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Abstract: This paper proposes a methodology based on a genetic algorithms (GA) to calibrate
the parameters of a chlorine decay model in a water distribution system (WDS). The proposed
methodology first contemplates that a GA is implemented using historical measurements of chlorine
concentration at some sensed nodes to calibrate the unknown values corresponding to both the
bulk and wall reaction coefficients. Once both parameters are estimated, the optimal-fit chlorine
decay model is used to predict the decay of chlorine concentration in the water at each node for any
concentration input at the pumping station. Then, a second GA-based algorithm is implemented to
obtain the minimal chlorine concentration needed at the input to ensure that every node in the system
meets the official normativity requirements for free chlorine in a WDS. The proposed methodology
performed satisfactorily for a WDS simulated in EPANET with a GA implemented in MATLAB,
both for the estimation of the reaction coefficients and the optimization of the required chlorine
concentration at the input. Simulation results illustrate the performance of the proposed algorithm.

Keywords: model calibration; genetic algorithm; optimization; hydraulic network; water quality;
chlorine

1. Introduction

Water management companies focus on meeting water demand and ensuring chlorine
concentration requirements. In recent decades, water pollution has unfortunately increased
worldwide and as a result, continuous monitoring to maintain the integrity of drinking
water has gained increasing importance. Water quality is a broad term that is related to
many aspects of both the physics and the chemistry of drinking water. According to [1], the
quality of the water is closely related to parameters such as turbidity, temperature, color,
taste, solids in suspension, pH, and the concentration of many elements (such as nitrogen,
fluoride and other heavy metals) and substances such as chlorine residual (Cl2). From
all of the abovementioned parameters, chlorine residual is typically the most addressed.
Even if chlorine does not exist naturally in water, it is added to it for disinfection purposes,
specially in the case of drinking and waste water. In [2] it is stated that the residual chlorine
concentration maintained in the distribution system ensures a good sanitary quality of the
water being distributed, which makes it one of the most important parameters to monitor
to make certain the quality of the water in a distribution system.

As stated in [3], both laboratory and online measurements are necessary to account
for chlorine concentration monitoring. Typically, bacteriological measurements (e.g., the
number of Escherichia coli bacteria) are among the typical laboratory measurements in
a water distribution system (WDS). However, laboratory testing cannot be performed
online for obvious reasons and this delays the time in which the quality of the water
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being distributed is known. As a result, water agencies rely on online measurements
to estimate the water quality in the WDS. In this way, adequate levels of chlorine allow
immediate elimination of harmful bacteria and viruses and provide a protective residual
throughout the drinking water distribution network [4]. However, because drinking water
systems are complex, it is not easy to ensure that residuals are maintained throughout
the distribution network under permissible levels. On the one hand, excessive chlorine
dosages may consequently lead to formation of chlorine by-products, some of which are
carcinogenic and may also cause birth-related problems such as low birth weight and
genetic malformations [5]. On the other hand, an insufficient chlorine residual could
cause the multiplication of pathogenic bacteria, which in turn could trigger public health
problems with severe consequences.

Since chlorine reacts with organic matter found in water, its concentration decreases
over time. Thus residual chlorine decay models can predict this decrease, including chlorine
levels to comply with the normative standard that establishes the lower and upper bounds
in which free chlorine can be found. The World Health Organization (WHO) indicates that
to adequately treat drinking water, a minimal chlorine concentration of 0.2 mg/L should
be maintained right to the point of consumer delivery, and that to avoid harmful effects to
public health, it should not be found in concentrations higher than 5 mg/L [6]. In particular,
this paper will address the indications given by the the Mexican norm NOM-127-SSA1-
1994 [7], which indicates that free chlorine in a WDS must not be found in concentrations
lower than 0.2 mg/L or higher than 1.5 mg/L.

