The model combines
mass and energy balance equations with a layered kinetic Monte Carlo (kMC) algorithm to predict
the degradation of wood chips, the depolymerization of cellulose, and the spatio-temporal evolution
of the Kappa number and cellulose degree of polymerization (DP). A surrogate LSTM-ANN model
is trained on data generated from the multiscale model under different operating conditions, dealing
with both time-varying and time-invariant inputs, and an LSTM-ANN-based model predictive
controller is designed to achieve desired set-point values of the Kappa number and cellulose DP
while considering process constraints. The results show that the LSTM-ANN-based controller is able
to drive the process to desired set-point values with the use of a computationally faster surrogate
model with high accuracy and low offset.

Keywords: pulp digester; multiscale modeling; model predictive control; machine learning; long
short-term memory; layered kMC simulation

1. Introduction

The pulp and paper industry (PPI) is undergoing rapid modernization to meet the
growing demand for pulp and paper production as shown in Figure 1 [1]. This demand can
be attributed to the increase in the use of packaging paper by companies, such as Amazon
and Walmart, the growing manufacturing industry in emerging markets, such as Asia and
Africa, and the shift towards online shopping by consumers. As a result, the PPI is focusing
on using advanced first-principles models and artificial-intelligence techniques to develop
digital twins and process-control systems for improved efficiency, reduced waste, and safer
operations [2–5].

Paper is made up of three substances, lignin, hemicellulose, and cellulose, and is
typically produced from wood chips. Lignin, the main component of the cell wall, is a
highly branched three-dimensional polymer that acts as a glue to hold cellulose microfibrils
together [6]. In order to separate lignin from these cellulosic fibers, a process called
delignification is used in a large chemical reactor called a pulp digester [6,7]. The Kappa
number, a metric that describes the degree of delignification, is used to evaluate the
process, where a Kappa number below 100 for cardboard papers and below 60 for kraft
and bleachable white papers is favorable [8–10].

Despite efforts to manage waste and recycle fibers, the PPI still generates a large
amount of waste product, which poses a significant burden on the industry [11]. Based on
a report, 17% of the total global waste comes from paper industries, and discarded paper
and paperboard make up roughly 26% of solid municipal waste in landfill sites [12,13].
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One potential solution is to mitigate fiber degradation through strength modeling.
By meeting the specific standards of paper, the amount of waste generated can be signifi-
cantly reduced. However, achieving the strength requirements and properties of different
paper products can be challenging as each product has its own unique strength standard.
The tensile strength of paper is an important strength property, and cellulose is responsible
for forming crystalline microfibers with excellent tensile strength [14].

The cellulose degree of polymerization (DP) is a measure of the cellulose chain length
and is the major factor determining the tensile strength of the product as cellulose is
the load-bearing element of a pulp fiber [15,16]. Therefore, a good paper product has
a high cellulose DP, which represents high strength, and a low Kappa number, which
represents a brighter paper. As the final paper product properties, such as strength and
yield, are primarily determined by metrics, such as the Kappa number and DP, it is crucial
to optimize the pulping process to achieve these specific properties with desired values.

Figure 1. Worldwide paper consumption prediction volume.

Kraft pulping is the most commonly used chemical pulping process, accounting for
80% of chemical pulp produced in the United States [17]. During kraft pulping, wood
chips are exposed to an aqueous solution, which removes both lignin and hemicellulose.
Strong alkaline solvents, such as sodium hydroxide (NaOH), are added to the solution
to increase the degree of delignification (i.e., to decrease the Kappa number). However,
this also results in the breakdown or degradation of cellulose to glucose [18]. To prevent
cellulose degradation and obtain the desired paper properties, it is essential to control
the operating conditions, such as the batch cooking time, NaOH concentration, and tem-
perature. There have been several approaches in the literature to develop macroscopic
and mesoscopic computational models with the extended Purdue model being the most
commonly used [19–22].

