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Abstract: The optimal management of multiple chiller systems calls for the solution of the so-called
optimal chiller loading (OCL) problem. Due to the interplay of continuous and logical constraints,
OCL is an NP-hard problem, so that a variety of heuristic algorithms have been proposed in the
literature. Herein, an algorithm for its exact solution, named X-OCL, is developed under the
assumption that the chillers’ power consumption curves are quadratic. The proposed method hinges
on a decomposition of the solution space so that the overall OCL problem is decomposed to a set of
equality constrained quadratic programming problems that can be solved in closed form. By applying
the new X-OCL solver to well known case studies, we assess and compare the performances of several
literature algorithms, highlighting also some errors in the published results. Moreover, X-OCL is used
to design a greedy optimal chiller sequencing (OCS) solver, called X-OCS. The X-OCS is tested on
two literature benchmarks and on the model of the heating, ventilation and air-conditioning (HVAC)
system of a semiconductor plant, over a two-year period. The performances of X-OCS are remarkably
close to the theoretical optimal performance.

Keywords: optimal chiller loading; optimal chiller sequencing; HVAC; multiple chiller; energy saving;
mixed integer quadratic programming; semiconductor manufacturing; HVAC operation;
economic dispatch

1. Introduction

Heating, ventilation and air-conditioning (HVAC) systems typically utilize a large percentage
of the total building energy consumption, amounting to approximately 25–30% for dwellings [1]
and up to more than 50% in industries relying on clean-rooms [2]. Between 40% and 60% of this
requirement is due to chillers, which are therefore responsible for a significant fraction of total energy
use. Such numbers indicate that the efficiency of HVAC systems is closely dependent on the efficiency
of the chiller unit. Since a multiple chiller system typically employs machines, there are usually
several combinations of chillers’ part loads that are able to satisfy the load demand. The problem of
determining the load fraction that each chiller has to deliver in order to minimize the system power
consumption is known as optimal chiller loading (OCL) problem. In the last decade, several methods
have been proposed to solve the OCL problem [3–19]. Chang et al. [3] assume that the chillers’
efficiency is a quadratic function of the partialization and maximize the sum of chillers’ coefficients of
performance (COP) using the Lagrangian method. Of course, maximizing the sum of the efficiencies
is not equivalent to the “canonical” OCL problem, where system power consumption is instead
minimized. In a second paper, Chang [4] has addressed the canonical OCL problem again by the
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Langrangian multipliers methods, assuming that all the chiller power consumption curves are convex
and cubic in the part load ratio. The poor convergence properties of the lambda iteration at low cooling
load demand were obviated by a suitable gradient method.

Nevertheless, it is well-known that the chillers’ power consumption could be a concave function,
which makes OCL an NP-hard mixed-integer problem and poses a further challenge to the search
of the optimal solution as global convergence of iterative methods cannot be guaranteed. This has
motivated the development of several heuristic methods which do not guarantee optimality, but are
effective to obtain a fair solution in a viable execution time.

Assuming quadratic models of power consumption, Geem [5] resorts to the generalized reduced
gradient (GRG) method. Salari et al. [6] show that the mixed integer problem can be solved
using the general algebraic modeling system (GAMS). In parallel, many nature-inspired heuristic
algorithms have been proposed, namely, genetic algorithm (GA) [7,8], simulated annealing (SA)
[9,10], particle swarm optimization (PSO) [11,12], evolution strategy (ES) [13], differential evolution
(DE) [14], cuckoo search algorithm using differential operator (DCSA) [15], differential search
(DS) [16], improved firefly algorithm (IFA) [17], teaching-learning-based optimization (TLBO) [18],
improved invasive weed optimization (EIWO) [19], distributed chaotic estimation of distribution
algorithm (DCEDA) [20], imperialist competitive algorithm (ICA) [21] and wild goat’s algorithm
(WGA) [22].

Many of these algorithms have been tested on the Hsinchu benchmark, a widely used case study
consisting of a six-chiller system installed in a semiconductor factory located in the Hsinchu Scientic
Garden (Taiwan). Hence, it is therefore natural to use the performances achieved on this benchmark
to compare and rank alternative solution methods. A selection consisting of the six best algorithms
is reported in Table 1. In order of publication, they are IFA (2013), DCSA (2014), GAMS (2015),
TLBO (2017), EIWO (2018), DCEDA (2020). Two recent algorithms, ICA (2020) and WGA (2020),
claim to have improved over the existing literature. However, an inspection of the chillers’ cooling
capacities used in these two papers shows that they are different from those of the standard benchmark
so that the claim of improvement is void. It is worth noting that, since an exact solver of the Hsinchu
benchmark is not available, the final word on the optimality of solutions found by heuristic algorithms
still needs to be had.

In the practical management of a real chiller system, solving the OCL is not sufficient, because
there exist further dynamic constraints, namely minimum up-time and down-time requirements on
chillers’ operation. When these constraints are accounted for, the power consumption minimization
problem goes under the name of optimal chiller sequencing (OCS). Again, this is a problem that is
hardly tractable without resorting to some heuristics. In particular, the knowledge of all future cooling
loads is required, which raises the problem of forecasting it with reasonable accuracy, a task that can
be successfully addressed only on a finite prediction horizon. In the literature, OCS solvers resulting
from the combination of heuristic OCL algorithms with dynamic programming schemes have been
proposed [8,23–25].

