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Abstract: One of the most difficult challenges in medicine is predicting heart disease at an early stage.
In this study, six machine learning (ML) algorithms, viz., logistic regression, K-nearest neighbor,
support vector machine, decision tree, random forest classifier, and extreme gradient boosting,
were used to analyze two heart disease datasets. One dataset was UCI Kaggle Cleveland and the
other was the comprehensive UCI Kaggle Cleveland, Hungary, Switzerland, and Long Beach V.
The performance results of the machine learning techniques were obtained. The support vector
machine with tuned hyperparameters achieved the highest testing accuracy of 87.91% for dataset-I
and the extreme gradient boosting classifier with tuned hyperparameters achieved the highest testing
accuracy of 99.03% for the comprehensive dataset-II. The novelty of this work was the use of grid
search cross-validation to enhance the performance in the form of training and testing. The ideal
parameters for predicting heart disease were identified through experimental results. Comparative
studies were also carried out with the existing studies focusing on the prediction of heart disease,
where the approach used in this work significantly outperformed their results.

Keywords: heart disease prediction; UCI Kaggle dataset; machine learning algorithms; GridSearchCV;
hyperparameters

1. Introduction

The most important factor in blood flow through veins is the heart [1]. The blood that
circulates through our bodies and carries nutrients, oxygen, metals, and other essential
substances is the most important part of our circulatory system. The faulty functioning
of the heart can lead to serious health issues and even death [2]. Living an unhealthy
lifestyle, using tobacco, drinking alcohol, and eating a lot of fat can all lead to heart
disease [3,4]. The World Health Organization estimates that heart disease claims the lives
of roughly 10 million people per year. Only a healthy lifestyle and early detection can stop
circulatory system diseases [5,6]. Despite the fact that in recent years, cardiac issues have
been identified as the main cause of death worldwide, they are still conditions that can
be properly managed and controlled. How effectively an illness can be controlled overall
depends on the exact timing of its detection. The recommended strategy tries to recognize
certain cardiac abnormalities early in order to stop heart disease. Several researchers
are utilizing statistical and data mining techniques to help identify heart illness [7]. The
majority of the data in the medical database are discrete. Making decisions with these
datasets is therefore extremely challenging [8–10].
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In the healthcare sector, machine learning (ML) is an emerging topic that can help
with the diagnosis of diseases, the discovery of new drugs, and the classification of images.
It is particularly helpful for hospital administration and medical staff, including doctors
and nurses, as well as residential treatment facilities. Early heart illness identification and
prediction are more challenging without modern medical tools. By developing new models,
ML algorithms are employed for early treatment and diagnosis. ML algorithms are essential
for analyzing the presented data and finding hidden discrete patterns. Two heart disease
datasets were examined for model performance using a variety of ML methods, namely,
logistic regression, K-nearest neighbor, support vector machine, decision tree, random
forest, and extreme gradient boosting. The goal of this research was to employ grid search
cross-validation to enhance training and testing performance and to find the perfect ML
algorithm parameters for heart disease prediction. The efficiency of heart disease prediction
and patient survival can be successfully predicted using tuned hyperparameters for larger
heart disease datasets, as well as for comprehensive datasets, but it is ineffective for small
datasets. This improves the effectiveness and performance of ML algorithms for predicting
heart disease in the form of training and testing statistical data [11–13]. To determine the
efficiency of the machine learning algorithms, numerous reliable performance-measuring
matrices were given. The major findings of the study are listed below:

• In the first step, common ML algorithms for predicting heart disease were used, as
follows: logistic regression, K-nearest neighbor, support vector machine, decision tree,
random forest classifier, and extreme gradient boosting.

• In the second step, a prediction system using six fundamental ML algorithms and a
hyperparameter tuning technique was provided. Here, grid search cross-validation
was also used to identify the appropriate hyperparameters for each method. The
notations used to describe the analytical results of different tables are as follows:
accuracy (A), precision (P), recall (R), F-1 score (F-1s), and support (S).

• Finally, a confusion matrix was used to compare the performances of the models for
these two systems.

The following is the breakdown of the remaining text: An effort to review the literature
is given in Section 2. The research methodology is described in Section 3, which also
describes the actions that were done to conduct this study. The performance evaluation
metrics, findings, and discussion for the experimental setups are presented in Section 4.
All of the tests performed, their associated results, and a state-of-the-art comparison are
discussed in Section 5. Finally, Section 6 concludes the work and gives suggestions for
additional research.

2. Literature Review

The contributions of recent heart disease prediction systems are summarized in this
section. To predict heart disease, researchers created numerous machine learning (ML)
classification models.

2.1. Existing Models for Predicting Cardiovascular Diseases

To predict the risk of cardiovascular illness, well-known ML techniques, such as
logistic regression, K-nearest neighbor, support vector machine, decision tree, and random
forest classifier, were designed [14]. The classifier for early cardiovascular disease prediction
using the artificial immune identification method (AIRS) with a fuzzy resource allocation
mechanism is reported in [15]. For the diagnosis of cardiovascular disease without the use
of intrusive diagnostic methods, a mixed model based on clinical data was developed [16].

2.2. Methodology for Detecting Heart Disease

On the other hand, various diseases or risk factors for smoking-related coronary
disease were found, and features were found using entropy. A weighted methodology for
converting bootstrap-aggregated ensemble learning to a weighted vote and comparing
different averaging methods was built. This was successful at identifying heart disease,
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with an accuracy of 89.30% using cluster-based decision tree learning and 76.70% using a
random forest classifier [17,18].

By using clustering and classification approaches, heart disease was detected. The
construction of a model for information-mining-based clinical mindfulness success and
the function of rehabilitation specialists in clinical information mining were taken into
consideration [19,20]. Heart disease prediction using a combination of deep learning and
machine learning reported an accuracy of 100% [21].

Using the AI database at UCI, a system for predicting heart failure was created. It was
based on the subtyping of ischemic stroke patients from a participant observation registry
created by platform vascular psychiatrists. To reduce the computational complexity of the
huge database, they employed a variety of feature selection approaches, including principle
component analysis and extreme gradient boosting [22,23].