However, these models only consider macroscopic equations. They cannot predict
important microscopic properties, such as the Kappa number, fiber morphology, DP,
and cell-wall thickness (CWT). Recent studies [6,7,23,24] have developed multiscale models
using kinetic Monte Carlo (kMC) algorithms [25,26] to describe these microscopic properties
and understand fiber-to-fiber heterogeneity. They also designed a model-based controller
using reduced-order models and Kalman filters [27,28]. However, these studies did not
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discuss how reaction conditions affect the cellulose DP. Additionally, there are few studies
in the literature on using machine-learning-based predictive controllers for the pulping
process to obtain optimal operating conditions and achieve desired paper properties.

To address these limitations, we propose the development of a novel layered multiscale
model that combines the kMC algorithm and extended Purdue model equations. This
model aims to describe the temporal evolution of important paper properties, such as
the Kappa number and cellulose DP. By building on a previously developed multiscale
model, which describes the degradation of solid components at the mesoscale, we further
modify it to model the depolymerization kinetics at the microscopic level. Specifically,
we take into account that the degradation process occurs on a much faster time scale
than depolymerization, and thus multiple depolymerization events occur over a single
degradation event, thereby, resulting in a layered multiscale model.

Realistic chemical process models, such as the proposed layered multiscale model, can
be too complex to be solved in real-time operations. To overcome this challenge, machine
learning (ML) and other system-identification methods are employed to learn mathematical
models from data and discover patterns without explicit programming [29–32]. In this
work, we construct a surrogate long short-term memory (LSTM)-artificial neural network
(ANN) model using input–output data generated from the multiscale model by running it
offline under different operating conditions [33–36].

We select the LSTM-ANN network to handle a combination of time-varying (i.e.,
temperature) and time-invariant (i.e., cooking time and NaOH concentration) inputs,
which are commonly encountered in chemical processes, particularly the pulping process.
LSTMs are known for accurately learning temporal dependencies in sequence data, while
ANNs are better at extracting information from time-invariant features [37–39].

After obtaining an optimal network through hyperparameter tuning and overfitting
analysis, the surrogate model is used as an internal evaluator in an LSTM-ANN-based
model predictive controller (MPC). This controller is computationally more efficient as it
utilizes a well-trained neural network to obtain the optimal input profiles and achieve the
desired set-point values for the Kappa number and cellulose DP while considering the
process constraints. The performance of the closed-loop controller is demonstrated through
a representative case.

The structure of this article is as follows: In Section 2, the mathematical model for
the kraft pulping process is presented. In Section 3, the training of the LSTM-ANN model
and the design of the controller are discussed. The results of the multiscale model and
controller are presented in Section 4. Finally, our conclusions are presented in Section 5.

2. Layered Multiscale kMC Modeling of a Batch Pulp Digester

The multiscale modeling framework is designed to describe the temporal evolution of
microscopic properties (such as the Kappa number, cell morphology, pore size distribution,
CWT, and cellulose DP) and macroscopic properties (such as the temperature and con-
centration profiles). The proposed model is built upon previous multiscale models [7,23]
developed for the kraft pulping process, and further modified them to take into account
the effect of both the degradation of wood solid components and the depolymerization
of cellulose on the tensile strength of paper [14]. This is motivated by the understanding
that these properties play a critical role in determining the quality and strength of the final
paper product.

The multiscale model comprises three phases: the solid, entrapped-liquor, and free-
liquor phases as illustrated in Figure 2 [40]. The free-liquor phase represents the bulk liquor
surrounding the chip phase, which comprises both the solid and entrapped-liquor phases.
As the components of the solid phase react with those of the entrapped-liquor phase, they
dissolve and transform into components of the liquor phase. The extended Purdue model
is used to describe macroscopic phenomena, such as energy balance and mass transport,
while microscopic properties, such as the Kappa number and cellulose DP, are described by
kMC simulations [19,20]. The multiscale model captures the dynamic interaction between
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these three phases and the resulting changes in properties at both the macroscopic and
microscopic levels.

Figure 2. Schematic illustration of a pulp digester composed of three phases (solid, entrapped-liquor,
and free-liquor) . Reproduced with permission of the American Automatic Control Council for the
conference article [20].