The present paper addresses both the OCL and OCS problems. Concerning the former one, two main
issues are investigated. First of all, we derive an exact algorithm when the chillers’ power consumption is
a quadratic function of the partial load ratio (PLR), as it happens for the Hsinchu benchmark. Our X-OCL
algorithm allows one to have the final word on the existing heuristic methods, highlighting also some
erroneous results reported in the literature. The second issue has to do with the practical applicability
of X-OCL to real-world plants. In particular, the execution time is compared with a state-of-art mixed
integer solver and the adequacy of the quadratic power consumption model is discussed.

Concerning the OCS problem, we exploit the X-OCL algorithm to derive a lower bound on the
minimum power consumption achievable by any OCS solver. Second, a greedy OCS algorithm
leveraging on X-OCL is proposed and compared with [23]. Finally, the lower bound is used to
quantitatively assess the degree of suboptimality ensuing from the lack of preview implicit in the
greedy approach.
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Table 1. Comparison of the results of IFA, DCSA, GAMS, TLBO, EIWO and DCEDA on Hsinchu benchmark.

Qload [kW] i IFA (2013) DCSA (2014) GAMS (2015) TLBO (2017) EIWO (2018) DCEDA (2020)

PLRi Pi [kW] PLRi Pi [kW] PLRi Pi [kW] PLRi Pi [kW] PLRi Pi [kW] PLRi Pi [kW]

6858 (90%)

1 0.812774 - 0.812726 - 0.8127 808.9736 0.8186 - 0.8127 - 0.8126 -
2 0.749527 - 0.749619 - 0.7496 740.7275 0.7523 - 0.7492 - 0.7489 -
3 1.000000 - 1.000000 - 1.0000 903.3450 1.0000 - 1.0000 - 1.0000 -
4 1.000000 - 1.000000 - 1.0000 781.4890 1.0000 - 1.0000 - 1.0000 -
5 1.000000 - 1.000000 - 1.0000 755.2010 1.0000 - 1.0000 - 1.0000 -
6 0.838603 - 0.838559 - 0.8386 748.8392 0.8297 - 0.8390 - 0.8395 -
∑ 4738.576 4738.575 4738.5753 4738.54 4738.575 4738.58

6477 (85%)

1 0.727803 - 0.727731 - 0.7277 718.5040 0.727731 - 0.7275 - 0.7280 -
2 0.656174 - 0.656132 - 0.6561 641.1960 0.656132 - 0.6563 - 0.6564 -
3 1.000000 - 1.000000 - 1.0000 903.3450 1.000000 - 1.0000 - 1.0000 -
4 1.000000 - 1.000000 - 1.0000 781.4890 1.000000 - 1.0000 - 1.0000 -
5 1.000000 - 1.000000 - 1.0000 755.2010 1.000000 - 1.0000 - 1.0000 -
6 0.716408 - 0.716524 - 0.7165 621.9135 0.716524 - 0.7166 - 0.7160 -
∑ 4421.649 4421.649 4421.6486 4421.65 4421.649 4421.65

6096 (80%)

1 0.642725 - 0.642735 - 0.6427 639.1411 0.6431 - 0.6427 - 0.6431 -
2 0.562642 - 0.562645 - 0.5626 553.8955 0.5621 - 0.5628 - 0.5622 -
3 1.000000 - 1.000000 - 1.0000 903.3450 1.000000 - 1.0000 - 1.0000 -
4 1.000000 - 1.000000 - 1.0000 781.4890 1.000000 - 1.0000 - 1.0000 -
5 1.000000 - 1.000000 - 1.0000 755.2010 1.000000 - 1.0000 - 1.0000 -
6 0.594504 - 0.594490 - 0.5945 510.6347 0.5946 - 0.5944 - 0.5946 -
∑ 4143.706 4143.706 4143.7064 4143.64 4143.706 4143.71

5717 (75%)

1 0.842218 - 0.843697 - 0.0000 0.0000 0.55765 - 0.0000 - 0.0000 -
2 0.781365 - 0.783794 - 0.7150 702.4809 0.46918 - 0.7151 - 0.7144 -
3 0.000002 - 0.000001 - 1.0000 903.3450 0.99995 - 1.0000 - 1.0000 -
4 0.999995 - 1.000000 - 1.0000 781.4890 1.00000 - 1.0000 - 1.0000 -
5 1.000000 - 1.000000 - 1.0000 755.2010 1.00000 - 1.0000 - 1.0000 -
6 0.887053 - 0.883049 - 0.7934 700.0373 0.47250 - 0.7933 - 0.7941 -
∑ 3840.063 ∗ 3840.055 ∗ 3842.5532 3904.70 3842.553 3843.07

5334 (70%)

1 0.759350 - 0.749969 - 0.0000 0.0000 0.64179 - 0.0000 - 0.0000 -
2 0.691121 - 0.682477 - 0.5835 572.3074 0.66219 - 0.5834 - 0.5831 -
3 0.000021 - 0.000012 - 1.0000 903.3450 0.33009 - 1.0000 - 1.0000 -
4 1.000000 - 1.000000 - 1.0000 781.4890 0.99059 - 1.0000 - 1.0000 -
5 1.000000 - 1.000000 - 1.0000 755.2010 0.99900 - 1.0000 - 1.0000 -
6 0.757897 - 0.776363 - 0.6217 534.0950 0.58047 - 0.6218 - 0.6221 -
∑ 3507.286 ∗ 3507.270 ∗ 3546.4375 3642.51 3546.438 3546.48
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Literature benchmarks, i.e., the Hsinchu one and two OCS benchmarks are used for test and
comparison. Moreover, an extensive dataset collected during two years in a semiconductor fab is used
to build and demonstrate a comprehensive solution of both OCL and OCS, including the data-based
estimation of the chillers’ power consumption models. In particular, the potential energy saving with
respect with the current HVAC energy management is assessed.

