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Abstract: The prevalence of batch and batch-like operations, in conjunction with the continued
resurgence of artificial intelligence techniques for clustering and classification applications, has
increasingly motivated the exploration of the applicability of deep learning for modeling and feedback
control of batch and batch-like processes. To this end, the present study seeks to evaluate the viability
of artificial intelligence in general, and neural networks in particular, toward process modeling and
control via a case study. Nonlinear autoregressive with exogeneous input (NARX) networks are
evaluated in comparison with subspace models within the framework of model-based control. A
batch polymethyl methacrylate (PMMA) polymerization process is chosen as a simulation test-bed.
Subspace-based state-space models and NARX networks identified for the process are first compared
for their predictive power. The identified models are then implemented in model predictive control
(MPC) to compare the control performance for both modeling approaches. The comparative analysis
reveals that the state-space models performed better than NARX networks in predictive power and
control performance. Moreover, the NARX networks were found to be less versatile than state-space
models in adapting to new process operation. The results of the study indicate that further research
is needed before neural networks may become readily applicable for the feedback control of batch
processes.

Keywords: subspace identification; neural networks; data-driven model identification

1. Introduction

Increasing competition and environmental regulations, alongside the importance of
batch and batch-like process operation, have impelled manufacturing industries to seek
improved margins via optimization of production processes. Several valuable products,
including specialty chemicals and bio-pharmaceuticals, are manufactured in a batch process,
and advanced process control techniques that utilize process models are being increasingly
sought to improve process operation.

All of the diverse modeling techniques can be classified into one of two distinct mod-
eling approaches: first-principles mechanistic-based modeling, and empirical data-driven
modeling. First-principles models are desired for their ability to capture the underlying
mechanics of processes directly through the application of physical conservation laws, such
as mass or energy balances. However, the development and maintenance of first-principles
models remains challenging. As an alternative, the prevalence of historical process data
has enabled data-driven modeling to emerge as an attractive alternative.

Myriad modeling methods exist for the purpose of developing models from process
data. Recently, neural networks have yielded compelling results in their ability to handle
human tasks, such as classification, clustering, pattern recognition, image recognition, and
language processing [1]. Neural networks have particularly been shown to be successful
in data classification and segmentation tasks [2,3]. The power of neural networks is
evidenced by their wide application, from business and social science to engineering and
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manufacturing. Neural networks are useful because of their versatility, which allows them
to handle non-linear and complex behavior [4]. From the above, it becomes natural to seek
to apply neural networks in the context of batch process control. However, the literature
remains limited in the application of neural networks toward the development of dynamic
models and their use in control in general, and batch process operation in particular.

Instead of neural networks, many statistical modeling approaches are available. One
statistical approach is the method of partial least squares (PLS). The PLS method requires
data to be partitioned into two matrices: a block for explanatory variables (X) and a block
for response variables (Y). PLS is inspired by the methods of multi-linear regression (MLR)
and principal component regression (PCR). MLR maximizes the correlation between X
and Y; PCR captures the maximum amount of variance in X through orthogonal linear
combinations of the explanatory variables. PLS seeks to consolidate between the aims of
both methods by maximizing the covariance between X and Y. PLS achieves this by first
projecting the explanatory variables onto a latent variable space to remove collinearity, and
then performing linear regression within that latent space [5]. PLS is desired for its ability
to handle collinear data and situations in which there are fewer observations relative to
the number of explanatory variables. PLS techniques can also be adapted to incorporate
first-principles knowledge via appended variables to the data matrices, as calculated by
first-principles equations.

An alternative statistical approach is prediction error methods (PEMs). The premise
underlying these methods is to determine the model parameters by minimizing the error
between measured and predicted outputs. Constraints can be readily implemented into the
optimization so as to impose regularity constraints on model parameters. The advantage of
PEM lies in its diverse applicability, as it can be applied to most model structures and can
readily handle closed systems. The drawback is the computational cost, as PEM typically
requires the solving of non-convex optimization problems.

Yet another popular statistical approach is subspace identification, which identifies
state-space models from input/output data. Subspace identification methods comprise two
steps. The first is to estimate either the extended observability matrix or the state trajectory
sequence from a weighted projection of the row space of the Hankel matrices formed
from the input/output data. The second step is to then calculate the system matrices [6].
Subspace identification methods are desirable since they are computationally tractable and
inherently discourage over-fitting through the use of singular value decomposition (SVD)
to estimate the model order.