The solid phase of the multiscale model is composed of high and low-reactive lignin,
cellulose, xylan, and galactoglucomman. Both the free and entrapped-liquor phases are
assumed to consist of six components: active effective alkali (EA), passive effective alkali,
active hydrosulfide (HS), passive hydrosulfide, dissolved lignin, and dissolved carbohy-
drates (CHO). In this model, the degradation of solid components typically occurs at the
boundary between the solid and entrapped-liquor phases. Hardwood species are consid-
ered in this study. The details of the mass and energy balance equations, initial conditions,
and reaction kinetics of the degradation of solid components are provided in our previous
studies [6,7,24,41].

Properties, such as the concentration and temperature, are calculated by applying
mass/energy balance equations to the simulation lattice. The simulation lattice consists of
a primary wall, a middle lamella, and three secondary wall layers. The wood structure and
chemical composition of the cell wall are taken from [6,42]. The length of a single lattice site
is set at 3.5 nm, and the size of the two-dimensional lattice is represented by the product of
horizontal and vertical lattice sites, Lh × Lv. The average thickness of wood fibers is 3.8 µm,
Lh = 3.8 µ/3.5 nm = 1086, and Lv = 800, which is the cell-wall length. The cellulose fibers
undergo degradation reactions with an event time step of 0.001–0.01 min.

In addition to the bulk dissolution reactions, cellulose fibers also experience further
degradation due to depolymerization; this happens in three reactions: peeling-off, stopping,
and alkaline hydrolysis with an event time step of 0.0001–0.001 min. It is important to
note that dissolution and depolymerization are significantly influenced by the system
parameters, such as the temperature and reaction rates. Therefore, these multiscale reactions
must be considered together. However, due to the scale difference between degradation
and depolymerization (i.e., about 10 times), introducing the molecular scale to the lattice
would result in a 100-times larger lattice. To overcome this, the second kMC layer for
depolymerization is placed within the existing one for degradation.

In this way, micro and nanoscale events are captured by a layered kMC algorithm,
and multiple depolymerization events are executed within a single degradation. First,
a degradation event is executed. Next, the event time steps ∆tdeg are calculated. Then,
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the simulation lattice is frozen, and depolymerization events are executed. These events
are repeated until Σ∆tdepoly,t ≥ ∆tdeg.

Finally, the macroscopic properties are updated in the last time step. This approach
allows for the efficient simulation of the multiscale reactions that occur in the kraft pulping
process, while also considering the impact of the system parameters on the dissolution and
depolymerization reactions.

The first reaction in the depolymerization kinetics is the peeling-off reaction, in which
the end-wise degradation of a cellulose chain occurs, and one unit is removed from the
reducing end of the cellulose chain. This reaction is a pseudo-first-order reaction that
depends on the cellulose concentration and is represented by the following Equation [43,44]:

d(Cglu)

dt
= k1 · Ccel (1)

where Cglu is the glucose concentration, Ccel is the cellulose concentration, and k1 is the
peeling-off reaction rate constant.

The second reaction in the depolymerization kinetics is the stopping reaction, in which
the reducing end group of the cellulose chain is converted into a stable end group leading
to the formation of metasaccharinic acid. As with the peeling-off reaction, the stopping
reaction is also a pseudo-first-order reaction that depends on the cellulose concentration
and can be represented as follows:

d(CMSA)

dt
= k2 · Ccel (2)

where CMSA is the metasaccharinic acid concentration, and k2 is the stopping reaction
rate constant.

The final depolymerization kinetics involve alkaline hydrolysis, where glycosidic
bonds undergo base-catalyzed cleavage, and the cellulose chain is divided into two pieces,
thus, resulting in a half-fold decrease in cellulose DP. This is a pseudo-first-order reaction
that depends on the cellulose concentration as follows:

d(Ccel)

dt
= k3 · Ccel (3)

where k3 is the alkaline hydrolysis reaction rate constant. The kinetic parameters are esti-
mated by applying the Arrhenius equation, and the rate constants are given as follows [43]:

1. log(k1) = 16.21− 5249
T (RP) Peeling off

2. log(k2) = 17.12− 6548
T (RS) Stopping

3. log(k3) = 15.41− 7461
T (RH) Alkaline hydrolysis

The alkaline hydrolysis greatly impacts the cellulose DP by reducing it by half. The
peeling-off and stopping reactions are considered null events as no action takes place when
the RP and RS events are selected. When RH is chosen, the DP is also reduced to half.
The probabilities for the three depolymerization mechanisms are shown in Table 1.