2. The Optimal Chiller Loading Problem

Assuming n chillers operated in parallel, let Qi, i = 1, . . . , n, denote the cooling power delivered by
the i-th chiller and Pi= Pi(Qi), i = 1, . . . , n the associated power consumption. For a prescribed overall
cooling load demand Qload, the goal of the OCL problem is finding the cooling powers Qi, i = 1, . . . , n
that the n chillers have to deliver in order to minimize the system total energy consumption Ptot:

min
Q1,...,Qn

n

∑
i=1

Pi s.t. Qload =
n

∑
i=1

Qi

For each chiller, PLR (part load ratio) denotes the cooling load fraction, given by

PLRi =
Qi

Q100%,i

where Q100%,i is the maximum power supplied under full capacity operation. The vector of all PLRs is
denoted by

PLR = [PLR1, . . . , PLRn]
T

When the i-th chiller is turned on, it should not operate under a minimum PLR, denoted by
PLRmin,i, 1. For the subsequent derivations, it is convenient to introduce a binary variable δi that
indicates the status of the i-th chiller and a real-valued variable xi, such that:

PLRi = δi · xi, δi ∈ {0, 1}, xi ∈ [PLRmin,i, 1]

The power consumption Pi of the i-th chiller is assumed to depend mainly on PLRi and the
condenser inlet water temperature Ti, that is Pi = Pi(PLRi, Ti).

The consumption surface Pi(PLRi, Ti) is either obtained from laboratory experiments or field data
collected during operation.

Note that the problem of finding the optimal part load ratios PLR∗ can be formulated as a
mixed-integer nonlinear program (MINLP):

PLR∗ := arg min
PLR

n

∑
i=1

Pi(PLRi) (1a)

subject to
n

∑
i=1

PLRi ·Q100%,i = Qload (1b)

PLRi = δi · xi (1c)

PLRmin ≤ xi ≤ 1 (1d)

δi ∈ {0, 1} (1e)

In the above problem, two types of constraints are present: the cooling demand constraint,
Equation (1b) and a set of operational constraints Equation (1c–e) regarding the admissible operating
regions of the chillers.

In the following, it is implicitly assumed that the cooling demand constraint is such that the
admissible solutions set is nonempty. Then, given that the constraints define a closed set of admissible
solution, the cost function admits a minimum.
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2.1. Quadratic Power Consumption Model

With the exception of particular structures, mixed-integer programming problems are classified
as NP-hard, which means that in the worst case, the solution time grows at least exponentially with
the problem size. Although its combinatorial nature might suggest the use of heuristics, we will
show that a significant subclass of industrial OCL problems, characterized by a quadratic power
consumption model quadratic in PLRi, may still be successfully attacked by a carefully designed exact
method. It is worth asking whether the quadratic assumption of the power consumption is more or less
realistic. We will discuss this point later. Even if the consumption is not quadratic, a good quadratic
approximation is likely computable. Moreover, in the case in which it is not easy to workout a good
quadratic approximation, it can still be addressed by means piece-wise quadratic model, as suggested
in Section 6.

Assumption 1. The power consumption Pi of the i-th chiller obeys the following model:

Pi(PLRi, Ti) =

{
β0,i + β1,iPLRi + β2,iPLR2

i + f (Ti), if PLRmin ≤ PLRi ≤ 1

0, otherwise
(2)

where βp,i are the model parameters and f (·) is a suitable function. Moreover, it is assumed that β2,i 6= 0.

When the OCL problem is solved in a given time slot, the condenser inlet water temperature Ti
can be assumed to be known. Then, for a given Ti, in the interval [PLRmin, 1], the consumption surface
is a quadratic function of PLRi alone:

Pi(PLRi, Ti) =

{
ai + ciPLRi + qiPLR2

i , if PLRmin ≤ PLRi ≤ 1

0, otherwise
(3)

with ai = β0,i + f (Ti), ci = β1,i, and qi = β2,i.
In view of the quadratic nature of the cost function, the system total energy consumption can be

expressed in matrix form as follows:

Ptot =
n

∑
i=1

Pi =
1
2

xTQx + cTx + a (4a)

where

x = {PLRi}, x ∈ Rn×1

a = {ai}, a ∈ Rn×1

c = {ci}, c ∈ Rn×1

Q = diag{2qi}, Q ∈ Rn×n

Moreover, the equality constraint (1b) can be rewritten as

Ex = d (4b)

where

E = {Q100%,i}, E ∈ R1×n

d = Qload, d ∈ R
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Equation (4a,b) represent the standard OCL problem with quadratic power consumption, that so
far has been attacked by either mixed integer programming solvers or a variety of heuristic algorithms.
Differently from these approaches, below we derive an algorithm that computes the exact solution.