Recently, artificial neural networks (ANNs) have been championed for the purpose
of model identification [7]. The functional form of an ANN is a network of nodes, called
neurons, whose values are calculated from a vector of inputs supplied by each neuron in
the preceding layer in the network, either the input layer or a hidden layer. Each neuron
is connected to all neurons in the previous layer via a weighted connection, essentially
leading to a functional form with parameters. The activation in each neuron is calculated
as a linear combination of the activations in the previous layer, including a bias, and is
modified by an activation function of choice. Common choices for the activation function
are the sigmoid, hyperbolic tangent, or rectifier functions.

The networks are trained (i.e., the parameters are determined) by minimizing a
cost function with respect to the network parameters, the weights and biases relating
each neuron to its preceding layer. To facilitate optimization of the network parameters,
the partial derivatives of the cost function with respect to the network’s weights and biases
are necessary. The requisite partial derivatives can be calculated by the widely used back-
propagation algorithm, which can be conceptualized in two steps. Firstly, the training data
are fed to the neural network to calculate the network’s outputs and internal activations.
Secondly, the needed partial derivatives are calculated backwards, beginning from the
output layer, using the chain rule from differential calculus. Finally, the calculated partial
derivatives allow for optimization by such methods as gradient descent [8]. While neural
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networks have generally found widespread acceptance, a comparative study of neural
networks with other approaches for batch process modeling and control is lacking.

In light of the above, the present study aims to address the dearth of results that
compare neural networks to other data-driven control techniques for batch processes. Sub-
space identification, which remains a prevalent and validated modeling approach for batch
process control, is used as the comparative benchmark in this work. Due to its dominance
in industrial practice, model predictive control (MPC) was chosen as the framework in
which the viability of neural networks for control purposes could be evaluated. The com-
parison between the two modeling approaches is illustrated by means of a motivating
example which is presented in Section 2.1. Subspace identification and neural networks
are explained subsequently in Sections 2.2 and 2.3. Thereafter, Section 3 presents models
identified and validated per both modeling approaches. Finally, Section 4 presents the
closed-loop results of implementing both types of models into an MPC framework, with
concluding remarks to be found in Section 5.

2. Preliminaries

In this section, we first present an example to motivate our results, followed by a
review of existing subspace identification and ANN approaches.

2.1. Simulation Example

Consider a PMMA polymerization process carried out in a batch stirred tank reactor with
a heating/cooling jacket. The underlying kinetic mechanism for the free radical polymerization
of PMMA is given in Table 1, where I is the initiator, M is the monomer, Ri is a live polymer
with I monomer units, Pi is a dead polymer with I units, and S is the solvent [9].

Table 1. Kinetic mechanism for PMMA polymerization.

Kinetic Mechanism Chemical Formula

Initiation I → 2φ
φ + M→ R1

Propagation Ri + M→ Ri+1
Termination by combination Ri + Rj → Ri+j

Termination by disproportionation Ri + Rj → Pi + Pj
Chain transfer to monomer Ri + M→ Pi + R1

Chain transfer to solvent Ri + S→ Pi + S

The batch reactor is charged with methyl methacrylate (monomer), AIBN (initiator),
and toluene (solvent). The mechanistic model for the motivating example was adapted
from [10] while making appropriate alterations as per [9,11], which are further discussed
in [12]. The first-principles model, which is used as a test bed, involves nine states: the
concentrations of the monomer and initiator, reactor temperature, and six moments of
living and dead polymer chains. The input to the process is the jacket temperature, and
the measured outputs are the reaction temperature, the logarithm of viscosity, and density.
The plant model was used to generate historical data for the identification of state space
and NARX network models, as well as for producing the process simulation required for
model validation and MPC implementation.

2.2. Subspace Identification

Subspace identification techniques identify a linear time-invariant (LTI) state-space
model. The deterministic identification problem (for a continuous process) can be described
as follows: if s measurements (where s represents the length of the data) of the input
uk ∈ Rm and the output yk ∈ Rl are available, then a model with order n can be identified
in the form
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xd
k+1 = Axd

k + Buk

yk = Cxd
k + Duk

(1)

where the objective is to determine the order n of this unknown system and the system
matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m.