In the literature, several approaches that analytically describe and predict the decay
of free chlorine concentration in drinking WDS have been reported. In [8] a sequential
steady-state approach compared to field-measured data was reported. In the same way,
a mass-transfer-based model approach was presented in [9]. The authors highlighted
that such an approach takes into consideration first-order reactions of chlorine that take
place in both the bulk flow and in the pipe wall, demonstrating how higher decay rates
of chlorine are associated with smaller pipe diameters and higher flow velocities. The
effect of fluid velocity and pipe inner radius in chlorine propagation was studied in [10].
Here an EPANET model of the WDS was used, and it was shown how the same variables
that affect the propagation of residual chlorine levels can potentially affect disinfection
performance. Following this direction, in [11] a computational scheme was proposed to
accurately and efficiently treat kinetic processes in chlorine concentration models. It was
observed that both a higher accuracy and a better computational efficiency were achieved
when comparing it with similar schemes. The effect of water temperature in chlorine decay
was also addressed in [12]. It was evidenced how chlorine concentration experiences a
faster decay rate in fresh samples than in those re-chlorinated with sodium hipochlorite.
Moreover, a combined first- and second-order model was presented in [12]. This approach
showed a more accurate model behavior compared with a conventional first-order model.
It was pointed out that chlorine decay is mainly influenced by its initial concentration,
which explains why chlorine decays faster during the initial stages of the propagation
process. An inverse-model-based technique to estimate the input chlorine concentration
needed to meet a specified value at a desired node in the WDS was explored in [13]. Results
evidenced an excellent agreement between the inverse method and the direct simulation
technique. Interval state observers were also used in [3] to model the decay of chlorine
concentration, showing sufficient numerical efficiency for on-line implementations of the
proposed method.

Computational models have also been used to simulate this chemical phenomena.
In [14], a computer model was used to predict the spatial and temporal distribution of a
residual constituent with first-order reaction rate in a pipe network under variable unsteady
flow conditions. Even if a good agreement with results from a standard extended-period
simulation during the initial stages was obtained, the chlorine concentration at different
nodes in the network presented deviation when the flow regime became more unsteady.
The main issue noted about computational models of chlorine concentration and decay
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was that simulation environments commonly require to know the bulk reaction coefficient
and wall reaction coefficient with accuracy. In the last decades, the well-known EPANET
software has been used to simulate, besides hydraulic behavior, the decay and diffusion of
substances such as chlorine in a WDS. In particular, the Multi-Species eXtension (EPANET-
MSX) allows for the consideration of multiple interacting species in the bulk flow and on
the pipe walls. This capability has been incorporated into both a stand-alone executable
program and a toolkit library of functions that programmers can use to build customized
applications. Several contributions have been reported by using this approach, as in [15],
where the performance of the proposed model as well as an nth-order decay kinetics
was tested for the full-scale modeling of chlorine concentration in a WDS. It was shown
how a similar level of accuracy can be achieved with the tested models, provided that
there is a good calibration of the decay reaction coefficients. Following this direction,
a new model of chlorine-wall reaction for simulation of the chlorine concentration in
a WDS was proposed in [16], which provides the accurate chlorine modeling required
to improve disinfection strategies in a WDS when implemented in EPANET-MSX (or
similar simulation software). Alternative simulation software environments have also
been used to model the decay of chlorine concentration, such as the work presented
in [17], where the authors presented an alternative methodology based on AQUASIM
to model chlorine concentration in a distribution network; however, the authors stated
that further evaluation of the methodology on a larger scale WDS is needed. In [18], a
methodology to efficiently calibrate chlorine decay models was proposed and applied to a
part of the Barcelona drinking water distribution network. Measurements and simulated
chlorine concentrations at nodes with a sensor were compared to calibrate the chlorine
bulk reaction coefficient. From the artificial-intelligence (AI)-based approach, a work
was presented in [19] where a genetic algorithm (GA) was used in a real WDS together
with particle swarm optimization (PSO) and a hybrid GA-PSO as three different AI-based
approaches to calibrate the wall reaction coefficient while minimizing the residuals for
chlorine concentrations. The obtained results clearly demonstrated that the hybrid GA-PSO
outperformed the other two algorithms when considering only one decision variable (the
wall reaction coefficient).

Based on the abovementioned research and since water quality monitoring has be-
come more and more important worldwide for its inherent impact on public health, the
development of more efficient water quality monitoring techniques remains in challenge
nowadays. For this reason the main contribution presented in this paper is an alternative
method based on a GA for the estimation of both the bulk and wall reaction coefficients in
a WDS by using a reduced number of chlorine meters. This approach allows the chlorine
concentration along the WDS to be estimated with accuracy, which in turn aids the water
management staff to adopt a better feed-chlorine strategy. To the best of our knowledge, no
previous investigations have focused on the estimation of both the bulk and wall reaction
coefficients simultaneously by means of a GA.