Table 1. Probability distribution for cellulose depolymerization.

Probabilities Depolymerization Mechanism

0 < ξ ≤ RP
RP+RS+RH

Peeling-off (Null event)
RP

RP+RS+RH
< ξ ≤ RP+RS

RP+RS+RH
Stopping (Null event)

RP+RS
RP+RS+RH

< ξ ≤ 1 Cellulose chain scission event
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As the depolymerization reaction proceeds, the time evolution is calculated in a similar
fashion as that of dissolution by using a random number, ξ, which lies within the range
of (0, 1]:

∆t = − ln ξ

RP + RS + RH
[min] (4)

These microscopic events repeat until multiple increments of ∆t accumulate to form
the mesoscopic time step, at which point updates to the concentration and temperature
are made.

The Kappa number (κ), a measure of the lignin content in pulp, is described as follows:

κ =
cs1 + cs2

0.00153 ∗ (∑5
i=1 csi )

(5)

where csi is defined as the concentration of the solid component i in a wood chip. Here,
i varies from 1 to 5 and is represented by the five solid phase components: high reactive
lignin (s1), low reactive lignin (s2), cellulose (s3), xylan (s4), and galactoglucomman (s5).
Specifically, it is given by:

csi =
Mass o f solid component i in wood chip

Wood chip volume
(6)

The developed multiscale model is now used to generate data offline for different oper-
ating conditions by varying the input profiles of the temperature, cooking time, and NaOH
concentration. This is conducted in order to obtain a comprehensive set of input–output
data. Specific details about the ranges are provided in the next section. The data is then
utilized for training the LSTM-ANN model, which serves as a surrogate model.

3. Surrogate Model Development and MPC Design
3.1. LSTM-ANN Network Training

The proposed multiscale model is utilized to generate high-quality data for training
the LSTM-ANN model. Specifically, the operating conditions, such as the cooking time,
NaOH concentration, and free-liquor temperature, are systematically varied over a range.
The multiscale model is evaluated offline to obtain 750 different datasets. The cooking
time ranges between 60 and 120 min with increments of 10 min, the NaOH concentration
ranges between 50–92 wt% with increments of 3%, and the free-liquor temperature ranges
between 390 and 430 K in a time series manner with increments of 10 K.

A total of 750 datasets were selected to ensure that all possible permutations and
combinations of different input profiles were covered, limiting the unknown regions where
the neural networks might have to extrapolate and make subpar predictions. The output
values of the Kappa number and cellulose DP are obtained every 3 s by the model, resulting
in a varying number of time-series sequence data containing 1200–2400 sampling points
per dataset. It is important to note that, while the cooking time and NaOH concentration
remain constant throughout the duration of one such model run, the temperature varies
over time in every run. The outputs of the model are the sequence data of the Kappa
number and cellulose DP.

In order to establish a relationship between the past and present outputs, the output
values of the previous time step are also considered in the training input. The window
length (i.e., the number of past outputs considered) can be modified; however, for this case,
we use only the most recent value at time t to predict the outputs at time t + 1. Once a com-
prehensive mix of these datasets that exhaustively covers all possible operating conditions
is obtained, the next step is to train the neural network model on this generated data.

As the pulping process involves both time-series and time-invariant data characteris-
tics, these must be handled differently for improved prediction accuracy. Therefore, in this
work, we focus on using LSTM networks to handle the temporal behavior of data and ANN
to handle the time-invariant data. This combination of LSTM and ANN is used as they
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can simultaneously handle both types of inputs, as reported in previous studies [45–47].
LSTMs, which are an advancement of recurrent neural networks (RNNs), are known for
accurately capturing long- and short-term time dependencies.

Standard RNNs generally suffer from the problem of vanishing/exploding gradients
due to the multiplication of weights over several layers [34,48]. LSTMs overcome this
problem by using feedback loops in the hidden layers and enforcing a constant error flow
through the internal states of special units called memory cells.