2.3. Levels of Heart Disease

The capacity of the heart disease application to predict risk levels for heart attacks was
the subject of much investigation. For the purpose of predicting heart disease, 11 critical
qualities were utilized, as well as fundamental data mining techniques, such as an NB, a
J48 decision tree classifier, and bagging approaches [24,25].

The clinical summary report of the European Association of Comparative Cardiology,
which details how to improve adherence to a medical therapy advised by recommendations
in the lifestyle modification of heart disease, was produced. Deep hybrid learning and
signal processing were used to detect early-stage heart disease using phonocardiogram
and electrocardiogram signals [26,27].

Additionally, the study of clinical data for cardiovascular prediction also used ML
algorithms. An extreme gradient boosting classifier was also employed, along with a
successful model for predicting heart disease for a clinical decision support system [28,29].

3. Research Methodology

The datasets and recommendation mechanisms are discussed in this section.

3.1. The Objective of the Study

Today, heart disease is a major problem. Neither a more accurate automated technology
nor a decrease in the effects of heart disease is currently available. Therefore, using
machine learning algorithms to identify diseases from common symptoms would be a
significant accomplishment. These machine learning techniques are useful for diagnosing
and identifying dangerous diseases earlier. As a result of the medical information system
using patient data, it is now possible to address new challenges in the healthcare industry
through the application of an appropriate methodology and machine learning techniques.
To build a model for data extraction and categorization, statistical and machine learning
techniques that extrapolate knowledge from large and complex datasets are used.

The primary objective of this study was to create a model that can accurately identify
issues with cardiac diseases.

3.2. Description of the Datasets

Dataset-I: UCI Kaggle Cleveland. The Medical Centre and the Cleveland Clinic
Foundation released this dataset on heart disease, which may be found in the UCI repository,
along with 2 classes, 14 features, and 303 instances.

Dataset-II: Comprehensive UCI Kaggle Cleveland, Hungary, Switzerland, and Long
Beach V. This heart disease dataset, which has 14 features, 1025 instances, and 2 classes, is
contributed to by the Medical Center, the Cleveland Clinical Foundation, the Hungarian
Institute of Cardiology, Switzerland, and the Long Beach V Clinical Foundation. It may
also be found in the UCI repository. Summary of dataset is given in Table 1.
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Table 1. Descriptions of the datasets.

Classes Features Instances

Dataset-I 2 14 303

Dataset-II 2 14 1025

3.3. Suggested Model

In this study, two stages of heart disease predictions were taken into account. Figure 1
shows the flow chart for diagnosing the traditional form of heart disease. This model was
not described using a hyperparameter tuning technique for a classification algorithm [30].
Six distinct machine learning algorithms are displayed for both the conventional models
and the suggested techniques depicted in Figure 1. These six suggested models were then
used to examine the testing dataset and evaluate the accuracy of the results. One of the most
crucial components in machine learning is hyperparameter tuning. If the hyperparameters
are tuned, the ML algorithms will perform more efficiently. The ideal settings for the
hyperparameters can be found by conducting a thorough search, such as GridSearchCV.

It is also capable of creating a model that generates and saves every possible model
and parameter combination. Time and resources are saved by this search. The six different
machine learning classifiers come from several machine learning applications, which
include logistic regression classifier (LR) [31], K-nearest neighbors classifier (K-NN) [32],
support vector machine classifier (SVM) [33], decision tree classifier (DT) [34], random
forest classifier (RFC) [35], and extreme gradient boosting classifier (XGB) [36].

3.4. Problem Statement for the Study

Heart disease instances are rising quickly each day, and thus, it is crucial to predict
any possible diseases in advance. The main challenge with heart disease is detecting
it. There are various tools that can predict cardiac disease, but they must be calculated
accurately and effectively. The mortality rate and total consequences can be reduced by
early identification of aortic stenosis. Since it takes more intelligence, time, and knowledge,
it is not always possible to accurately monitor patients every day, and a doctor cannot
consult with a patient for a whole 24 h.

By using computer-assisted methods, such as machine learning, one may predict the
patient’s status quickly and more accurately while also drastically cutting costs. Machine
learning is a highly broad and diverse field, and its application in healthcare is expanding
daily. Today’s internet contains a considerable amount of information. The data is therefore
examined for hidden patterns using a variety of machine learning algorithms. In medical
data, hidden patterns might be used for health diagnosis. By examining patient data that
uses machine learning algorithms to identify whether a patient has heart disease, this effort
seeks to predict possible heart disease.

3.5. Hyperparameter Tuning Optimization

The challenge of selecting a set of ideal hyperparameters for a learning algorithm is
known as hyperparameter optimization or tuning in machine learning. A parameter whose
value is utilized to regulate the learning process is known as a hyperparameter. There
are several optimization methods, each with its benefits and drawbacks. The values of
other parameters are often learned. Choosing the best hyperparameters has a significant
influence on the performance model. Experiments on various optimization techniques were
used to identify the best hyperparameter combination, which was consequently employed
in these six machine learning algorithms: logistic regression classifier, K-nearest neighbor
classifier, support vector machine classifier, decision tree classifier, random forest classifier,
and extreme gradient boosting classifier.
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The careful tuning of machine learning algorithms is one of the optimization chal-
lenges. The GridSearchCV approach is frequently used in hyperparameter optimization to
overcome challenges and improve the accuracy of models. GridSearchCV is a time-tested
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method that considers all hyperparameter combinations. The learning rate and layer count
are used as hyperparameters in GridSearchCV.