This paper is organized as follows: Sections 2 and 3 provide with the theoretical
background on the genetic algorithm and the reactions within a pipe involved in the decay
of chlorine concentration in water, respectively. Section 4 explains in depth the proposed
methodology for the GA-driven calibration of the bulk and wall reaction coefficients and the
estimation of the minimal required chlorine concentration at the input. Section 5 illustrates
the obtained simulation results, and finally Section 6 discusses conclusions and future
work proposals.

2. The Genetic Algorithm

This paper proposes the use of the genetic algorithm (GA) to calibrate the unknown
parameters of the chlorine-decay model in EPANET for the WDS under study. The steps
followed by the GA to perform the calibration of the desired parameters are:

1. Creation: An initial population is created and distributed as uniformly as possible
across a pre-defined search area.
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2. Selection: A selection mechanism is used to assign a probability for each individual
in the population that their genes will prevail to the next generation. This selection
mechanism is commonly a fitness/cost function computed for each individual, where
the fittest individuals are awarded a higher probability.

3. Cross-over: Once the fittest individuals are selected, the cross-over stage takes place
to create the following generation. For this purpose, the genes of two parent solutions
are recombined to create two new offspring solutions.

4. Mutation: The last evolutionary stage is the random mutation of some of the genes in
the newly-created population. This random mutation serves two purposes: (1) it stops
the population from becoming uniform and helps maintain some level of diversity
in the individuals; (2) it prevents the algorithm from failing to find locally-optimal
solutions instead of the desired global optimal.

This process takes place during a pre-set number of generations or while the mean
performance of the newly created population is significantly better than the previous
one. Once any termination criteria are met, the GA provides the best-performing solution.
The entire process is represented graphically in Figure 1, which is designed on the basis
of [20,21].

Begin

Creation of the 
initial population

Test fitness of each 
individual

Termination 
criteria met?

Genetic cross-over 
of the best 

individuals

Random mutation 
of some genes

No Yes

Best performing 
individual

End

Figure 1. The genetic algorithm process as a block diagram.

3. Reaction Zones within a Pipeline

The decay of a substance by reaction as it travels through a water distribution system
is an important topic of study. To model this decay, the rate at which this substance reacts
and the relation between this reaction and the substance concentration must be known.
According to [22], the reaction can occur in two different ways: (1) within the bulk flow; and
(2) with the material along the pipe wall. The two ways in which reaction of a substance can
occur are visualized in Figure 2, where free chlorine (HOCL) reacts with natural organic
matter (NOM) in the bulk flow to produce the disinfectant by-product (DBP), and is also
transported through the boundary layer of the pipe wall to oxidize the iron (Fe) released
from through-wall corrosion.

HOCl N.O.M DBP

𝐾𝑏
Bulk fluid

Boundary layerFe+2 Fe+3

𝐾𝑤

Figure 2. Reaction zones within a pipeline.

3.1. Bulk Reactions

Reaction occurring in the bulk flow is modeled with n-th order kinetics, where the
instantaneous rate of reaction R (mass/volume/time) is assumed to be concentration-
dependent, according to [22] as:

R = KbCn, (1)
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where Kb is known as the bulk reaction coefficient, C is the reactant concentration (mass/
volume) and n is the reaction order. The units of Kb are concentration raised to the (1− n)
power divided by time, and its value is positive for the case of growth reactions and
negative for decay reactions. Cases where a limiting concentration exists in the ultimate
growth or loss of the substance can also be considered, where Equation (1) is expressed as:

R = Kb(CL − C)C(n−1) : n > 0, Kb > 0, (2)

R = Kb(C− CL)C(n−1) : n > 0, Kb < 0, (3)

where CL is the limiting concentration of the substance. Some cases of well-known kinetic
models are provided in Table 1.

Table 1. Different kinetic models.

Model Parameters

First-order decay CL = 0, Kb < 0, n = 1
First-order saturation growth CL > 0, Kb > 0, n = 1

Zero-order kinetics CL = 0, Kb <> 0, n = 0
No reaction CL = 0, Kb = 0

The diffusion of chlorine in a WDS is an example of a first-order decay reaction,
and thus for first-order reactions (n = 1) Kb has units of 1/day. Even if an experimental
estimation of Kb can be performed, the reliability of the estimated value depends on the
careful measurement of the reactant concentration at each sampling time (which is prone
to human mistake) as well as taking into consideration the effects of temperature in the
decay of the substance. This is a strong argument to use a computer-based estimation of
this parameter.