By employing multiple LSTM layers where the hidden units of the previous layer are
used as input for the next layer, complex processes can be modeled, and hidden hierarchical
information can be extracted. This combination of LSTM-ANN is well-suited for processes
with time-varying and time-invariant data. The proposed LSTM-ANN model is trained
on the data generated by the multiscale model until a desired test accuracy of over 98%
is achieved.

LSTMs are able to model long-term sequential time dependencies through the use of
input, output, and forget gates [49,50]. These networks take in the current input value xt,
previous output value ht−1, and previous unit state ct−1 as inputs and produce a current
output value ht and unit state ct as outputs. In contrast, ANNs have a set of units in
the hidden layer that are connected to every unit in the previous and subsequent layers.
A combined LSTM-ANN network is shown in Figure 3, where the input is represented by x,
the output is represented by h, nonlinear activation functions are represented by a logistic
sigmoid (σ(·)) and hyperbolic tangent (tanh(·)), point-wise multiplication and addition
are represented by ∗ and +, and the cell state is represented by C.

The figure consists of three LSTM units as a representative example to show the flow
of data, which transfer the outputs ht−1, ht, and ht+1 to the ANN layers. The ANN layers
then process the time-invariant input data through nonlinear activation functions and
connect to the output layer, representing the Kappa number and cellulose DP in this case.
By using LSTM layers first, the network is able to extract time-varying information directly
from the input layer, making it easier to extract temporal dependencies.

Figure 3. Architecture of the LSTM-ANN network.

The cell state, c, flows through the chain of the LSTM block at time instant t, being
optionally modified by the gates, which are represented by the equations below:

ft = σ(W f · [ht−1, xt] + b f ) (7)

it = σ(Wi · ht−1 + bi) (8)

ĉt = tanh(Wc · [ht−1 + bc]) (9)
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gt = it · ĉt (10)

ct = ft ∗ ct−1 + gt (11)

ot = σ(Wo · [ht−1, xt] + bo) (12)

ht = ot ∗ tanh(ct) (13)

The first gate in an LSTM network is the forget gate, represented by ft in Equation (7),
which controls the amount of the cell state that is discarded. The second gate is the
input gate, represented by gt in Equations (8)–(10), which decides the amount of input
information to be stored in the cell state. The updated cell state is defined in Equation (11).
The input layer, represented by it, defines which cell state will be updated, and candidate
values for updating it are represented by ĉt. The final gate is the output gate, represented
by ot, which defines the output of the LSTM block.

This gate determines the amount of cell state that will be output, which is defined by
Equations (12) and (13). The trainable weights for each gate layer are represented by W f ,
Wi, Wc, and Wo, and the bias associated with each gate layer is represented by b f , bi, bc,
and bo. The training process and the impact of the network hyperparameters on training
and model performance are discussed in [51,52]. For ease of understanding, the output
state of time-step t in layer l can be described as follows:

ht
(l) = LSTM(xt, ht−1

(l)) (14)

After obtaining the outputs from the LSTM layers, the next layer is the ANN layer.
The trainable weights and biases for this layer are represented by Wa and ba, respectively.
The output of the ANN layer is denoted by y and is given by the following equations:

yt = σ(Wa · ht + ba) (15)

The data is split between 80% training and 20% testing. The model can be trained
using the Deep Learning Toolbox in MATLAB, TensorFlow, or PyTorch. There are several
optimizers available, such as RMSProp, SGD, Adam, and AdaGrad; however, for this work,
the Adam optimizer was used [53]. The optimal structure was determined through trial
and error by altering the network hyperparameters, such as the number of layers, nodes,
types of activation functions, batch size, and dropout rate [54]. The training process was
considered complete when the R2 value of the test predictions was more than 0.98. Once the
LSTM-ANN model was trained, an MPC was designed, which used the trained model as
an internal evaluator at every instant, instead of a complex first-principles model, to obtain
the optimal input profiles.

3.2. LSTM-ANN-Based Model Predictive Controller Design

MPC is widely used in chemical plants and refineries to control and optimize the
process while considering real plant constraints [37,55–57]. Typically, using a nonlinear
MPC is advantageous as it can accurately represent the actual process dynamics; however, a
nonlinear first-principles model is computationally expensive and cannot be used online
for timely control actions. Many studies have used state-space models, such as N4SID
and other data-driven techniques, to form a reduced-order model for controller purposes,
but these methods suffer from low accuracy—mainly when dealing with nonlinear time-
varying data.