2.2. Partition of the Solution Space

In view of (4), the admissible set F for PLRi is

PLRi ∈ F , F =
3⋃

s=0
Fσ (5)

F0 = {0}, F1 = {PLRmin}, (6)

F2 = {1}, F3 = (PLRmin, 1) (7)

where each subset Fσ is associated with one of the following operating conditions: switched off (σ = 0),
minimum part load (σ = 1), maximum part load (σ = 2), intermediate part load (σ = 3). In the sequel,
σi ∈ {0, 1, 2, 3} will denote the state of the i-th chiller.

In order to satisfy the operational constraints of a multiple chiller system, the solution of the OCL
problem must be searched within the cartesian product of the chillers’ admissible sets, i.e.,

PLR ∈ S , S = Fn

Since the admissible set F of a single chiller can be partitioned in four subsets, the overall
admissible set S can be partitioned in 4n subsets Sj, j = 1, . . . , 4n, each of which is in a one-to-one
correspondence with the n−digit multichiller code

sj =
[

sj1 . . . sjn

]
, sji ∈ {0, 1, 2, 3}

formed by the state codes σi, i = 1, . . . , n, of the n chillers.
To make an example, consider the case of n = 3 chillers. Then, the possible 4n = 64 subsets Sj are

associated to the multi-chiller codes as follows:

S1 = F0 ×F0 ×F0 ↔ s1 = [0, 0, 0]

S2 = F0 ×F0 ×F1 ↔ s2 = [0, 0, 1]

S3 = F0 ×F0 ×F2 ↔ s3 = [0, 0, 2]

S4 = F0 ×F0 ×F3 ↔ s4 = [0, 0, 3]

S5 = F0 ×F1 ×F0 ↔ s5 = [0, 1, 0]

S6 = F0 ×F1 ×F1 ↔ s6 = [0, 1, 1]

S7 = F0 ×F1 ×F2 ↔ s7 = [0, 1, 2]

S8 = F0 ×F1 ×F3 ↔ s8 = [0, 1, 3]

S9 = F0 ×F2 ×F0 ↔ s9 = [0, 2, 0]

. . . = . . .

S64 = F3 ×F3 ×F3 ↔ s64 = [3, 3, 3]

The n elements of the set Sj are in a one-to-one correspondence with the chiller number i, 1 ≤ i ≤ n.
Given the chiller number i, the notation Sj[i] will denote the operating condition, either a point or a
range, of the i-th chiller. For instance, within S8, whose multi-chiller code is s8 = [0, 1, 3], the three
chillers i = 1, 2, 3 will operate at the following conditions:
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S8[1] = 0

S8[2] = PLRmin

S8[3] = (PLRmin, 1)

2.3. Divide and Conquer Strategy

For j = 1, . . . , 4n, let QP(j) indicate the OCL problem (4) restricted to the subset Sj.

Problem 1. QP(j)

min
PLR∈Sj

n

∑
i=1

Pi(PLRi) (8a)

subject to
n

∑
i=1

PLRi ·Q100%,i = Qload (8b)

The 4n problems QP(j) can be partitioned in two subsets, C and C̄:

- C = {j | sji 6= 3, ∀i}: all the partial load ratios are fixed so that Sj has cardinality one;
- C̄, when there is at least one chiller operating at intermediate part load (∃i : sji = 3).

Consider, for example, S7, whose multi-chiller code is s7 = [0, 1, 2]: chiller #1 is switched off,
chiller #2 is operating at minimum part load, and chiller #3 is operating at maximum part load.
Within this subset, no optimization is actually needed because all the chillers’ PLRs are fixed and

S7 =
[

0 PLRmin 1
]T

has cardinality one. Therefore, only a feasibility check is required: if constraint (8b) is satisfied, then S7

is the optimal solution of QP(7). Otherwise, QP(7) does not admit a solution. It is easy to see that the
number of elements of the subset C is 3n.

As a second example, consider S8, whose multichiller code is s8 = [0, 1, 3]: here, the chiller #3 is
operating at intermediate part load, i.e.

S8 =

{
PLR | PLR =

[
0 PLRmin x3

]T
}

with x3 ∈ F3. In this case, QP(8) is a constrained quadratic programming problem in the unknown x3.
As will be shown later, for j ∈ C̄, the QP(j) problems enjoy a remarkable property: their optimal

solution, if it exists, is a critical point and no more than one critical point exists. In the following,
PLR∗(j) will denote:

1. the optimal solution of QP(j), if j ∈ C;
2. the unique feasible critical point of QP(j), if j ∈ C̄.

Let A denote the set of integers j s.t. PLR∗(j) exists. The associated value of the cost function will
be denoted by

P∗tot(j) :=
n

∑
i=1

Pi(PLR∗i (j)) (9)

Then, the key idea is to exploit the partition of the solution space by a two-step procedure:

1. Solve QP(j), obtaining PLR∗(j) and P∗tot(j) for j = 1, . . . , 4n;
2. Letting

j∗ = arg min
j∈A

P∗tot(j)

where obtain the globally optimal part load vector as PLR∗ = PLR∗(j∗).
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In the next subsection, it is shown how to reduce the inequality-constrained problems associated
with j ∈ C̄ to equality-constrained quadratic problems (EQP), for which a closed form solution
is available.