3.2. Wall Reactions

The rate at which chlorine concentration decay reactions take place near the wall of the
pipe can be considered to be dependent on the concentration in the bulk flow by the expression:

R = (A/V)KwCn, (4)

where Kw is known as the wall reaction coefficient and A/V is the surface area per unit
volume within a pipe segment. This latter term converts the mass reacting per unit of wall
area to a per unit volume basis. Typically, Kw values range from 0 to 1.5 m/day. The value
of Kw should be adjusted to consider any mass-transfer limitation in moving reactants
and products between the bulk flow and the wall. The wall reaction coefficient depends
on the temperature and can also be affected by the age of the pipe, since the increase of
encrustation, tuberculation or corrosion produces a higher roughness coefficient, resulting
in a greater head-loss through the pipe. Some evidence has shown that the same processes
that impact the roughness coefficient in a pipe also tend to increase the reactivity of the
inner wall with some types of chemical species, in particular chlorine and other types
of disinfectants. The value of Kw can be modeled as a function of the coefficient used to
describe the roughness of the pipeline (this is, the chosen head-loss model) as shown in
Table 2.

Table 2. Wall reaction formulas related to head-loss.

Head-Loss Model Wall Reaction Coefficient

Hazen–Williams Kw = F/C
Darcy–Weisbach Kw = −F/ log10(ε/D)
Chezy–Manning Kw = Fn
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In the table, C is the Hazen–Williams C-factor, ε is the absolute roughness of the pipe,
D is the pipe diameter and n is the Manning roughness coefficient. The coefficient F should
be developed according to site-specific field measurements and it will have different values
and units depending on the head-loss equation used.

4. Proposed Methodology
4.1. Estimation of Kb and Kw

Considering the availability of sensors in practice is always a limitation, the idea is to
estimate the chlorine concentration in the whole WDS (all nodes) at any time regardless of
the reduced number of chlorine sensors. To do that, the proposed methodology considers a
few chlorine measurements at some nodes. It is also considered that those measurements
are obtained for a duration of at least two days, i.e., 48 h. The performance of the proposed
methodology is tested using synthetic data generated via a simulation. To do that, initial
conditions of the sourced chlorine at the pumping station and initial chlorine concentration
at the nodes are assumed to be known, whereas the bulk and wall reaction coefficients
are considered as unknown variables. Then, for every node, the chlorine concentration
value at each sampling time is obtained by performing a simulation process through the
well-known EPANET-MATLAB Toolkit [23].

This methodology relies on a WDS model with an input format (.inp) suitable for
the EPANET software, for which the hydraulic parameters roughness coefficient ε and
minor loss coefficient K are well-adjusted such that it is reliable in terms of hydraulic
behavior (see [22]). Let us now consider that n denotes a reduced number of chlorine
sensors installed along the WDS and their measurements are recorded and stored in a
matrix α ∈ Rm×n where m denotes the number of samples. Then, the GA-driven calibration
process begins as follows: a population of solution vectors P = [c1, c2, c3, . . . , cP ] is created
where P is selected as the population size and each solution vector c is structured as:

ci =
[

Kbi
Kwi

]
, (5)

where Kbi
is the i-th candidate bulk reaction coefficient and Kwi is the i-th candidate wall

reaction coefficient, such that:

Kbi
∈ (lb, ub); Kwi ∈ (lb, ub),

with lb and ub denoting the lower and upper bounds, respectively. Then, ∀ c ∈ P the
candidate set of Kbi

and Kwi values are assigned into the .inp EPANET file as the bulk and
wall reaction coefficients of each pipe, and thus a 24 h simulation is performed to compute
the chlorine concentration along the WDS. The software-driven simulation provides the
estimation of the chlorine concentration at each node in the network, where attention
should be directed to those nodes with a sensor. Next, let us denote that α̂ ∈ Rm×n

is a matrix containing the estimations of chlorine concentration at nodes for which the
corresponding chlorine measurements are also available such that an error matrix e ∈ Rm×n

can be computed as follows:
e = α− α̂, (6)

where column 1 of e contains the estimation error for the first measured node and column 2
contains the estimation error for the second measured node, and so on. For each node the
mean squared estimation error (mse) can be computed as:

msej = eᵀall,jeall,j/m, ∀j ∈ {1, 2, 3, . . . , n}. (7)