4. Evaluation Metrics and Experimental Data Analysis
4.1. Metrics for Evaluation

To assess how well a statistical or machine learning system is performing, evaluation
metrics are utilized. Each evaluation evaluates the machine learning algorithm. There are
numerous assessment measures that can be used to test a model [37]. True negative (TN),
true positive (TP), false positive (FP), and false negative (FN) are the parameters of the
assessment metrics.

accuracy =
∑ TP + ∑ TN

∑ TP + ∑ TN + ∑ FP + ∑ FN
(1)

precision =
∑ TP

∑ TP + ∑ FP
(2)

recall = ∑ TP
∑ TP + ∑ FN

(3)

F − 1Score =
2 × precision × recall

precision + recall
(4)

4.2. Description of the Features of Heart Disease Datasets

The parameters for predicting heart disease are shown in Figure 2. These features
(attributes) are found in both dataset-I and dataset-II. The descriptions are as follows:

Age: the age of the individual.
Sex: the gender of the individual using the following form: 1 = male and 0 = female.
Chest pain type (cp): the types of chest pain experienced by the individual using

the following form: 1 = typical angina, 2 = atypical angina, 3 = non-anginal pain, and
4 = asymptotic.

Resting blood pressure (trestbps): The resting blood pressure value of an individual
in mmHg (unit). The resting blood pressure (in mmHg) is often a reason for worry if it is
between 130 and 140; a sick heart will stress more during exercise.

Serum cholesterol (chol): the serum cholesterol in mg/dL (unit); serum cholesterol is
usually a cause for concern if it is 200 or higher.

Fasting blood sugar (fbs): Compares the fasting blood sugar value of an individual
with 120 mg/dL. If fasting blood sugar > 120 mg/dL, then 1 (true); else, 0 (false).

Resting ECG (restecg): 0 = normal, 1 = having ST-T wave abnormality, and 2 = left
ventricular hypertrophy.

Max heart rate achieved (thalach): the max heart rate achieved by an individual.
Exercise-induced angina (exang): angina caused by exercise according to the slope of

the peak exercise ST segment; those with value 0 (no exercise-caused angina) had a higher
risk of heart disease than those with value 1 (presence of exercise-induced angina).

ST depression induced by exercise relative to rest (oldpeak): the value, which is integer
or float; peak exercise ST segment (slope): 1 = upsloping, 2 = flat, and 3 = downsloping.

Number of major vessels (0–3) colored using fluoroscopy (CA) is based on the principle
that more vessels shown signify more blood movement.

The thalassemia (Thal): 3 = normal, 6 = fixed defect, and 7 = reversible defect.
Diagnosis of heart disease (target): displays whether the individual is suffering from

heart disease or not: 0 = absence and 1 = present.
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Figure 2. Heart disease prediction parameters.

4.3. Experimental Data Analysis

A total of 303 samples with 14 attributes make up dataset-I; 138 of the samples have
heart disease, whereas 165 are healthy. Dataset-II comprises 1025 samples with 14 features,
where 525 of the samples have heart disease and 499 do not. During the pre-processing
stage, the statistical operation was completed to find and remove missing values, as well
as to ascertain the maximum (max), minimum (min), mean, 25%, 50%, 75%, and standard
deviation (std) of each feature set. Tables 2 and 3 display the results.
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Table 2. The description of dataset-I for the count (303), minimum, maximum, mean, and standard
deviation.

Age Sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

Mean 54.47 0.69 0.97 131.62 247.00 0.16 0.54 148.99 0.38 1.05 1.50 0.74 2.32 0.55

Std 9.09 0.48 1.04 17.55 52.77 0.37 0.54 22.57 0.48 1.17 0.63 1.03 0.62 0.51

Min 29.00 000 0.00 93 126 0.00 0.00 71 0.00 0.00 0.00 0.00 0.00 0.00

25% 47.00 0.00 0.00 120 211 0.00 0.00 133.50 0.00 0.00 1.00 0.00 2.00 0.00

50% 50 1.00 1.00 130 240 0.00 1.00 153 0.00 8.00 1.00 0.00 2.00 1.00

75% 61 1.00 2.00 140 274 0.00 1.00 166 1.00 1.60 2.00 1.00 3.00 1.00

Max 77 1.00 3.00 200 564 1.00 2.00 202 1.00 6.20 2.00 4.00 3.00 1.00

Table 3. The description of dataset-II for the count (1025), minimum, maximum, mean, and standard
deviation.

Age Sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

Mean 54.43 0.70 0.94 131.61 245.06 0.15 0.53 149.11 0.34 1.07 1.39 0.75 2.32 0.51

Std 9.07 0.46 1.03 17.52 51.59 0.36 0.53 23.01 0.47 1.18 0.62 1.03 0.62 0.50

Min 29.00 0.00 0.00 94 126 0.00 0.00 71 0.00 0.00 0.00 0.00 0.00 0.00

25% 48.00 0.00 0.00 120 211 0.00 0.00 132 0.00 0.00 1.00 0.00 2.00 0.00

50% 56 1.00 1.00 130 240 0.00 1.00 152 0.00 8.00 1.00 0.00 2.00 1.00

75% 61 1.00 2.00 140 275 0.00 1.00 166 1.00 1.80 2.00 1.00 3.00 1.00

Max 77 1.00 3.00 200 564 1.00 2.00 202 1.00 6.20 2.00 4.00 3.00 1.00

According to Figure 2, people with “cp” 1, 2, or 3 on a resting ECG are more likely to
develop heart disease than people with “cp” 0 (cp stands for chest pain type; value 1: typical
angina, value 2: atypical angina, value 3: non-anginal pain, and value 4: asymptomatic).
People with cp value 1 are more likely to have heart disease since it indicates an abnormal
heartbeat, which is noticeable in issues ranging from trivial symptoms to major issues.
Considering angina caused by exercise, according to the slope of the peak exercise ST
segment, those with cp value 0 (no exercise-caused angina) had a higher risk of HD than
those with cp value 1 (presence of exercise-induced angina).

The number of main blood vessels (0–3) colored using fluoroscopy was based on the
principle that continuous blood circulation makes the heart better. Then, for simplicity and
improved comprehension, the histogram of categorical and continuous characteristics is
shown in Figure 3. For the structure and frequency range of continuous and categorical
observations, histogram charts display the distribution of each characteristic value.

Figure 3 shows that those with a maximum heart rate of more than 140 were more
likely to have heart disease. Resting blood pressure (in mmHg) is often a reason for worry
if it is between 130 and 140, and serum cholesterol is usually a cause for concern if it is 200
or higher.