2.4. Reduction to Equality-Constrained Problems

For a given j ∈ C̄, we denote by Vj = {i ∈ {1, 2, . . . , n} | sji = 3} the set of chillers operating
at intermediate part loads, i.e., between PLRmin and 1. We also let κ(j) denote the cardinality of Vj.
It is then possible to rewrite QP(j) as a reduced-order quadratic problem in the κ(j) ≤ n unknowns
PLRi, i ∈ Vj.

min
PLRi ,i∈Vj

∑
i∈Vj

Pi(PLRi) (10a)

subject to ∑
i∈Vj

PLRi ·Q100%,i = Q̃load (10b)

PLRmin < PLRi < 1, ∀i ∈ Vj (10c)

above, Q̃Load is
Q̃Load = QLoad − ∑

i∈Vj

PLRi ·Q100%,i (11)

is the cooling load that must be supplied by the chillers operating at intermediate part loads.
Now, we associate to each QP(j) the corresponding equality-constrained quadratic problem

EQP(j), that is obtained by removing the inequality constraints (10c).

Problem 2. EQP(j)

min
PLRi ,i∈Vj

∑
i∈Vj

Pi(PLRi) (12a)

subject to ∑
i∈Vj

PLRi ·Q100%,i = Q̃load (12b)

It is convenient to rewrite EQP(j) in matrix form. For this purpose, we introduce a selection
matrix M(Vj) ∈ Rκ(j)×n that selects κ(j) elements out of n.

Note that, being integers, the elements of Vj admit an obvious ordering. Then,

M(Vj) = [M]k,i =

{
1 if i = k-th element of Vj

0 otherwise

In short, M(Vj) will be denoted by Mj. The reduced-order matrices are thus given by:

Q̃ = MjQMT
j , Q̃ ∈ Rκ×κ

Ẽ = EMT
j , Ẽ ∈ R1×κ

c̃ = Mjc, c̃ ∈ Rκ×1

d̃ = Q̃Load

(13)

Then, EQP(j) can be restated as:

x̃∗(j) := arg min
x̃

1
2

x̃TQ̃x̃ + c̃T x̃, x̃ ∈ Rκ×1 (14a)

s.t. Ẽx̃ = d̃ (14b)
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By applying the first-order Karush–Kuhn–Tucker (KKT) necessary condition to the EQP(j)
problem, the following linear system is obtained:[

Q̃ ẼT

Ẽ 0

] [
x̃∗

λ∗

]
=

[
−c̃
d̃

]
(15)

where x̃∗ identifies a critical point, either maximum, minimum or saddle, and λ∗ ∈ R is the associated
Lagrange multiplier. In order to guarantee the existence of the solution, a technical assumption
is introduced.

Assumption 2. ẼQ̃−1ẼT 6= 0.

Note that Assumption 2 is immediately satisfied if qi > 0, ∀i, that is when the quadratic power
consumption curves (3) are all convex, although this is not necessary.

Theorem 1. Under Assumption 1, EQP(j) admits a unique critical point x∗, given by

λ∗ = − d̃ + ẼQ̃−1c̃

ẼQ̃−1ẼT (16)

x̃∗ = −Q̃−1
(c̃ + ẼT

λ∗) (17)

Proof of Theorem 1. In view of Assumption 1, det(Q) 6= 0, because qi 6= 0, ∀i. Moreover,
Assumption 2 guarantees that ẼQ̃−1ẼT 6= 0. Then, it is immediate to see that the KKT condition (15)
admits (16)–(17) as a unique solution.

Given the critical point x̃∗, it is easy to obtain a critical point for QP(j), as well. For this purpose,
it is convenient to introduce an auxiliary vector x̄ ∈ Rn×1, such that:

x̄i =

{
Sj[i], if i ∈ V̄j

0, otherwise

The candidate critical point for QP(j) is thus given by:

P̂LR
∗
(j) = x̄ + MT

j x̃∗ (18)

The keystone of the solution procedure is the connection between the critical points of QP(j) and
EQP(j), as stated in the following theorem.

Theorem 2. The critical point PLR∗(j) exists if P̂LR
∗
(j) ∈ Sj. In such a case, PLR∗(j) = P̂LR

∗
(j).

Proof of Theorem 2. Sufficiency. Assume that the critical point P̂LR
∗

for EQP(j) belongs to Sj.
Observe that EQP(j) has less contraints than QP(j). Therefore, if a critical point for EQP(j) is feasible for
QP(j), it is ipso facto a critical point for QP(j), as well.

Necessity. Assume that QP(j) admits a critical point, say PLR∗(j). Given that EQP(j) and QP(j)
differ only for strict inequality constraints, any critical point for QP(j) is critical also for EQP(j).
Since EQP(j) admits at most one critical point, necessity is proven.

2.5. Summary of the X-OCL Algorithm

We are now in a position to summarize the steps of the proposed algorithm, hereafter named
X-OCL, for the exact solution of the OCL problem.
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The partition of the solution set in the 4n subsets Sj, j = 1, . . . 4n allows one to divide the MINLP
problem into 4n sub-problems QP(j) (8). For each subset Sj, two situations can occur:

1. all the chillers part load ratios are fixed;
2. there is at least one chiller working at intermediate part load.

In the former case, only a feasibility check is required to decide whether the PLR configuration
is to be kept as a candidate solution. In the latter case, the solution of the QP(j) problem is reduced
to the solution of an EQP(j) problem that admits a unique critical point, easily computable in closed
form. As stated in Theorem 2, if the critical point of EQP(j) belongs to Sj, it coincides with the critical
point of QP(j). Otherwise, QP(j) does not admit a critical point.