Finally, the global mean squared error (mseG) containing the overall estimation error
is computed as:

mseG =
1
n

n

∑
j=1

msej, (8)
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where mseG is set as the optimization goal for the GA, that is, a proposed c vector is found
that contains the optimal values for Kb and Kw that minimize the value of mseG. It is
not expected that a single generation will provide the optimal values and thus the best-
performing c vectors are selected for the cross-over and mutation stages, which are repeated
iteratively until a satisfying match is found. The methodology presented in this paper
is programmed with the aid of the OpenWater Analytics EPANET-MATLAB Toolkit [23],
which is an open-source software used for interfacing the EPANET tools in a MATLAB
programming environment. As a pseudocode, this process is summarized as follows:

Pseudocode 1: GA-driven calibration for Kb and Kw reaction coefficients

INPUT: Array α ∈ Rm×n:

α =


N1,1(k−m) N1,2(k−m) N1,3(k−m) N1,4(k−m) · · · N1,n(k−m)

...
...

...
... · · ·

...
Nm−1,1(k− 1) Nm−1,2(k− 1) Nm−1,3(k− 1) Nm−1,4(k− 1) · · · Nm−1,n(k− 1)

Nm,1(k) Nm,2(k) Nm,3(k) Nm,4(k) · · · Nm,n(k)

 (9)

where columns N1 N2, N3, . . ., Nn contain the chlorine concentration at nodes with a sensor and m denotes
the number of samples.

LOAD into memory the .inp file of the WDS.
SET the quality time-step in the .inp file for simulation as the sampling rate of the measurements.
CREATE the array of sensed nodes N = [N1, N2, N3, . . . , Nn].
DECLARE the GA parameters: population size P , maximum generations G, minimum tolerance emin,
lower lb and upper ub search area bounds.
CREATE the initial population P = [c1, c2, c3, . . . , cP ]; ci =

[
Kbi Kwi

]
; i = [1, 2, 3, . . . ,P ].

Cgen = 1
IF Cgen < G

FOR each ci ∈ P
SET Kbi and Kwi in the .inp file.
COMPUTE the water-quality time series with help of the EPANET-MATLAB Toolkit
BUILD the array α̂ ∈ Rm×n similarly as α.
FOR j = [1, 2, 3, . . . , n]

FOR k = [1, 2, 3, . . . , m]
ek,j = αk,j − α̂k,j

END FOR
END FOR
INITIALIZE mse∈ R1× n

FOR j = [1, 2, 3, . . . , n]
msej =

(
eᵀall,j eall,j

)
/m

END FOR
mseG = 1

n ∑n
j=1 msej

END FOR
CHOOSE the c values that provide the lowest mseG.
IF lowest mseG > emin

CREATE new population P = [c1, c2, c3, . . . , cP ], Cgen ← Cgen + 1 and CONTINUE.
ELSE

END ALGORITHM
END IF

ELSE
END ALGORITHM

END IF

OUTPUT: Values for Kb and Kw that minimize mseG.
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4.2. Analysis of the Minimal Chlorine Concentration in the WDS

Once a set of Kb and Kw values that minimize the overall error have been calibrated,
the minimal required input chlorine must be determined. For this, let us denote β ∈ Rm×N ,
where N denotes the total number of nodes in the WDS and β is a matrix containing the m
simulated values for the chlorine concentration at every node. From β, a vector γ can be
built such that γ = min(β). It is now safe to state that the minimal value in γ corresponds
to the overall minimal value for the experiment time. Let us denote this overall minimal
value as minγ. To meet the official normativity requirements for the WDS, ideally, this minγ

must be contained between the lower and upper bounds (0.2 to 1.5 mg/L) listed in the
official norm [7]. Please note that at this point it is unknown which chlorine concentration
is needed at the input to ensure that a chlorine concentration of at least of 0.2 mg/L is met
at each node in the WDS anytime. Since [7] also provides a maximum permitted value
of 1.5 mg/L, it is not possible to simply add chlorine at the input of the WDS until the
minimal value is met at the expense of exceeding the permitted upper bound. Under said
conditions, the problem now turns into finding the optimal chlorine concentration between
the stated lower and upper bounds at the input to ensure that the minimal normativity
value is met. This analysis will also contemplate the possibility that the WDS will require
a re-design if it is not possible to meet the normativity requirements under the permitted
source chlorine concentration input.