We denote the measured outputs as y(b)[k], where k is the sampling time from when the
run is initialized and b denotes the run number. Thus, the Hankel matrix is laid out as follows:

Y(b)
1|i =

y(b)[1] y(b)[2] · · · y(b)[j(b)]
...

...
...

y(b)[i] y(b)[i + 1] · · · y(b)[i + j(b) − 1]

 ∀ b = 1, . . . , nb (2)

where nb is the total number of runs used for identification.
A single Hankel matrix by itself would not allow data from multiple experiments

or runs to be utilized, and the simple concatenation of the outputs from all of the runs
would generate a data set where the initial condition of a subsequent run is the end point of
the previous run, which would also be incorrect. Therefore, when concatenating the data,
it is important to generate a matrix, where this assumption is not necessary to solve for the
states. This can be achieved by horizontally concatenating the Hankel matrices from each
run to generate our pseudo-Hankel matrix for both the input and output variables. This
pseudo-Hankel matrix for the output data is defined as follows:

Y1|i =
[
Y(1)

1|i Y(2)
1|i · · · Y(nb)

1|i

]
(3)

Similarly, a pseudo-Hankel matrix for the input data can be generated. A key consid-
eration of this approach is that horizontal concatenation of data allows for runs of varying
lengths to be identified without aligning the variables. The use of these pseudo-Hankel
matrices for input and output data allows for data from multiple runs to be analyzed to
compute the state trajectory using any subspace identification technique, such as the deter-
ministic method used in this approach [13]. A consequence of horizontal concatenation is
that the identified state trajectories also consist of horizontally concatenated state estimates
from each run, which can be represented as

X̂(b)
i+1 =

[
x̂(b)[i + 1] · · · x̂(b)[i + j(b)]

]
∀ b = 1, . . . , nb (4)

X̂i+1 =
[

X̂(1)
i+1 X̂(2)

i+1 · · · X̂(nb)
i+1

]
(5)

where nb is the total number of training runs used for identification. Finally, once the state
trajectory matrix is determined, the system matrices can be estimated using such methods
as ordinary least squares, as shown below:

Y(b)
reg =

[
x̂(b)[i + 2] · · · x̂(b)[i + j(b)]
y(b)[i + 1] · · · y(b)[i + j(b) − 1]

]
(6)

X(b)
reg =

[
x̂(b)[i + 1] · · · x̂(b)[i + j(b) − 1]
u(b)[i + 1] · · · u(b)[i + j(b) − 1]

]
(7)

[
Y1

reg · · · Y(nb)
reg

]
=

[
A B
C D

][
X(1)

reg · · · X(nb)
reg

]
(8)

yielding A, B, C and D as the state-space model matrices, and are henceforth collectively
referred to as the unconstrained model.

Remark 1. The key consideration for subspace identification of multiple data sets, as opposed to a
single data set, is in the generation of the state trajectory. The risk of not using a pseudo-Hankel
matrix structure through a concatenation of the data can result in a single-state trajectory for the
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data set, where the initial point of the next run is incorrectly linked to the end point of the previous
run. The subspace identification approach allows for the correct identification of the separate state
trajectories from the training data to be used for model identification, thus enabling the usage of
multiple runs during training.

Notably, prior work has assessed the value of subspace identification for batch pro-
cesses [14]. Subspace identification was employed to generate a data-driven state-space
model for the PMMA polymerization process, being used as a test-bed for the present study.
The state-space model was then implemented into MPC, and the resulting performance was
compared with state-of-the-art latent variable methods. The results from their investigation
demonstrated the superiority of using subspace identification for the modeling and control
of batch processes. Motivated by these findings, state-space models were selected as the
benchmark by which to evaluate ANNs in this work.

2.3. ANN-Based Dynamic Models

To enable the modeling of dynamical systems in ANNs, information is allowed to
flow between each iteration via tapped delay lines or recurrent (feedback) connections. For
instance, time delay neural networks are feedforward dynamic neural networks that allow
for the inclusion of historical data via tapped delay lines.

Recurrent neural networks (RNNs), however, are more suitable for dynamic process
modeling, as they encode an internal state (memory) of the system by incorporating
feedback connections. Past outputs or hidden states are looped back into the neural
network, thereby allowing for information to flow between each iteration of the network.
Hence, the response of RNNs depends on the historical sequences of both input and output
data. NARX networks, a class of RNNs involving only feedback from the output neuron,
are used as a representative for this study [15]. A mathematical representation of a general
NARX network is given by

y(n + 1) = f [y(n), . . . , y(n− dy); u(n), . . . , u(n− du)] (9)

where u(n) and y(n) are the current inputs and outputs, du(n) and dy(n) are the associated
input and output delays, and f (·) is a nonlinear function [16].