In this work, we propose an LSTM-ANN-based MPC design, where a well-trained
LSTM-ANN model is used to optimize the process instead of the complex first-principles
model. The primary goal of the optimizer is to achieve the desired set-point values for
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the Kappa number and cellulose DP and obtain optimal input profiles for appropriate
control actions. The controller solves an inverse problem by identifying an input profile
that provides the closest output values to the desired set-point value. These inputs can be
both constant or time-varying. These inputs are then applied to the first-principles process
model, and the optimization problem is solved again for the next set of time instants in a
receding horizon fashion.

The LSTM-ANN-based feedback control system is designed to regulate both the
Kappa number and cellulose DP. The control framework includes an objective function
and process constraints as illustrated below:

min
T, τ, ρ

∥∥∥κ f − κsp

∥∥∥2
+

∥∥∥DPf − DPsp

∥∥∥2
(16)

s.t. T(t), τ(t), ρ(t) = 0 f or t > τ (17)

Tmin ≤ T(t) ≤ Tmax (18)

τmin ≤ τ(t) ≤ τmax (19)

ρmin ≤ ρ(t) ≤ ρmax (20)

τ(t) = τ(t + 1) (21)

ρ(t) = ρ(t + 1) (22)

t = 0, . . . , τ (23)

{κ(t + 1), DP(t + 1)} = fLSTM−ANN(T(t), τ(t), ρ(t), κmeas(t), DPmeas(t)) (24)

where κ is the Kappa number, DP is the cellulose degree of polymerization, T is the free-
liquor temperature, ρ is the NaOH concentration, and τ is the cooking time of the pulping
process. The desired Kappa number is κsp, and the final obtained Kappa number after the
pulping process is κ f .

Similarly, the desired cellulose DP is DPsp, and the obtained DP is DPf . As per
Equation (17), all three inputs (cooking time, concentration, and temperature) are set to zero
after the cooking time is exceeded. The upper and lower bounds of the inputs are described
in Equations (18)–(20). Equations (21) and (22) indicate that the cooking time and NaOH
concentration remain constant throughout the pulping process. The LSTM-ANN model,
as represented in Equation (24), runs at every iteration, calculating the Kappa number and
cellulose DP, and optimizing the input profiles.

As shown in Equation (24), we include the dependency of the Kappa number and DP
obtained from the multiscale model at time t to predict the outputs at the next time step
t + 1. Here, we use the inherent nature of LSTM models to predict the future states when
we have the true measurement values of the past from the process, denoted by κmeas and
DPmeas [58–60]. Thus, the input to the LSTM-ANN model includes the current measurement
values from the process (i.e., the multiscale model) along with the manipulated inputs.

The MPC then solves the optimization problem and obtains the input profiles for the
next time instants to apply to the multiscale model. After applying the first input values to
the multiscale model, the measurement values of the Kappa number and DP are obtained
for the next instant, which is then fed to the LSTM-ANN model along with the other three
inputs. This ensures closed-loop operation of the process. The results of this control system
will be discussed in the next section.

Remark 1. The accuracy of the control framework is heavily dependent on the variety and quality
of the data used to train the model. Therefore, it is essential to run the model with different sets of
input profiles. Additionally, the accuracy of the controller is also highly dependent on the optimizer
chosen to solve the optimization problem.
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Remark 2. It is important to note that, in the LSTM-ANN-based controller, the past values of the
outputs are fed in as input to the neural network along with the operating conditions (the cooking
time, NaOH concentration, and temperature). Thus, during closed-loop operation, the outputs
obtained from the multiscale model are fed into the surrogate LSTM-ANN model along with the
other operating conditions in order to predict the future outputs of the process and obtain the optimal
input profiles. An assumption here is that the measurements of the Kappa number and DP are
available every 10 min from the multiscale model.