The proposed optimization process is explained as follows:

1. First, the calibrated Kb and Kw values are set into an .inp file as the actual bulk and
wall reaction coefficients of the pipeline.

2. Then, a GA is set to minimize the value sQ corresponding to the chlorine concentration
at the input as a restriction is also satisfied: that minγ > minQ, where minQ is the
overall minimal required chlorine concentration in the WDS.

3. By setting a proposed value sQ to the model and performing the simulation of the
chlorine decay, matrix β and vector γ are obtained as previously explained.

4. Then, the fitness of a given sQ value is defined as follows:

(a) If minγ < minQ then a very low fitness is assigned to sQ;
(b) If minγ ≥ minQ then the fitness of sQ is defined as the difference between the

two values.

5. The search process continues until a sQ ∈
[

0.2, 1.5
]

(mg/L) value is found that
minimizes the difference between minγ and minQ.

As a pseudocode, this process is described as follows:



Processes 2022, 11, 676 9 of 17

Pseudocode 2: GA-driven calibration for minimal required Q value

INPUT: minQ

LOAD into memory the .inp file with the previously calibrated Kb and Kw values.
DEFINE the population size P , the maximum generations G and the minimum tolerance emin.
DEFINE the lower (lb) and upper bound (ub) for the search area as stated by the normativity.
CREATE the initial population P =

[
sQ1 , sQ2 , sQ3 , . . . , sQP

]
; i = [1, 2, 3, . . . ,P ].

Cgen = 1
IF Cgen < G

FOR each sQi ∈ P
ASSIGN sQi to the model.
PERFORM the water-quality simulation with help of the EPANET-MATLAB Toolkit
CREATE matrix β ∈ Rm×N .
γ = min(β)
minγ = min(γ)
IF minγ < minQ

Error = 1000 (Very high value)
ELSE IF minγ ≥ minQ

Error = minγ −minQ
END IF

END FOR
CHOOSE the sQ values that provide the lowest Error.
IF lowest Error > emin.

CREATE new population P =
[
sQ1 , sQ2 , sQ3 , . . . , sQP

]
, Cgen ← Cgen + 1 and CONTINUE.

ELSE
END ALGORITHM

ELSE
END ALGORITHM

END IF

OUTPUT: Optimal value for sQ that ensures minγ ≥ minQ.

5. Simulation Results

To demonstrate the performance of the proposed methodology, data from a simulation
environment will be used. In Figure 3 the system under study is presented, whereas its
general topology is presented in Figure 4.

Tanks

Junctions

Pipes

Chlorine input to WDS
(Pumping station)

Tank

Figure 3. WDS under study.
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Figure 4. General topology of the WDS under study.

The system is made up of 1 pumping station (node N1) that is also the input node
for chlorine, 1 tank (node N36), 34 connection nodes, and 40 pipe segments. It is assumed
that only nodes N5, N10, N15, N20, and N25 have chlorine concentration meters installed;
thus the EPANET-simulated chlorine concentration values at said nodes will be used as
the reference value for calibration, while in experimental applications of this methodology
these values can be replaced by physical measurements without major changes. At the
pumping station, the input chlorine concentration is 0.8 mg/L, and also the initial chlorine
concentration condition at the entire WDS is 0.5 mg/L. Note that the values corresponding
to Kb and Kw are still unknown. Figure 5 shows the evolution of the chlorine concentration
value as simulated by EPANET for nodes N5, N10, N15, N20, and N25 for a period of 198,000
s = 55 h.
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Figure 5. Historical evolution of chlorine concentration.
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The chlorine concentrations illustrated in Figure 5 will be considered as the calibration
objective and thus the GA-based methodology will try to adjust the values of the Kb and Kw
coefficients in the .inp file of the system that when set as the actual bulk and wall reaction
coefficients provide a low-error fit between the EPANET-simulated values (obtained with
the real Kb and Kw coefficients) and the GA-fitted-model estimated chlorine concentrations.
After the calibration process was finished, the obtained results for Kb and Kw are:

Kb = −0.3008 [1/day] Kw = −0.9984 [ft/day] = −0.3043 [m/day]. (10)

Figures 6–10 show the comparison between the EPANET-simulated and the GA-fitted-
model chlorine concentration values in nodes 5, 10, 15, 20, and 25 respectively.
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Figure 6. Calibrated model fitting for node 5 (rmse = 2.0835×10−4 mg/L).
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Figure 7. Calibrated model fitting for node 10 (rmse = 7.2047×10−5 mg/L).
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Figure 8. Calibrated model fitting for node 15 (rmse = 2.7089 ×10−4 mg/L).
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Figure 9. Calibrated model fitting for node 20 (rmse = 1.0999 ×10−4 mg/L).
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Figure 10. Calibrated model fitting for node 25 (rmse = 4.0421 ×10−4 mg/L).