NARX networks are derived from the application of autoregressive exogeneous (ARX)
models to the framework of artificial intelligence. Therefore, NARX networks are the artifi-
cial intelligence counterparts of ARX models, which are a mainstay of process modeling.
Contrasting the two modeling approaches, it is noteworthy that far more advanced com-
putational techniques have been developed for neural networks than exist for traditional
ARX modeling. In particular, NARX networks can readily incorporate nonlinear elements
via a host of different activation functions.

RNNs are able to learn temporal sequences by retaining a ’memory’ of system dynamics.
However, practice reveals that RNNs are difficult to train, particularly in learning dependencies
over long sequences of data [17]. The difficulties in training RNNs can be understood by looking
carefully at their associated learning algorithms. To optimize the cost function, the algorithm of
back propagation through time (BPTT) is used. In BPTT, the RNN is first ‘unrolled’ across a time
sequence before the regular backpropagation algorithm can be used for optimization purposes.
Hence, BPTT is simply a specific application of backpropagation to the learning of RNNs. Since
the unrolled RNN often becomes very deep, the training of RNNs is especially complicated
by the problem of exploding or vanishing gradients. For this reason, RNNs struggle to store
information over extended time intervals [18].

LSTM networks have been proposed as an alternative to RNNs. LSTM networks are
a class of RNNs whose architecture incorporates long-term memory over extended time
intervals via the inclusion of a cell state. The cell state is updated at each time step via
forget and input gates, while the hidden state (the short-term memory state of RNNs) is
controlled by an output gate. LSTM networks effectively mitigate the vanishing gradient
problem by maintaining constant error backpropagation via the cell state [18].
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In light of the above, LSTM networks have become a popular class of RNNs for a
variety of applications, such as speech recognition, translation, and language modeling.
However, for the purposes of dynamic systems modeling in the framework of model-based
control, the value of LSTMs remains to be established. The main advantage of LSTM
networks is the ability to learn long-term dependencies in sequential data. However, for
dynamic models, the output at any given time step is largely a function of recent input
and output data; the contribution of historical data reaching far back in time will attenuate
over lengthy time intervals. Moreover, while learning such long-term dependencies holds
the promise of more nuanced modeling, the drawback remains that over-fitting is likely
to remain a problem. This is one of the reasons why state-space models have become a
mainstay in model-based control, as they provide simpler but stable models which are
robust to over-fitting. Finally, it is noteworthy that Ref. [19] found that NARX networks
outperformed long short-term memory (LSTM) networks and convolutional neural net-
works in predicting groundwater level forecasts. Based on these considerations, NARX
networks were selected for the architectures of the ANNs in this work.

The use of ANNs in a framework of MPC has been explored in some contexts. For
example, ANN-based MPC of constrained non-linear systems [20] was proposed, where
the ANN was trained by minimizing a MPC cost function. An ANN-MPC formulation
was also augmented with a second ANN that would adaptively update the identified
model online [21]. Another approach was to design an ideal MPC, and then train LSTMs
on the generated control sequences to replace the MPC framework altogether, thereby
circumventing computationally expensive optimization solutions [22]. LSTMs have also
been implemented for the extraction of phase-specific features in batch processes in order to
decrease the overall dimensionality of the prediction scheme [23]. Moreover, LSTMS have
been applied to develop reinforcement learning controllers for enhancing the performance
of heating ventilation and air conditioning systems [24].

Another approach is to include first-principles knowledge of the process via weight
constraints on the training of RNNs or through the pruning of neuronal connections [25].
It was demonstrated that such physics-based modifications to the RNNs resulted in an
improved control performance. Similarly Ref. [26] incorporated a priori physical knowledge
into RNNs to improve the RNN-based MPC performance of large-scale and complex
chemical processes. The application of RNNs toward MPC despite the problem of collinear
or insufficiently rich input data [27] was also recently addressed. Their proposed solution
was to first use PCA to eliminate collinearity in the input space before identifying an RNN
based on the uncorrelated scores.