Figure 4 displays the heat map that illustrates how characteristics of the heart disease
datasets were related to one another. Here, the values on the two-dimensional surface are
shown using various hues. It is clear that qualities with a categorical value were more
concentrated than those with a continuous value.
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5. Discussion and Analysis of the Experiment Results
5.1. Data Preparation

Data preparation was used to identify null values; process corrupt, missing, disre-
spectful, and inaccurate values; and eliminate the duplication of particular characteristics.
The standard data format was then identified through splitting, feature scaling, and nor-
malization. The dataset was divided into a training dataset and a test dataset, with the
training dataset containing 70% of the data and the test dataset containing 30% of the data.
Pre-processing is a statistical technique that finds and removes missing data while also
determining the maximum, minimum, mean, and standard deviation of each feature set.

5.2. Performance Evaluation and Comparison with a Traditional System for Dataset-I

The default settings were used when applying the ML algorithms in this experiment.
The results of the system are shown in Figure 5. The accuracy, precision, recall, and F-1 score
of the model were found to be 86.79%, 87%, 87%, and 87%, respectively, during the fitting
and running phases of the LR training phase. The accuracy, precision, recall, and F-1 score
for the test dataset that this LR predicted were 86.91%, 87%, 87%, and 87%, respectively.
Again, during the training phase, the K-NN model was run with the parameters’ “uniform”
weights and the number of neighbors (K) = 5, and it produced an accuracy, precision, recall,



Processes 2023, 11, 734 11 of 28

and F-1 score of 86.79%, 87%, 87%, and 87%, respectively. The accuracy, precision, recall,
and F-1 score for this K-NN model, which predicted the test set, were 86.81%, 87%, 87%,
and 87%, respectively. The performances of the SVM for training in terms of the accuracy,
precision, recall, and F-1 score were 93.40%, 93%, 93%, and 93%, respectively, using the
settings of kernel = RBF, gamma = 0.1, and C = 1.0. The accuracy, precision, recall, and F-1
score of the test dataset for the SVM were 87.91%, 88%, 88%, and 88%, respectively. The DT
ran the model with random_state = 42 parameters for training datasets; the results indicated
100% accuracy, precision, recall, and F-1 score. The accuracy, precision, recall, and F-1 score
for the test dataset produced using the DT were 78.02%, 78%, 78%, and 78%, respectively.
The RFC ran the model with n_estimators = 1000 and random_state = 42 parameters for
the training datasets; the results showed 100% accuracy, precision, recall, and F-1 score.
The accuracy, precision, recall, and F-1 score for the test dataset produced using the RFC
were 82.02%, 82%, 82%, and 82%, respectively.
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Figure 5. Graphical representation of the performance evaluation of the traditional system.

The model was run on training datasets using the XGB with level encoder = false
parameters; the results indicated 100% accuracy, precision, recall, and F-1 score. The
accuracy, precision, recall, and F-1 score for the test dataset produced using the XGB were
82.42%, 82%, 82%, and 82%, respectively.

The details of the Figure 6 result are listed in Appendix A, Table A1. The classification
report of several types of training and testing results for traditional models, including
precision, recall, F-1 score, and support, are shown in Table 4. The confusion matrix for the
type-I error and type-II error of the traditional model is shown in Table 5. The total number
of instances was 303.

5.3. Performance Evaluation with Tuned Hyperparameters for Dataset-I

The suggested method used GridSearchCV to find the ideal hyperparameters. After
the hyperparameters were modified, the classifying models were constructed. For both the
training and test datasets for each of the six machine learning methods, Figure 7 shows the
outcomes of the suggested system with tuned hyperparameters in terms of the accuracy,
precision, recall, and F-1 score. The details of the Figure 5 findings are given in Appendix A,
Table A2.
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Table 4. Analytical results of various types of training and testing datasets of traditional ML models.

Traditional Models Normal (0) Abnormal (1) A (%) Macro Avg (%) Weighted Avg (%)

P (%) 88 86 87 87 87

Training result
R (%) 82 90 87 86 87

LR

F-1s (%) 85 88 87 87 87

S (%) 97 115 87 212 212

P (%) 87 87 87 87 87

Testing result
R (%) 83 90 86 86 87

F-1s (%) 85 88 87 87 87

S (%) 41 50 87 91 91

P (%) 86 87 87 87 87

Training result
R (%) 85 89 87 87 87

F-1s (%) 85 88 87 87 87

K-NN
S (%) 97 115 87 212 212

P (%) 85 88 87 87 87

Testing result
R (%) 85 88 87 87 87

F-1s (%) 85 88 87 87 87

S (%) 41 50 87 91 91
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Table 4. Cont.

Traditional Models Normal (0) Abnormal (1) A (%) Macro Avg (%) Weighted Avg (%)

P (%) 94 93 93 93 93

Training result
R (%) 92 95 93 93 93

SVM

F-1s (%) 93 94 93 93 93

S (%) 97 115 93 212 212

P (%) 86 90 88 88 88

Testing result
R (%) 88 88 88 88 88

F-1s (%) 87 90 88 88 88

S (%) 41 50 88 91 91

P (%) 100 100 100 100 100

Training result
R (%) 100 100 100 100 100

F-1s (%) 100 100 100 100 100

DT
S (%) 97 115 100 212 212

P (%) 73 84 78 88 79

Testing result
R (%) 83 74 78 88 78

F-1s (%) 77 79 78 88 78

S (%) 41 50 78 91 91

P (%) 100 100 100 100 100

Training result
R (%) 100 100 100 100 100

F-1s (%) 100 100 100 100 100

RFC
S (%) 97 115 100 212 212

P (%) 80 84 82 82 82

Testing result
R (%) 80 84 82 82 82

F-1s (%) 80 84 82 82 82

S (%) 41 50 82 91 91

P (%) 100 100 100 100 100

Training result
R (%) 00 100 100 100 100

XGB

F-1s (%) 100 100 100 100 100

S (%) 97 115 100 212 212

P (%) 80 84 82 82 82

Testing result
R (%) 80 84 82 82 82

F-1s (%) 80 84 82 82 82

S (%) 41 50 82 91 91

The classification report of several types of training and testing results for the sug-
gested model with tuned hyperparameters, including precision, recall, F-1 score, and
support, are shown in Table 6. The confusion matrix for the type-I error and type-II error of
the model with tuned hyperparameters is shown in Table 7.
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Table 5. Performance evaluation using a confusion matrix on the training and testing datasets.