Given that for each tested node the calibrated model provides an estimation that closely
matches the real behavior, it is safe to ensure that the calibrated Kb and Kw values will
estimate with accuracy the chlorine concentration at any other node. Even if Figures 6–10
represent the evolution of chlorine concentration for a total time of 55 h only for the tested
nodes, with the new well-calibrated chlorine-decay model it is possible to determine the
chlorine concentration evolution at any other node in the system. Moreover, knowing
the minimal concentration in the entire WDS for the duration of the simulation is now
possible. It should be noted that the evolution shown in Figures 6–10 considers 0.8 mg/L
as the source chlorine concentration at the input node (sQ) (N1 in Figure 3), as well as an
initial chlorine concentration (iQ) at each node of 0.5 mg/L. Even if both initial and source
chlorine concentration values are contained within the range indicated by the official norm,
it is not safe to say that normativity values will be met at each node in the WDS. After
performing a chlorine-decay simulation using the calibrated model, Figure 11 provides the
minimal overall chlorine concentration at each node.
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Figure 11. Minimal chlorine concentration at each node when sQ = 0.8 mg/L and iQ = is 0.5 mg/L.

From Figure 11 it is clear that only nodes 1 to 6 comply with the normativity re-
quirements with every other node dropping to a minimal chlorine concentration below
0.1 mg/L. This indicates that a higher chlorine concentration (still within the official
normativity requirements) needs to be sourced to the WDS to meet the requirements. It
will be assumed that chlorine is sourced to the WDS as a constant concentration at the
input node (N1). It is also theorized that to minimize the amount of sourced chlorine, the
initial concentration needs to be the highest possible value. Calibration of sQ is performed
through the GA-based methodology proposed in Section 4.2, while considering a iQ value
of 1.5 mg/L (upper permitted bound according to the official norm). After applying the
proposed methodology, the obtained minimal sQ value that ensures that at all times with at
least 0.2 mg/L of chlorine concentration are met for any point in the system is:

sQ = 1.271229 mg/L (11)

Please note that it was assumed that the initial concentration at each node in the
system is already at its highest possible value of 1.5 mg/L. This condition is assumed only
because in a simulated environment it is possible to freely manipulate this value, while
for experimental implementations only the initial chlorine concentration at nodes with
chlorine meters can be known, and thus their initial concentration values shall be included
as calibration variables in the GA-based algorithm. Figure 12 shows the minimal chlorine
concentration at each node when sQ = 1.271229 mg/L and iQ = 1.5 mg/L.
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Figure 12. Minimal chlorine concentration at each node when sQ = 1.271229 mg/L and iQ = is 1.5 mg/L.

In Figure 13 the evolution of the chlorine concentration at every measured node is
illustrated. It is shown how during the simulated 55 h chlorine concentration remains
always within the established limits of 0.2 and 1.5 mg/L.
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Figure 13. Evolution of measured chlorine concentration with sQ = 1.271229 mg/L and iQ = is 1.5 mg/L.

Discussion of the Results

Application of the proposed methodology allowed for calibration of the required
chlorine concentration at the input node to ensure that the minimal normativity-required
value was met for every node in the network. The first calibration process to estimate the
values of Kb and Kw coefficients was performed under an input chlorine concentration of
sQ = 0.8 mg/L and an initial chlorine concentration of iQ = 0.5 mg/L. Actually, once the
Kb and Kw parameters are calibrated, it is possible to perform a quality simulation at the
uppermost condition for the initial chlorine concentration (iQ = 1.5 mg/L), which yields
that the minimal chlorine concentration threshold is not met, since many nodes are still
under the required 0.2 mg/L concentration, as shown in Figure 14.
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Figure 14. Minimal chlorine concentration at each node when sQ = 0.8 mg/L and iQ = is 1.5 mg/L.