Once all the QP(j) have been processed, the corresponding set of critical points {PLR∗(j), j =
1, . . . , 4n} include the optimal solution of the overall OCL problem, which can be found just by
comparing the associated system power consumptions P∗tot(j). A pseudo-code summary is reported in
Algorithm 1.

Algorithm 1: X-OCL.

1: Input: a, c, q ∈ Rn×1, s ∈ R4n×n, Qload ∈ R
2: Output: PLR∗, P∗tot
3:
4: for j = 1, . . . , 4n do
5: Vj = {i ∈ {1, 2, . . . , n} : sji = 3}, κ = | Vj|
6: if Vj = ∅ then
7: {. feasibility check}
8: all the chillers part load ratios are fixed
9: x← Sj

10: if ∑n
i=1 xi ·Q100%,i = Qload then

11: PLR∗(j) = x
12: P∗tot(j) = ∑n

i=1 Pi(PLR∗i (j))
13: else
14: PLR∗(j) = ∅
15: P∗tot(j) = ∅
16: end if
17: else
18: {. solve the EQP(j) associated to QP(j)}
19: Vj ⇒ Q̃, Ẽ, c̃, d̃

20: λ∗ = − d̃ + ẼQ̃−1c̃

ẼQ̃−1ẼT , λ∗ ∈ R

21: x̃∗ = −Q̃−1
(c̃ + ẼT

λ∗)

22: x̄ =

{
Sj[i], if i ∈ V̄j

0, otherwise

23: P̂LR
∗
(j) = x̄ + MT

j x̃∗

24: if P̂LR
∗
(j) ∈ Sj then

25: PLR∗(j) = P̂LR(j)
26: P∗tot(j) = ∑n

i=1 Pi(PLR∗i (j)),
27: else
28: PLR∗(j) = ∅
29: P∗tot(j) = ∅
30: end if
31: end if
32: end for
33:
34: j∗ = minj Ptot(j)
35: PLR∗ = PLR∗(j∗)
36: P∗tot = Ptot(j∗)
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Summarizing the difference between OCL and OCS is that the former one is a static problem,
whereas the second one is intrinsically a dynamic problem. An OCS problem stripped of its dynamic
constraints could be solved just as a sequence of OCL problems.

3. Test on Hsinchu Benchmark Model

3.1. Hsinchu Cooling Plant Model

The Hsinchu chiller system, originally described in [7], has become a widely used benchmark
for the testing and comparison of OCL algorithms [6,15,17–19]. The case study involves six chillers
installed in a semiconductor factory located in Hsinchu Scientific Garden (Taiwan) with a 7620 kW total
cooling capacity. Quadratic models of the chillers’ energy consumption were obtained and validated
from data collected every 5 min over a 5-month period [7]. The benchmark problem assumes that the
condenser inlet water temperature is 24.5 ◦C. The coefficients of the six chillers’ energy consumption
models (3) are reported in [7] (Table 3) and the corresponding P-PLR curves are displayed in Figure 1.
It is asked to solve the OCL problem for five different cooling loads, ranging from 70% to 90% of the
system total cooling capacity. It is also required that the partial load ratio of each chiller never goes
below 0.3. According to our notation, the following parameter settings are used:

- ai, ci, and qi from [7];
- QLoad = 90%, 85%, 80%, 75%, and 70% of the chillers’ maximum capacity (∑n

i=1 Qnom);
- PLRmin,i = 0.3, ∀i.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-200

0

200

400
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800

1000

1200

Figure 1. Hsinchu benchmark: P-PLR curves at T = 24.5 ◦C.

3.2. OCL Benchmark: Results

The comparison between the X-OCL optimal solution and those obtained by the six literature
methods in Table 1 sheds light on some errors in the published results.

For the three highest cooling load demands (QLoad = {6858, 6477, 6096} [kW]), the X-OCL
optimal solution coincides with the common solution provided by the six algorithms, thus confirming
that they had reached the optimum. In the remaining two cases (QLoad = 5717 and 5334 [kW]),
the solution computed by X-OCL coincides with those of GAMS, EIWO and DCEDA, which, however,
are apparently outperformed by IFA and DCSA. The worst performance is that of TLBO.

However, concerning the solution provided by IFA and DCSA, four wrong values of power
consumption (identified by asterisks in Table 1) were published in [15,17]:
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- Ptot,IFA at load 75% and 70%;
- Ptot,DCSA at load 75% and 70%.

In fact, Table 1 reports Ptot,IFA = Ptot,DCSA ≈ 3507.3 [kW] at 70% cooling load, which is inconsistent
with the PLRi reported in the same table. Such inconsistency is easily verified by plugging the PLRi’s
into the chillers’ power consumption Equation (3) in order to obtain the individual chiller power
consumptions of the Pi[kW] column (the papers [15,17] describing algorithms IFA and DCSA do not
report these individual consumptions). Apparently, the source of the error is the mechanical use of the
chiller’s quadratic power consumption model out of its operational range, that is, in correspondence
with the null partial load ratio. Obviously, the associated power consumption is null as well, but if the
quadratic model has a negative constant term, as is the case for chillers 3–5, the formula will return a
negative power consumption as if a turned-off chiller could generate free power.