Training Dataset Testing Dataset

Models Confusion Matrix Type-I Error Type-II Error Confusion Matrix Type-I Error Type-II Error

LR [[80 17]
[11 104]] 184 (correct) 28 (incorrect) [[34 7]

[5 45]] 79 (correct) 12 (incorrect)

KNN [[82 15]
[13 102]] 184 (correct) 28 (incorrect) [[35 6]

[6 44]] 79 (correct) 12 (incorrect)

SVM [[89 8]
[6 109]] 198 (correct) 14 (incorrect) [[36 5]

[6 44]] 80 (correct) 11 (incorrect)

DT [[97 0]
[0 115]] 212 (correct) 0 (incorrect) [[34 7]

[13 37]] 71 (correct) 20 (incorrect)

RFC [[97 0]
[0 115]] 212 (correct) 0 (incorrect) [[33 8]

[8 42]] 75 (correct) 16 (incorrect)

XGB [[97 0]
[0 115]] 212 (correct) 0 (incorrect) [[33 8]

[8 42]] 75 (correct) 16 (incorrect)
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Figure 7. The performance evaluation of the suggested system in graphical form.

Table 6. The classification report of models using the training and testing datasets compared with a
hyperparameter tuning strategy.

Hyperparameter Tuning Classification Report Normal (0) Abnormal (1) A (%) Macro Avg Weighted Avg

P (%) 86 86 86 86 86

Training result
R (%) 82 89 86 86 86

Tuned LR

F-1s (%) 84 87 86 86 86

S (%) 97.00 115 86 212 212

P (%) 85 86 86 86 86

Testing result
R (%) 83 88 86 85 86

F-1s (%) 84 87 86 86 86

S (%) 41 50 86 91 91
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Table 6. Cont.

Hyperparameter Tuning Classification Report Normal (0) Abnormal (1) A (%) Macro Avg Weighted Avg

P (%) 84 80 81 82 81

Training result
R (%) 83 88 81 81 81

F-1s (%) 78 83 81 81 81

Tuned K-NN
S (%) 97 115 81 212 212

P (%) 89 87 88 88 88

Testing result
R (%) 83 92 88 87 88

F-1s (%) 86 89 88 88 88

S (%) 41 50 88 91 91

P (%) 88 87 88 88 88

Training result
R (%) 85 89 88 87 88

Tuned SVM

F-1s (%) 86 90 88 88 88

S (%) 97 115 88 212 212

P (%) 85 85 85 85 85

Testing result
R (%) 80 88 85 84 85

F-1s (%) 83 86 85 84 85

S (%) 41 50 85 91 91

P (%) 94 87 90 90 90

Training result
R (%) 82 96 90 89 90

F-1s (%) 88 91 90 89 90

Tuned DT
S (%) 97 115 90 212 212

P (%) 80 82 81 81 81

Testing result
R (%) 78 84 81 81 81

F-1s (%) 79 83 81 81 81

S (%) 41 50 81 91 91

P (%) 89 85 87 87 87

Training result
R (%) 81 91 87 86 87

F-1s (%) 85 88 86 87 87

Tuned RFC
S (%) 97 115 87 212 212

P (%) 85 85 85 85 85

Testing result
R (%) 80 88 85 84 85

F-1s (%) 83 86 85 84 85

S (%) 41 50 85 91 91

P (%) 100 98 99 99 99

Training result
R (%) 98 100 99 99 99

Tuned XGB

F-1s (%) 99 99 99 99 99

S (%) 97 115 99 212 212

P (%) 76 82 79 79 79

Testing result
R (%) 78 80 79 79 79

F-1s (%) 77 81 79 79 79

S (%) 41 50 79 91 91
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Table 7. The performance evaluation and comparison of the confusion matrix with hyperparameter
tuning during the training and testing on dataset-I.

Training Dataset Testing Dataset

Models Confusion Matrix Type-I Error Type-II Error Confusion Matrix Type-I Error Type-II Error

TLR [[80 17]
[13 102]] 182 (correct) 30 (incorrect) [[34 7]

[6 44]] 78 (correct) 13 (incorrect)

TK-NN [[71 26]
[14 102]] 173 (correct) 40 (incorrect) [[34 7]

[4 46]] 80 (correct) 11(incorrect)

TSVM [[82 15]
[11 106]] 188 (correct) 26 (incorrect) [[33 8]

[6 44]] 77 (correct) 14 (incorrect)

TDT [[80 17]
[5 110]] 190 (correct) 22 (incorrect) [[32 9]

[8 42]] 74 (correct) 17 (incorrect)

TRFC [[79 18]
[10 105]] 184 (correct) 28 (incorrect) [[33 8]

[6 44]] 77 (correct) 14 (incorrect)

TXGB [[95 2]
[0 115]] 210 (correct) 2 (incorrect) [[32 9]

[10 40]] 72 (correct) 19 (incorrect)

The performance of the suggested method was compared with that of the existing
system in Figure 8. The details of the Figure 7 results are provided in Appendix A, Table A3.
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Figure 8. Graphical comparison of the accuracy.

The results from dataset-I did not seem to considerably improve after the hyperpa-
rameter tuning due to the small dataset.

5.4. Performance Evaluation and Comparison with the Traditional System for Dataset-II

For both the training and test datasets for each of the six machine learning methods,
Table 8 shows the results of traditional system without tuned hyperparameters in terms of
accuracy, precision, recall, and F-1 score. Table 8 is depicted graphically in Figure 8.
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Table 8. For both the training and testing datasets, classification models were evaluated and compared
after using dataset-II.