4. Results and Discussion
4.1. Multiscale Model

The multiscale model is used to predict the temporal evolution of wood chip properties
as well as the spatiotemporal evolution of the kMC lattice at a temperature of 420 K and
a NaOH concentration of 50 wt%. As shown in Figure 4, the orange, yellow, purple,
and green sites represent lignin, cellulose, xylan, and galactoglucomman in the solid
phase, respectively, while the blue sites represent the entrapped-liquor phase. As the solid
components dissolve, the lignin and hemicellulose content in the chips fall significantly,
and the entrapped-liquor content increases.

The prediction trends of the Kappa number and cellulose DP are shown in Figure 5.
The Kappa number is seen to gradually decrease from 165 to 113 as delignification occurs
in the wood chips, while the cellulose DP shows a sharp drop at the beginning of the
pulping process and then achieves the equilibrium around 1600. To verify the accuracy of
the multiscale model, it was validated against data of three different wood species: Date
Palm Rachis, Pinus Radiata, and Eucalyptus [61–63]. The model was run at 413 K with
a cooking time of 120 min and a NaOH concentration of 12 wt%, and the results are shown
in Table 2.

It is seen that, for all three different wood species, the set-point values of the Kappa
number and cellulose DP are similar to the values found in the literature [61–63], and the
mean error is less than 10%. This suggests that the multiscale model is a valid virtual
experiment for the batch pulp digester process, and can be used to generate data for
varying operating conditions in order to train the LSTM-ANN model structure.

Figure 4. Graphical illustration of the simulation lattice at t = 0 and t = 87.84 min.

Remark 3. The results shown in Figure 5 are representative, and the trends of the Kappa number
and DP for other input profiles follow a similar trend. It is assumed that the multiscale model
remains effective under all these different operating conditions.

4.2. LSTM-ANN Model

Through optimization of the network structure, the best structure was obtained with
three hidden layers, each containing 40 nodes. A batch size of 16 and a dropout rate of 0.5
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were used as it was found that using a dropout layer in conjunction with the early stopping
technique reduced the overfitting of the data [38]. The optimal network structure was
chosen from several network configurations listed in Table 3 and includes an input layer,
three LSTM layers, an ANN layer, a fully connected layer, an output layer, and a regression
layer. The network configuration shown in the third row (Serial No. 3) was chosen as it
showed a high R2 value with a 0.5 dropout rate.

(a)
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e
 D

P
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(b)

Figure 5. (a) The Kappa number predicted by the multiscale kMC model for Eucalyptus wood and
(b) the degree of polymerization predicted by the multiscale kMC model for Eucalyptus wood.



Processes 2023, 11, 809 12 of 19

Table 2. A comparison of the cellulose DP and Kappa number between the experimental data and
model simulation at the end of the pulping process (t = tend) for three different wood species [61–63].

Species
Cellulose DP Kappa Number

Experiment Model Experiment Model

Eucalyptus 1399 1342 8.7 11.4

Date Palm Rachis 1203 1174 54 52.6

Pinus Radiata 1423 1368 10.6 10.8

Mean error 4% Mean error 8%

Remark 4. The listed network configurations are not a comprehensive set. During the process of
hyperparameter tuning, a wide range of structures with a varying number of nodes, layers, types of
activation functions, and dropout rates were considered.

The trained model was tested on 100 test datasets for accuracy evaluation. The parity
plots between the multiscale model and LSTM-ANN model for the Kappa number and
cellulose DP at the end of the pulping process are shown in Figure 6. An upper and lower
bound of 10% was added to the bisector. The plot shows that the model was well-trained
and had an average R2 value of 0.9953 for the Kappa number and 0.9846 for cellulose DP.

In order to compare the accuracy when a deep neural network (DNN) was used
instead of an LSTM to train the data with a combination of time-invariant and time-varying
operating conditions, parity plots between the multiscale model and DNN model are shown
in Figure 7. The R2 values for the Kappa number and cellulose DP are seen to be very low
(less than 0.8) despite the network structure having three layers with 40 hidden nodes each
(the same number of total nodes as the LSTM model). This shows that the DNN was unable
to capture the temporal dependencies as the LSTM did, and thus the aforementioned LSTM
network structure was selected for further study. Next, the controller results are presented.

Table 3. List of configurations for the LSTM network.