In Table 2, the published chillers’ power consumption Pp,i and the corresponding corrected values
Pc,i are reported for both IFA and DCSA. The values highlighted in red are the unfeasible chillers’
power consumption, of which the correction is reported in column Pc,i.

Once the errors have been corrected, IFA and DCSA are no more optimal at 75% and 70% loads.
At load 75% Ptot,IFA rises from 3840.0690 to 3960.5709 [kW] (+3.14%), while at 70%, it rises from
3507.2848 to 3627.7578 [kW] (+3.43%). Analogously, for DCSA, Ptot,DCSA goes from 3840.0545 to
3960.5580 [kW] (+3.14%) at 75% and from 3507.2848 to 3627.7578 [kW] (+3.43%) at 70%. The corrected
results for all the six literature methods are reported in Table 3.

In conclusion, on the Hsinchu benchmark, GAMS, EIWO and DCEDA prove to be the best
heuristic algorithms, as their solutions coincide with the optimal ones computed by X-OCL, for all
considered loads.

Table 2. Published chillers’ power consumptions and the corresponding corrected values.

Qload [kW] i IFA DCSA
PLRi[−] Pp,i [kW] Pc,i [kW] PLRi[−] Pp,i [kW] Pc,i [kW]

5717 (75%)

1 0.842218 843.0026 843.0026 0.843697 844.7431 844.7431
2 0.781365 777.3214 777.3214 0.783794 780.1789 780.1789
3 0.000002 −120.5019 0.0000 0.000001 −120.5035 0.0000
4 0.999995 781.4855 781.4855 1.000000 781.4890 781.4890
5 1.000000 755.2010 755.2010 1.000000 755.2010 755.2010
6 0.887053 803.5604 803.5604 0.883049 798.9460 798.9460
∑ 3840.0690 3960.5709 3840.0545 3960.5580

5334 (70%)

1 0.759350 750.8680 750.8680 0.749969 741.1047 741.1047
2 0.691121 677.0164 677.0164 0.682477 668.0074 668.0074
3 0.000021 −120.4730 0.0000 0.000012 −120.4867 0.0000
4 1.000000 781.4890 781.4890 1.000000 781.4890 781.4890
5 1.000000 755.2010 755.2010 1.000000 755.2010 755.2010
6 0.757897 663.1834 663.1834 0.776363 682.1826 682.1826
∑ 3507.2848 3627.7578 3507.4980 3627.9847
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Table 3. Comparison of the results of IFA, DCSA, GAMS, TLBO, EIWO, DCEDA and X-OCL on Hsinchu benchmark.

Qload [kW] i
IFA (2013) DCSA (2014) GAMS (2015) TLBO (2017) EIWO (2018) DCEDA (2020) X-OCL

PLRi Pi [kW] PLRi Pi [kW] PLRi Pi [kW] PLRi Pi [kW] PLRi Pi [kW] PLRi Pi [kW] PLRi Pi [kW]

6858 (90%)

1 0.812774 809.0541 0.812726 808.9999 0.8127 808.9736 0.8186 815.6654 0.8127 808.9705 0.8126 808.8595 0.8127 809.0002
2 0.749527 740.6313 0.749619 740.7353 0.7496 740.7275 0.7523 743.7705 0.7492 740.2618 0.7489 739.9230 0.7496 740.7352
3 1.000000 903.3450 1.000000 903.3450 1.0000 903.3450 1.0000 903.3450 1.0000 903.3450 1.0000 903.3450 1.0000 903.3450
4 1.000000 781.4890 1.000000 781.4890 1.0000 781.4890 1.0000 781.4890 1.0000 781.4890 1.0000 781.4890 1.0000 781.4890
5 1.000000 755.2010 1.000000 755.2010 1.0000 755.2010 1.0000 755.2010 1.0000 755.2010 1.0000 755.2010 1.0000 755.2010
6 0.838603 748.8520 0.838559 748.8035 0.8386 748.8392 0.8297 739.0666 0.8390 749.2903 0.8395 749.8425 0.8386 748.8030
∑ 4738.576 4738.575 4738.5753 4738.54 4738.575 4738.66 4738.5733

6477 (85%)

1 0.727803 718.5742 0.727731 718.5023 0.7277 718.5040 0.727731 718.5023 0.7275 718.2715 0.7280 718.7731 0.7277 718.5010
2 0.656174 641.2379 0.656132 641.1959 0.6561 641.1960 0.656132 641.1959 0.6563 641.3638 0.6564 641.4637 0.6561 641.1960
3 1.000000 903.3450 1.000000 903.3450 1.0000 903.3450 1.000000 903.3450 1.0000 903.3450 1.0000 903.3450 1.0000 903.3450
4 1.000000 781.4890 1.000000 781.4890 1.0000 781.4890 1.000000 781.4890 1.0000 781.4890 1.0000 781.4890 1.0000 781.4890
5 1.000000 755.2010 1.000000 755.2010 1.0000 755.2010 1.000000 755.2010 1.0000 755.2010 1.0000 755.2010 1.0000 755.2010
6 0.716408 621.8000 0.716524 621.9132 0.7165 621.9135 0.716524 621.9132 0.7166 621.9874 0.7160 621.4020 0.7165 621.9136
∑ 4421.649 4421.649 4421.6486 4421.65 4421.649 4421.6739 4421.6466

6096 (80%)