Traditional Method Training Dataset Testing Dataset

Models Parameters A (%) P (%) R (%) F-1s (%) A (%) P (%) R (%) F-1s (%)

LR Solver = liblinear 89.54 90 90 90 81.82 82 82 82

K-NN K = 5, weights = uniform 91.77 92 92 92 81.82 82 82 82

SVM Kernel = “rbf”,
gamma = 0.1, C = 1.0 95.40 95 95 95 90.26 90 90 90

DT Random_state = 42 100.00 100 100 100 97.08 97 97 97

RFC n_estimators = 1000,
random_state = 42 100.00 100 100 100 98.05 98 98 98

XGB Label_encoder = false 100.00 100 100 100 99.03 99 99 99

The classification report of several types of training and testing results, namely, the preci-
sion, recall, F-1 score, and support, for the traditional system without tuned hyperparameters
are shown in Table 9. The confusion matrix for the type-I error and type-II error of the model
with tuned hyperparameters is shown in Table 10. The total number of instances was 1025.

Table 9. Classification report of various types of training and testing of traditional models.

Traditional Models Normal (0) Abnormal (1) A (%) Macro Avg Weighted Avg

P (%) 91 89 90 90 90

Training result
R (%) 87 92 90 89 90

LR

F-1s (%) 89 90 90 89 90

S (%) 340 377 90 717 717

P (%) 85 89 82 82 82

Testing result
R (%) 89 85 82 82 82

F-1s (%) 82 82 82 82 82

S (%) 159 149 0.82 308 308

P (%) 91 92 92 92 92

Training result
R (%) 91 92 92 92 92

F-1s (%) 91 92 92 92 92

K-NN
S (%) 340 377 92 717 717

P (%) 86 78 82 82 82

Testing result
R (%) 87 87 82 82 82

F-1s (%) 81 82 82 82 82

S (%) 159 149 82 308 308

P (%) 97 94 95 96 95

Training result
R (%) 93 97 95 95 95

SVM

F-1s (%) 95 96 95 95 95

S (%) 340 377 95 717 717

P (%) 94 87 90 90 91

Testing result
R (%) 86 95 90 90 90

F-1s (%) 90 99 90 90 90

S (%) 159 149 90 308 308
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Table 9. Cont.

Traditional Models Normal (0) Abnormal (1) A (%) Macro Avg Weighted Avg

P (%) 100 100 100 100 100

Training result
R (%) 100 100 100 100 100

F-1s (%) 100 100 100 100 100

DT
S (%) 340 377 100 717 717

P (%) 95 100 97 88 97

Testing result
R (%) 100 94 97 88 97

F-1s (%) 97 97 97 88 97

S (%) 159 149 0.97 308 308

P (%) 100 100 100 100 100

Training result
R (%) 100 100 100 100 100

F-1s (%) 100 100 100 100 100

RFC
S (%) 340 377 100 717 717

P (%) 96 100 98 98 98

Testing result
R (%) 100 96 98 98 98

F-1s (%) 98 98 98 98 98

S (%) 159 149 98 308 308

P (%) 100 100 100 100 100

Training result
R (%) 100 100 100 100 100

XGB

F-1s (%) 100 100 100 100 100

S (%) 340 377 100 717 717

P (%) 96 100 98 98 98

Testing result
R (%) 100 96 98 98 98

F-1s (%) 98 98 98 98 98

S (%) 159 149 98 308 308

Table 10. Performance evaluation and comparison of the confusion matrix for the training and testing
datasets.

Training Dataset Testing Dataset

Models Confusion Matrix Type-I Error Type-II Error Confusion Matrix Type-I Error Type-II Error

LR [[295 45]
[30 347]] 642 (correct) 75 (incorrect) [[125 34]

[22 127]] 252 (correct) 56 (incorrect)

KNN [[310 30]
[29 348]] 658 (correct) 59 (incorrect) [[123 36]

[20 129]] 252 (correct) 56 (incorrect)

SVM [[317 23]
[10 367]] 784 (correct) 33 (incorrect) [[137 22]

[8 141]] 278 (correct) 30 (incorrect)

DT [[340 0]
[0 377]] 717 (correct) 0 (incorrect) [[159 0]

[9 143]] 302 (correct) 9 (incorrect)

RFC [[340 0]
[0 377]] 717 (correct) 0 (incorrect) [[159 0]

[6 143]] 302 (correct) 6 (incorrect)

XGB [[340 0]
[0 377]] 717 (correct) 0 (incorrect) [[159 0]

[6 143]] 302 (correct) 6 (incorrect)
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5.5. Performance Evaluation with Tuned Hyperparameters for Dataset-II

A grid search was employed in this recommended method to locate the ideal hyperpa-
rameters. The classifying models were constructed once the hyperparameters had been
adjusted. For both the training and test datasets for each of the six machine learning meth-
ods, Figure 9 shows the outcomes of the suggested system with tuned hyperparameters in
terms of accuracy, precision, recall, and F-1 score. Table A4 of Appendix B contains detailed
information about Figure 10.
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The classification report of several types of training and testing results, namely, preci-
sion, recall, F-1 score, and support, for the recommended model with tuned hyperparame-
ters are shown in Table 11. The confusion matrix for the type-I error and type-II error of the
suggested model with tuned hyperparameters is shown in Table 12. The total number of
instances was 1025.
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Table 11. For the training set and the test set, classification report models were evaluated and
compared using a hyperparameter tuning strategy.