Among recent developments in the field, Ref. [28] compared first-principles, state
space, and ANN models in an economic MPC framework. The authors found that the
ANNs often returned non-smooth prediction trajectories that complicated the solution
of the optimization problem. In another study, Ref. [29] was able to attain optimal or
near-optimal control of irrigation schedules by implementing an LSTM network in a
mixed-integer MPC scheme. Their contributions warrant further exploration of ANNs
for the modeling and control of processes with continuous inputs. Finally, Ref. [30] used
LSTM networks to develop reduced-order state estimators for mechanistic models of high
computational complexity.

Lastly, it must be noted that prior studies in the field have sought to examine the value
of ANNs for batch process modeling and control. For example, Refs. [31–37] implemented
ANNS for process modeling and control. However, past research has either failed to bench-
mark ANNs or compared the use of ANNs to classical proportional–integral–derivative
control or first-principles mechanistic model-based control. As such, the comparison of
ANNs to other data-driven modeling techniques, such as subspace-based state-space mod-
els, remains sparse in the literature, despite subspace identification-based models having
been shown to be particularly effective in batch control [14]. Therefore, the present study
seeks to address this gap by providing a comparison between subspace models and ANNs
in the context of model-based predictive control of batch processes.
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3. Model Identification

The first step in the proposed approach was to identify both (LTI) state-space models
and NARX networks for the PMMA polymerization process. To facilitate a comprehensive
comparison between the state-space and NARX network models, data sets were built using
different input profiles. In particular, three distinct types of input profiles were used to
generate the data sets from which the models were identified. The three types of input
profiles were formed by implementing three different kinds of input profiles on the PMMA
polymerization process. Specifically, the input profiles were as follows:

1. A PI controller was used to track set-point trajectories.
2. A pseudo-random binary sequence (PRBS) signal was superimposed onto the input

moves generated by a PI controller.
3. A PRBS signal was superimposed onto a nominal input trajectory.

A major aim of this study was to detect and compare over-fitting issues between
subspace and NARX network models. To this end, two different sets of historical data were
used to identify all models: data both with and without measurement noise.
To generate noisy data, Gaussian noise was superimposed onto all output data. Specifically,
measurement noise was generated from standard normal distributions modified by factors
of 0.10 for temperature, 0.01 for log(viscosity), and 0.10 for density. Hence, each model
was identified and evaluated for performance both in the presence and absence of noise.
In this way, state-space and NARX network models were compared in their robustness to
over-fitting issues resulting from noisy data.

The identification of ANNs is complicated by inherent randomness in the training
algorithms. Randomness is introduced in the training of ANNs via random parameter
initialization and sampling division, among other sources [38]. Such randomness in the
training process often leads to a lack of replicability in model identification. To ensure repli-
cability and consistency, the seed was set to a specific and definite value, thereby permitting
consistent comparisons between state-space models and NARX networks. However, it is
noteworthy that neural networks will often perform differently depending on the seed.
A possible explanation for this observation can be the existence of multiple local minima
on the surfaces of the cost function. For this reason, it has been suggested to include the
seed as a hyperparameter in the identification of neural networks [39].

The models were fitted against training data, and goodness-of-fit evaluations were
calculated as per the normalized root mean squared error (NRMSE) measure, given by

NRMSE(i) =
||yre f (:, i)− y(:, i)||2

||yre f (:, i)−mean(yre f (:, i))||2 (10)

where y is the predicted output, yre f is the measured output, and i indexes the outputs.
A large negative value in the NRMSE evaluation indicates a poor fit, zero indicates a perfect
fit, and unity indicates that the model is no better than a straight line in explaining the
variance of the data.

Three sets of historical data were generated for model identification. Each data set
comprised thirty batches, ten batches for each of the three types of input profiles listed
above. The first of these data sets was used as training data to identify the initial state-space
models and NARX networks; the associated NRMSE calculations yielded the fit of the
models. The identified models were then evaluated for predictive power against a second
data set, with the NRMSE calculations being taken as an internal validation of the models.
The models were then tweaked for improved performance by trial-and-error optimization
of the NRMSE evaluations with respect to model parameters, for cases both with and
without measurement noise.

However, the goodness of fit of a model does not preclude the possibility of over-fitting.
Hence, an approach as described would be naive and insufficient for accurately assessing
the predictive power of models. Consequently, it is essential to validate the models against
novel data. For this reason, an additional measure of the models was calculated. In this last
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step, the tweaked models were validated against a third set of data. Finally, these resulting
NRMSE evaluations were taken as the validation and true measures of model performance.