Serial No. Layers Nodes Batch Size Dropout Rate R2 Kappa R2 DP

1 2 20 16 0.2 0.942 0.884

2 2 40 32 0.4 0.957 0.901
3 3 40 16 0.5 0.995 0.985
4 3 20 32 0.2 0.982 0.944
5 3 40 32 0 0.998 0.992

6 3 10 16 0 0.975 0.954

7 3 40 16 0.8 0.926 0.895

4.3. LSTM-ANN-Based MPC

As shown in the parity plots, the LSTM-ANN model effectively establishes a relation-
ship between the operating conditions and the output set-point values. This LSTM-ANN
model is then integrated into the MPC described in the previous section to obtain the
optimal input profiles. These profiles are then used in the multiscale model to calculate
the Kappa number and cellulose DP in an iterative manner at each time step. To demon-
strate the controller’s capabilities, the desired set-point values of Kappa number = 90 and
cellulose DP = 700 were set. Figure 8 shows the optimal input profiles for the cooking time,
NaOH concentration, and the free-liquor temperature under MPC operation. As expected,
the cooking time and NaOH concentration remained constant throughout the process,
following the constraints set in Equations (21)–(22).
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(a)

(b)

Figure 6. (a) Parity plot for the Kappa number prediction for the test data (100 datasets) at the end of
the pulping process t = tend with the LSTM-ANN model and (b) parity plot for DP prediction for the
test data (100 datasets) at the end of the pulping process t = tend with the LSTM-ANN model.
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Figure 7. (a) Parity plot for the Kappa number prediction for the test data (100 datasets) at t = tend
with the DNN model and (b) parity plot for DP prediction for the test data (100 datasets) at t = tend
with the DNN model.
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A cooking time of 80 min and a NaOH concentration of 62 wt% were obtained.
The optimal free-liquor temperature profile also varied between 390 and 430 K with control
actions being taken every 10 min. Figure 9 shows the output under MPC operation. It
is seen that the cellulose DP drops quickly in value at the start and then stabilizes near
the desired set-point value. The Kappa number steadily decreases over the course of
the process, and attains a value close to the set-point value of 90. Thus, our framework
demonstrated its capability to obtain optimal constant values for the cooking time and
NaOH concentration in addition to a time-varying profile for the free-liquor temperature.

Remark 5. All the kMC simulations, MPC calculations, and neural network training were per-
formed on a computer with an Intel Core i7–4770 CPU with 3.40 GHz and 16.0 GB RAM running
on a Windows 10, 64-bit operating system using MATLAB 2022a. The multiscale model took
around 10–15 min to run, while the LSTM-ANN model within the MPC could be executed within
seconds. As control actions are taken every 10 min, this provides enough time for the user to adjust
the operating conditions and rerun the MPC for the next iteration.

Figure 8. Optimal input profiles and bounds for the cooking time, NaOH concentration, and free-
liquor temperature as obtained from the closed-loop simulation.
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Figure 9. Trajectories of the Kappa number and degree of polymerization as obtained from the
closed-loop simulation.

5. Conclusions

In conclusion, in this article, we presented the development of a layered multiscale
model that integrates mass and energy balance equations from the extended Purdue model
with a kMC algorithm to predict the temporal evolution of crucial paper properties, such
as the Kappa number and cellulose DP. The model describes the degradation of wood
chips associated with the dissolution of wood chip components and the depolymerization
of cellulose due to alkaline hydrolysis, peeling-off, and stopping reactions. The multiscale
model, which acts as a virtual experiment, was validated and then used offline with
different sets of operating conditions to obtain a rich set of data for training the LSTM-ANN
model with an R2 value of over 0.98.

Finally, a closed-loop controller was designed using the LSTM-ANN-based neural
network to obtain optimal profiles of operating conditions that are a combination of time-
invariant inputs (such as the cooking time and NaOH concentration) and time-varying
inputs (such as the free liquor temperature). The controller achieved target set-point
values for the Kappa number and cellulose DP with minimal offset while considering
process constraints. This trained LSTM-ANN model can, thus, be utilized in place of the
complex first-principles model to significantly reduce the computation time while using an
online controller.
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