Hyper Parameter Tuning Classification Report Normal (0) Abnormal (1) Macro Avg Weighted Avg A (%)

P (%) 89 89 89 89 89

Training result
R (%) 87 90 89 89 89

Tuned LR

F-1s (%) 88 90 89 89 89

S (%) 340 377 717 717 89

P (%) 86 79 83 86 82

Testing result
R (%) 78 87 82 86 82

F-1s (%) 82 82 82 86 82

S (%) 159 149 308 308 82

P (%) 90 88 89 89 89

Training result
R (%) 86 92 89 89 89

F-1s (%) 88 89 89 89 89

Tuned K-NN
S (%) 340 377 717 717 89

P (%) 90 78 84 84 83

Testing result
R (%) 77 91 84 83 83

F-1s (%) 83 84 83 83 83

S (%) 159 149 308 308 83

P (%) 100 100 100 100 100

Training result
R (%) 100 100 100 100 100

Tuned SVM

F-1s (%) 100 100 100 100 100

S (%) 340 377 717 717 100

P (%) 96 100 98 98 98

Testing result
R (%) 100 96 98 98 98

F-1s (%) 98 98 98 98 98

S (%) 159 149 308 308 98

P (%) 100 100 100 100 100

Training result
R (%) 100 100 100 100 100

F-1s (%) 100 100 100 100 100

Tuned DT
S (%) 340 377 717 717 100

P (%) 95 100 97 97 97

Testing result
R (%) 100 94 97 97 97

F-1s (%) 97 97 97 97 97

S (%) 159 149 717 717 97

P (%) 100 100 100 100 100

Training result
R (%) 100 100 100 100 100

F-1s (%) 100 100 100 100 100

Tuned RFC
S (%) 340 377 717 717 100

P (%) 96 100 98 98 98

Testing result
R (%) 100 96 98 98 98

F-1s (%) 98 98 98 98 98

S (%) 159 149 308 308 98
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Table 11. Cont.

Hyper Parameter Tuning Classification Report Normal (0) Abnormal (1) Macro Avg Weighted Avg A (%)

P (%) 100 100 100 100 100

Training result
R (%) 100 100 100 100 100

Tuned XGB

F-1s (%) 100 100 100 100 100

S (%) 340 377 717 717 100

P (%) 98 82 99 99 99

Testing result
R (%) 100 80 99 99 99

F-1s (%) 99 81 99 99 99

S (%) 159 149 308 308 99

Table 12. Performance evaluation and comparison of the confusion matrix after using a hyperparam-
eter tuning approach on the training and testing datasets.

Training Dataset Testing Dataset

Models Confusion Matrix Type-I Error
(Correct)

Type-II Error
(Incorrect) Confusion Matrix Type-I Error

(Correct)
Type-II Error

(Incorrect)

TLR [[296 44]
[36 341]] 637 80 [[124 35]

[20 129]] 253 55

TKNN [[291 49]
[32 345]] 636 81 [[122 37]

[14 135]] 257 51

TSVM [[340 0]
[0 377]] 717 0 [[159 0]

[6 143]] 302 6

TDT [[340 0]
[0 377]] 717 0 [[159 0]

[9 143]] 302 9

TRFC [[340 0]
[6 143]] 483 6 [[159 0]

[6 143]] 302 6

TXGB [[340 0]
[0 377]] 717 0 [[159 0]

[3 146]] 305 3

The performance of the suggested method was compared with that of the existing
system in Figure 11. Figure 11 is extensively described in Table A5 of Appendix B.

5.6. Comparison of the Performance between Dataset-I and Dataset-II

ML algorithms were applied to the two datasets. Through the analysis described
in the previous sections, the diagnostic systems were able to evaluate dataset-I with an
accuracy that exceeded the evaluation of dataset-II during the testing phase. Figure 12
describes the analytical results to compare the performance of the ML algorithms on these
two datasets. Table A6 of Appendix C contains information pertaining to Figure 12. The
performance of the six used ML algorithms (LR, K-NN, SVM, DT, RFC, and XGB) with tuned
hyperparameters on dataset-II during the training phase reached accuracies of 88.84%,
88.70%, 100%, 100%, 100%, and 100% respectively. In the testing phase, their accuracies
were 82.14%, 83.44%, 98.05%, 97.08%, 98.05%, and 99.03%, respectively. The performances
of these ML algorithms (LR, K-NN, SVM, DT, RFC, and XGB) with tuned hyperparameters
on dataset-I during the training phase reached accuracies of 85.85%, 81.13%, 87.74%, 89.62%,
86.19%, and 99.06%, respectively. In the testing phase, their accuracies were 85.71%, 87.91%,
84.62%, 61.32%, 84.62%, and 79.12% respectively.
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Figure 12. Comparison of the system performance regarding the diagnostic accuracies when using
the two datasets.

5.7. Comparison with Previous Research

The evaluation of ML algorithms discussed on various criteria and compared with
pertinent earlier works is described in Figure 13. Information relating to Figure 13 is
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provided in Table A7 of Appendix C. It was mentioned that various criteria were used
to evaluate earlier research. The accuracy of the recommended system was 100% using
the training dataset and 99.03% using the testing dataset, while all prior research only
managed to achieve accuracies ranging between 95% and 77.40%. The precision of the
earlier investigations ranged between 97.62% and 78.15%, whereas the suggested method
achieved 100% using the training dataset and 99% using the testing dataset.
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Figure 13. Graphical representation of the performance evaluation of the traditional system [35–40].

6. Conclusions

In this work, standard methods were used to predict heart disease from UCI Kaggle
Cleveland datasets. In all situations, the heart disease prediction model was created using
machine learning classifiers, namely, logistic regression, K-nearest neighbor (K-NN), sup-
port vector machine (SVM), decision tree, random forest, and extreme gradient boosting
classifiers. These models primarily consist of six essential steps, although the suggested
model was modified from the established model in terms of fine-tuning the hyperparame-
ters. The accuracy rates when using the testing dataset for above used machine learning
classifiers without hyperparameter tuning were found to be 86.91%, 86.81%, 87.91%, 78.02%,
82.42%, and 82.42, respectively, using dataset-I (UCI Kaggle Cleveland dataset). However,
the accuracy rates with tuned hyperparameters for the same six classifiers were found to
be 85.71%, 87.91%, 84.62%, 81.32%, 84.62%, and 79.12%, respectively, on the same dataset.
The recommended model differs from the traditional model in terms of tuning the hyper-
parameters. The accuracy rates when using the testing dataset for the same six classifiers
without tuned hyperparameters on dataset-II (Comprehensive UCI Kaggle Cleveland
dataset) were found to be 81.82%, 81.82%, 90.26%, 97.08%, 98.05%, and 99.03%, respectively.
However, the accuracy rates with tuned hyperparameters for the same six classifiers were
found to be 82.14%, 83.44%, 98.05%, 97.08%, 98.05%, and 99.03%, respectively, on the same
comprehensive dataset. Therefore, it was demonstrated through experimentation that the
recommended models were more effective and may increase the accuracy of heart disease
prediction. By developing a new model and a special model creation approach, the major
goal of this work was to expand on prior work while making the model applicable to and
simple to use in real-world circumstances.