The procedure described above was followed in the identification of state-space
models. The parameter for the number of states (n = 10) was tuned by a brute-force search
that yielded the best fit, or the best NRMSE evaluation, in comparing model predictions to
training data. The lag i was set to twice the number of states. The identified state-space
models were tested against the second set of data for the purpose of internal validation.
The associated NRMSE calculations were used to tweak model parameters for improved
performance; however, this step was found to be unnecessary for state-space models.
Finally, the state-space models were validated against the last set of data; the resulting
NRMSE calculations were considered the true measures of the models’ predictive power.

In the validation of state-space models, Kalman filters were used for state estimation.
The equations for the Kalman filter are given in Equation (11), where Pk|k−1 is the estimated
(a priori) covariance, Pk|k is the estimated (a posteriori) covariance, and Kk is the Kalman
gain; Q and R, calculated as per Equation (12), are the covariance matrices for both the
process and measurement noise, respectively. The two covariance matrices are taken to be
time independent.

Pk|k−1 = APk−1|k−1 AT + Q

Kk|k =
Pk|k−1CT

CPk|k−1CT + R

Pk|k = (I − Kk C)Pk|k−1

x̂k|k−1 = Ax̂k−1|k−1 + Buk

x̂k|k = x̂k|k−1 + Kk[yk − (Cx̂k|k−1 + Duk)]

ŷk|k = Cx̂k|k + Duk

(11)

Q = cov(Xk+1 − [A B][Xk Uk]
T)

R = cov(Yk − [C D][Xk Uk]
T)

(12)

The initial state estimate was set as the zero vector, and the initial Kalman gain was set
as the zero matrix. To ensure convergence, the Kalman filter was allowed to run iteratively
until the absolute values of the observation error for each output fell below a threshold,
as given in Equation (13). These threshold values were tuned via trial and error until
acceptable convergence was achieved. The first ten data samples were discarded in all
NRMSE calculations to allow for the observer to converge.

|Yk − Ŷk| <
[
0.3 0.1 0.5

]T (13)

NARX networks were identified following a similar procedure as for state-space mod-
els. Firstly, the NARX networks were trained on the first set of data. In the training of
all NARX networks, 70% of the input/output data were reserved for training, 15% for
validation, and 15% for testing. For all NARX networks, outputs and errors were nor-
malized within the ranges of (−0.5, 0.5) and (−1, 1) respectively. The initial, rudimentary
architecture from which neural networks were developed is shown in Figure 1. The neural
transfer functions, number of hidden layers, and size of the hidden layers were determined
by trial and error until the best NRMSE evaluation was found.

Then, the trained networks were internally validated against a second set of in-
put/output data; the model parameters and architectures were tweaked by a trial and
error approach. Lastly, the neural networks were validated against the third and final
set of data to obtain NRMSE calculations representing the true model performance of the
networks. Figure 2 displays the final architecture of the neural networks identified, both in
the absence and presence of measurement noise.
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Figure 1. Initial structure from which the architecture of the NARXs was developed.

Notably, the first layer of the NARX network incorporates an initial nonlinear element
to capture the nonlinear dynamics of the PMMA polymerization process. As discussed
earlier, one of the main advantages of ANNs over state-space models is in their ability to
handle nonlinearities directly. By including nonlinearity into the model, ANNs allow for
the enhanced assimilation of process knowledge and thereby strive to improve predictive
and control performance.

Figure 2. Structure of NARX networks identified both in the absence and presence of measurement noise.

Note that while the neural networks do not require an explicitly designed observer as
do state-space models, an initial fragment of the input/output data is required to initialize
the NARX networks, as is the case for ARX models in general. This initial fragment of
input/output data needed by NARX networks can be thought of as representing the role
of a state-space observer, with the length of data reflecting the time it would take for the
state-space observer to converge to an accurate state estimate.

Table 2 tabulates the NRMSE evaluations associated with the validation of both state-
space models and NARX networks. Accordingly, Figures 3 and 4 display an example of
the validation of state-space models and NARX networks, identified both in the absence
and presence of measurement noise, respectively. The state-space models outperformed
NARX networks in predictive power, as observed by the lower NRMSE evaluations for
state-space models in Table 2. The data also reveal that both state-space models and NARX
networks were resilient to over-fitting measurement noise since the NRMSE evaluations
did not increase sharply upon incorporation of measurement noise.