The importance of the calibrated model now relies on the fact that simulation of any
what-if scenario is possible, and furthermore the re-design of input conditions ensures
the required chlorine concentration no matter the time of day or the analyzed node. As
shown previously, the calibrated chlorine-decay model is able to compute chlorine concen-
trations for every node at every time interval, which makes it a powerful tool in analyzing
already existing networks as well as during the design and implementation stages in the
creation of a new WDS. Following this line, it could be possible that even if the chlorine
decay has already been finely adjusted, an sQ value cannot be found to ensure that a
chlorine concentration within the official norm is met for every node (e.g., the required
sQ > 1.5 mg/L for minQ > 0.2 mg/L). Models not converging to a satisfactory solution
may require the adjustment of some physical parameters of the WDS as well as analyzing
the possibility of sourcing chlorine at more than one node to ensure that the normative
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standard is met in the entire system. For example, in Figure 12 it can be inferred that for
the initial chlorine concentration value for each node lower than 1.5 mg/L, the required sQ
would be slightly higher than the calibrated 1.271 mg/L, and thus a point will be reached
where even if sQ = 1.5 mg/L (its theoretical highest possible), it would be impossible to
meet the minimal required chlorine concentration value as stated by the normativity. In
other words, the re-design of the network should be performed to allow chlorine input
in many different nodes since only one input node did not allow to meet the normativity
requirements. For the particular WDS tested in this study, it was not possible to achieve a
0.2 < sQ < 1.5 [mg/L] when iQ = 0.8 mg/L and thus it was decided to run the simulation
at iQ = 1.5 mg/L; however in experimental implementations of this work this initial
condition may not be able to be achieved and further alternatives should be analyzed. It
should be noted that even if the results presented in this paper considered that the permit-
ted chlorine concentration values range according to the mexican NOM-127-SSA1-1994,
the algorithm can be adjusted to meet the requirements given by a different normativity
framework (e.g., the WHO recommendations).

It is important to note that the tested methodology proposes an alternative approach
to most of the state-of-the-art investigations, where the major part of the related work
addresses the issue of modeling of chlorine decay in a WDS while not exactly focusing on
the calibration of the bulk and wall reaction coefficients, which is the main objective of the
proposed methodology. Following this line, in [9], aside from the wall reaction coefficient,
the initial conditions of the simulation were also considered as calibration variables (the
bulk reaction coefficient was determined independently in a laboratory), while in [19] a
hybrid PSO-GA demonstrated a better performance than a pure GA in finding an optimal
match between observed and simulated chlorine concentration when the only calibration
variable considered was the wall reaction coefficient. Moreover, both [9,19] took into
consideration data from a real WDS. Even if not directly comparable, the authors stated that
the methodology proposed in this paper can demonstrate an improvement from previous
related studies since this work also contemplated calibration of the bulk reaction coefficient
(not addressed by previous research) as well as the estimation of the minimal required
source-chlorine concentration to meet normativity requirements. The performed study
can be extended in future implementations by considering as well the unknown initial
conditions as a calibration variable once this method is tested with non-synthetic data.

6. Conclusions

This work presented an efficient methodology on the basis of genetic algorithms for
both the calibration of the bulk coefficient and wall reaction coefficient in the chlorine-
decay model of a WDS. Moreover, this approach allowed to determine if the input chlorine
concentration dosage ensures the compliance of the normative along the whole WDS.
Simulation results illustrate a good performance in obtaining a calibrated chlorine-decay
model that is able to estimate the chlorine concentration at those nodes without sensors
considering the availability of a reduced number of chlorine sensors. The relevance of the
presented work relies on the fact that water agencies require precise knowledge on the
quality of water delivered to consumers from a healthcare perspective as well as to ensure
compliance with the applicable official normativity. On the other hand, this research work
expanded upon the results obtained in previous investigations by considering both the
bulk and wall reaction coefficients as decision variables during the optimization process.
Additionally, such a GA-based approach provided a good performance in simultaneously
calibrating both variables no matter the reduced availability of chlorine sensors. It also
expanded the state-of-the-art by presenting an application of the calibrated model in
which the chlorine concentration rationed at the pumping station is optimized to ensure
the compliance of official normativity for public health purposes. Finally, the presented
methodology was shown to be a useful tool for the analysis of WDS encountered in practice
as well as the re-design of a WDS that does not meet the applicable official normative.
Implementation of this methodology in a real WDS will be part of future developments.
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