The next phase of this study will involve creating a model using the feature selection
strategy while utilizing various optimization techniques.
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Appendix A. The Dataset-I Detailed Results

Table A1. For the training and test datasets, classification models were evaluated and compared.

Traditional Method Training Dataset Testing Dataset

Models Parameters A (%) P (%) R (%) F-1s (%) A (%) P (%) R (%) F-1s (%)

LR Solver = liblinear 86.79 87 87 87 86.91 87 87 87

K-NN K = 5, weights = uniform 86.79 87 87 87 86.81 87 87 87

SVM Kernel = “rbf”,
gamma = 0.1, C = 1.0 93.40 93 93 93 87.91 88 88 88

DT Random_state = 42 100 100 100 100 78.02 78 78 78

RFC n_estimators = 1000,
random_state = 42 100 100 100 100 82.42 82 82 82

XGB Label_encoder = false 100 100 100 100 82.42 82 82 82

Table A2. The classification model results for the training and testing datasets using a hyperparameter
tuning strategy.

Models with Hyper Parameters Training Dataset Testing Dataset

MLAs Tunned Hyperparameters A (%) P (%) R (%) F-1s (%) A (%) P (%) R (%) F-1s (%)

LR Solver = liblinear, c = 0.234 85.85 86 86 86 85.71 86 86 86

K-NN K = 27, 81.13 81 81 81 87.91 88 88 88

SVM Kernel = rbf, gamma = 0.1, C = 5 87.74 88 88 88 84.62 85 85 85

DT

Criterion = entropy,
max_depth = 5,

min_samples_leaf = 2,
splitter = 2

89.62 90 90 90 81.32 81 81 81

RFC

Max_depth = 2,
max_features = auto,

min_samples_leaf = 1,
n_estimators = 1100

86.79 87 87 86 84.62 85 85 85

XGB Learning_rate = 0.6427,
max_depth = 3, n_estimators = 3 99.06 99 99 99 79.12 79 79 79
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Table A3. Comparison of the accuracy of the training and testing datasets with and without tuned
hyperparameters.

ML Classifiers Accuracy (%) of Training Dataset Accuracy (%) of Testing Dataset

Without Parameter
Tuning

With Hyperparameter
Tuning

Without Parameter
Tuning

With Hyperparameter
Tuning

LR 86.79 85.85 86.81 85.71

K-NN 86.79 81.13 86.81 87.91

SVM 93.40 87.74 87.91 84.62

DT 100.00 89.62 78.06 61.32

RFC 100.00 86.79 82.42 84.62

XGB 100.00 99.06 82.42 79.12

Appendix B. The Dataset-II Detailed Results

Table A4. For the training set and test set, classification models were evaluated and compared using
a hyperparameter tuning strategy.

Models with Tuned Hyperparameters Training Dataset Testing Dataset

A (%) P (%) R (%) F-1s (%) A (%) P (%) R (%) F-1s (%)

LR Solver = liblinear, c = 0.088 88.84 89 89 89 82.14 82 82 82

K-NN K = 27, 88.70 89 89 89 83.44 83 83 83

SVM Kernel = rbf, gamma = 0.5, C = 2 100 100 100 100 98.05 98 98 98

DT

Criterion = entropy,
max_depth = 11,

min_samples_leaf = 1,
splitter = best,

min_samples_split = 2

100 100 100 100 97.08 97 97 97

RFC

Max_depth = 15,
max_features = auto,

min_samples_leaf = 1,
min_samples_split = 2,

n_estimators = 500

100 100 100 100 98.05 98 98 98

XGB
Learning_rate = 0.547,

max_depth = 5,
n_estimators = 338

100 100 100 100 99.03 99 99 99

Table A5. Comparison of the accuracy when using the training and testing datasets with and without
tuned hyperparameters.

MLAs Accuracy (%) Training Dataset Accuracy (%) Testing Dataset

Without Parameter
Tuning

With Hyperparameter
Tuning

Without Parameter
Tuning

With Hyperparameter
Tuning

LR 89.54 88.84 81.82 82.14

K-NN 91.77 88.70 81.82 83.44

SVM 95.40 100 90.26 98.05

DT 100.00 100 97.08 97.08

RFC 100.00 100 98.05 98.05

XGB 100.00 100 99.03 99.03
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Appendix C. Comparisons of Two Datasets and Previous Studies Details

Table A6. Accuracy (A) of the diagnosis of two datasets using six machine learning techniques.

Models with Hyperparameter Dataset-I Dataset-II

LR
A (%) training dataset 85.85 88.84

A (%) testing dataset 85.71 82.14

K-NN
A (%) training dataset 81.13 88.70

A (%) testing dataset 87.91 83.44

SVM
A (%) training dataset 87.74 100

A (%) testing dataset 84.62 98.05

DT
A (%) training dataset 89.62 100

A (%) testing dataset 61.32 97.08

RFC
A (%) training dataset 86.79 100

A (%) testing dataset 84.62 98.05

XGB
A (%) training dataset 99.06 100

A (%) testing dataset 79.12 99.03

Table A7. Comparison of the performances between the suggested system and previous studies.

Previous Studies A (%) P (%) R (%) F-1s (%)

Alizadehsani et al. [38] 93.85 00 97 00

Arora et al. [39] 77.4 00 77.4 0

Lakshmanna et al. [40] 90 00 00 91

Chiam et al. [41] 78.15 78.15 00 80.25

Shijani et al. [42] 91.14 91.90 93 00

Senan et al. [43] 95 97.62 95.35 96.47

Suggested model dataset-I training 99.06 99 99 99

Suggested model dataset-II training 100 100 100 100

Suggested model dataset-I testing 79.12 79 79 79

Suggested model dataset-II testing 99.03 99 99 99
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