Table 2. Mean NRMSE evaluations for the validation of the identified models.

Temperature
[K] log(Viscosity) Density

[kg/m3]

State Space (without measurement noise) 0.19 0.08 0.08

State Space (with measurement noise) 0.23 0.08 0.10

NARX network (without measurement noise) 0.27 0.21 0.23

NARX network (with measurement noise) 0.29 0.22 0.23
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Figure 3. Validation of state-space models and NARX networks in the absence of measurement noise.
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Figure 4. Validation of state-space models and NARX networks subject to measurement noise.



Processes 2023, 11, 686 12 of 22

To further assess model performance, the identified models were tested against a
fourth set of historical plant data. For the purposes of gauging possible over-fitting,
this new set of data was generated to be distinct from the three types of data sets used
previously in model identification. In particular, the data set was formed via the generation
of PRBS input profiles. Figure 5 contrasts between one of the input profiles used in model
identification and one of the input profiles from this fourth data set.
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Figure 5. Comparison of input profiles between training (top) and newly generated (bottom) input
profiles.

Table 3 tabulates the mean NRMSE evaluations associated with the plant data and
model predictions. Concurrently, Figures 6 and 7 present examples of prediction perfor-
mance for the identified models. Here, a large performance gap is observed between the
predictive power of state-space models and NARX networks, as observed by the increased
difference between NRMSE evaluations between the modeling approaches. NARX net-
works are shown to be poor in predicting new and distinct data profiles. While the neural
networks did not significantly over-fit measurement noise, as was established earlier, they
did over-fit the training data. This is clearly evidenced by the worse NRMSE evaluations
for NARX networks modeling input/output data that are characteristically distinct from
the original training data.

Table 3. Mean NRMSE evaluations for the validation of the identified models against distinctly
generated input trajectories.

Temperature [K] log(Viscosity) Density [kg/m3]

State Space (without measurement noise) 0.20 0.13 0.09

State Space (with measurement noise) 0.20 0.14 0.12

NARX network (without measurement noise) 0.52 0.30 0.33

NARX network (with measurement noise) 0.52 0.30 0.33
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Figure 6. Validation of state-space models and NARX networks in the absence of measurement noise
and using distinctly generated input profiles.
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Figure 7. Validation of state-space models and NARX networks subject to measurement noise and
using distinctly generated input profiles.
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4. Closed-Loop Results

Having identified both state-space models and NARX networks, the models were then
implemented into MPC for forward prediction of the evolution of the PMMA polymeriza-
tion process. The MPC scheme was realized by minimizing the cost function

J =
Hp

∑
i=1

dy(i)×Qy × dy(i)T + du(i)× Rdu × du(i)T

dy(i) = y(i)− yre f (i)

du(i) = u(i)− u(i− 1)

(14)

where Rdu and Qy are positive definite weighting matrices penalizing input moves and
deviation from the reference output trajectory, respectively. MPC was implemented in
MATLAB using the fmincon function; iteratively, at each time step, the fmincon solver was
called to solve the optimization problem for the optimal control moves.

In the case of state-space models, the MPC parameters were tuned such that Qy was
set to the identity matrix, Rdu was set to the zero matrix, and Hp = Hc = 1 was set as
both the prediction and control horizons. Additionally, a Kalman filter was repeated as
similar to Section 3, except that the initial state vector was now estimated using MATLAB’s
findstates function from training data.

As with ARX models, it is necessary to initialize the internal states of the (closed-loop)
NARX networks at each time step to allow for forward prediction. To achieve this, recent
plant data were used to iteratively update the internal states of the NARX networks; this
can be thought of as being analogous to how state estimation is implemented in the use of
state-space models. In particular, the last 10 time steps of input/output data were used to
initialize the neural network at each iteration.

In the case of neural networks, the MPC parameters were picked as follows:

Qy =
( 100 0 0

0 1 0
0 0 1

)
, Rdu = 50, Hp = 2 was set as the prediction horizon, and Hc = 1 the

control horizon. For the first 10 time steps, the plant was allowed to operate under open-
loop conditions. Then, closed-loop control was implemented using the NARX networks as
predictors for the MPC. At each iteration, the last 10 time steps were used to estimate the
current internal state of the neural network.

Table 4 compares the mean errors over all three process outputs in applying MPC using
both state-space models and NARX networks. Both types of models were implemented in
MPC, and several tests were run for 10 different reference trajectories, which were in turn
determined from each of the three types of input profiles as from Section 3.

Errors between the control and reference trajectories were evaluated via NRMSE
calculations; the means of those NRMSE calculations over all 30 implementations are given
in Table 4. State-space models outperformed NARX networks in control of temperature,
the output exhibiting the most nonlinear behavior; both models provided almost identical
control over the other outputs. The control performance of NARX networks deteriorated
more due to noisy conditions than that of state-space models. Figures 8 and 9 show
examples of the implementation of state-space and NARX network models in MPC.

Table 4. Mean NRMSE evaluations between the control and reference trajectories.

Temperature [K] log(Viscosity) Density [kg/m3]

State Space (without
measurement noise) 0.49 0.61 0.56

State Space (with
measurement noise) 0.56 0.61 0.56

NARX network (without
measurement noise) 0.60 0.60 0.58

NARX network (with
measurement noise) 1.07 0.60 0.58
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Figure 8. Implementation of state-space models and NARX networks into MPC in the absence of
measurement noise.
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Figure 9. Implementation of state-space models and NARX networks into MPC subject to measure-
ment noise.



Processes 2023, 11, 686 18 of 22

To further assess model performance, the identified models were used to track novel
reference trajectories. For the purposes of gauging over-fitting, this new set of data was
generated to be distinct from the data sets used previously in model identification and
validation. As discussed in Section 3, the data set was formed via the generation of PRBS
input profiles. Refer back to Figure 5 to see an example comparison between one of the
input profiles used in model identification and one of the input profiles from this final
data set.

Table 5 tabulates the mean NRMSE evaluations associated with the plant data and
model predictions. State-space models and NARX networks provided similar control
performance for the viscosity and density outputs. Additionally, neither model was heav-
ily impacted by measurement noise. However, there was a significant gap between the
two modeling approaches in the control of temperature. Therefore, it is concluded that
state-space models outperformed NARX networks in the control of novel reference trajecto-
ries. The data indicate that NARX networks were less versatile than state-space models
in generalizing beyond the range of training data. Figures 10 and 11 presents a visual
comparison between the prediction performance of both modeling approaches with regards
to novel data.

Table 5. Mean NRMSE evaluations between the control and distinctly generated reference trajectories.

Temperature [K] log(Viscosity) Density [kg/m3]

State Space (without
measurement noise) 0.05 0.01 0.00

State Space (with
measurement noise) 0.18 0.02 0.01

NARX network (without
measurement noise) 0.58 0.04 0.02

NARX network (with
measurement noise) 0.67 0.04 0.03

In comparing state-space models and NARX networks, it is worthwhile to not only compare
control performance, but also computation times. Table 6 tabulates the mean computation time
it took for the MPC simulations to complete for each type of model. The total simulation
time was averaged over the 30 reference trajectories that were tracked. Since the aim was to
evaluate computational complexity, and not performance, Hp = Hc = 1 was set as both the
prediction and control horizons for the NARX networks in order to make fair comparisons
between computation times. Judging by computation time, NARX networks exceeded the state
space models in computational complexity by an order of magnitude.

Table 6. Mean computation times, in seconds, for MPC simulations.

Sans Noise With Noise

State-space 20 21

NARX Network 150 152
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Figure 10. Implementation of state-space models and NARX networks into MPC in the absence of
measurement noise and using newly generated reference profiles.
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Figure 11. Implementation of state-space models and NARX networks into MPC subject to measure-
ment noise and using newly generated reference profiles.
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5. Conclusions

The research presented aimed to explore if, in their present state, neural network-based
models are a useful tool for process control. In particular, the focus of this study was to
compare the efficacy of ANNs with state-space models within the framework of MPC.
To this end, state-space and NARX network models were developed for a batch PMMA
polymerization process. In this study, subspace-based state-space models outperformed
NARX networks in predictive power and control performance. In particular, there was a
sizable gap in the prediction capability and control performance with regards to adapting
to novel data outside the scope of training data. The NARX networks were found to be
vulnerable to over-fitting training data.

The results of this work reveal that NARX networks are worse predictors than state-
space models in terms of model-based control. As such, more development is required
before neural networks can become viable toward modeling and process control.
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