1 0.642725 639.1269 0.642735 639.1356 0.6427 639.1411 0.6431 639.4526 0.6427 639.1052 0.6431 639.4546 0.6427 639.1359
2 0.562642 553.8980 0.562645 553.9006 0.5626 553.8955 0.5621 553.4276 0.5628 554.0352 0.5622 553.5144 0.5626 553.9010
3 1.000000 903.3450 1.000000 903.3450 1.0000 903.3450 1.000000 903.3450 1.0000 903.3450 1.0000 903.3450 1.0000 903.3450
4 1.000000 781.4890 1.000000 781.4890 1.0000 781.4890 1.000000 781.4890 1.0000 781.4890 1.0000 781.4890 1.0000 781.4890
5 1.000000 755.2010 1.000000 755.2010 1.0000 755.2010 1.000000 755.2010 1.0000 755.2010 1.0000 755.2010 1.0000 755.2010
6 0.594504 510.6442 0.594490 510.6324 0.5945 510.6347 0.5946 510.7257 0.5944 510.5561 0.5946 510.7257 0.5945 510.6325
∑ 4143.706 4143.706 4143.7064 4143.64 4143.706 4143.7297 4143.3704

5717 (75%)

1 0.842218 843.0026 0.843697 844.7431 0.0000 0.0000 0.55765 570.8354 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.781365 777.3214 0.783794 780.1780 0.7150 702.4809 0.46918 478.8657 0.7151 702.5557 0.5831 701.7987 0.7150 702.4808
3 0.000002 0.0000 0.000001 0.0000 1.0000 903.3450 0.99995 903.3189 1.0000 903.3450 1.0000 903.3450 1.0000 903.3450
4 0.999995 781.4855 1.000000 781.4890 1.0000 781.4890 1.00000 781.4890 1.0000 781.4890 1.0000 781.4890 1.0000 781.4890
5 1.000000 755.2010 1.000000 755.2010 1.0000 755.2010 1.00000 755.2010 1.0000 755.2010 1.0000 755.2010 1.0000 755.2010
6 0.887053 803.5604 0.883049 798.9460 0.7934 700.0373 0.47250 414.9916 0.7933 699.9229 0.7941 700.7682 0.7934 700.0374
∑ 3960.579 3960.558 3842.5532 3904.70 3842.553 3842.602 3842.5532

5334 (70%)

1 0.759350 750.8680 0.749969 741.1047 0.0000 0.0000 0.64179 638.3158 0.0000 0.0000 0.000 0.0000 0.0000 0.0000
2 0.691121 677.0164 0.682477 668.0074 0.5835 572.3074 0.66219 647.2751 0.5834 572.2236 0.5831 571.9545 0.5835 572.3068
3 0.000021 0.0000 0.000012 0.0000 1.0000 903.3450 0.33009 328.4962 1.0000 903.3450 1.0000 903.3450 1.0000 903.3450
4 1.000000 781.4890 1.000000 781.4890 1.0000 781.4890 0.99059 774.8702 1.0000 781.4890 1.0000 781.4890 1.0000 781.4890
5 1.000000 781.2010 1.000000 755.2010 1.0000 755.2010 0.99900 754.7026 1.0000 755.2010 1.0000 755.2010 1.0000 755.2010
6 0.757897 663.1834 0.776363 682.1826 0.6217 534.0950 0.58047 489.8474 0.6218 534.1803 0.6221 534.4433 0.6217 534.0957
∑ 3627.758 3627.98 3546.4375 3642.51 3546.438 3546.4327 3546.6437
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4. The Optimal Chiller Sequencing Problem

The cooling load demand of a building can be subject to significant variations during the day.
Consequently, solving the OCL problem in each time step t (for example, 20 min), just ignoring
minimum up/down time constraints on the chillers, could lead to frequent switchings (chiller
startups and shutdowns). In order to preserve chillers from excessive mechanical stress and increase
their operating life, each machine should not be switched off before a minimal up-time is reached.
Analogously, it should not be switched on too quickly. To comply with these requirements, minimum
up/down-time constraints must be enforced in the formulation of the so-called optimal chiller
sequencing (OCS) problem. In its full formulation, OCS is a dynamical problem, because, in order
to minimize the cumulative power consumption, the current decision should also take into account
future constraints. As a consequence, the solution approaches proposed in the literature range from
dynamic programming to heuristic methods were designed to alleviate the complexity of the problem.

4.1. A Lower Bound to the OCS Problem

Any solution to the OCS problem must face some level of approximation. Even when
dynamic programming is used, there is the necessity of forecasting future loads, which introduces
a suboptimality margin with respect to the ideal solution based on perfect knowledge of the future
load profile. The availability of an easy-to-compute limit of performance against which the results of
heuristic methods can be benchmarked is therefore of interest. In order to derive such a limit, one can
consider the relaxed OCS problem (R-OCS), that is, an OCS problem without up- and down-time
constraints. The relaxed OCS problem boils down to a sequence of independent OCL problems to be
solved at each step in correspondence with the associated load. The availability of an exact OCL solver,
such as X-OCS, makes it possible to compute the exact solution of the relaxed OCS as well. Notably,
in view of the independence of the OCL problems, what matters is not the load sequence but the
load distribution, so that the R-OCS bound could be easily derived based on statistical distributions
reflecting different production and weather scenarios.

Such a bound can be used to quantitatively assess the existing margin of improvement for a
given heuristic OCS solver. In fact, if the achieved power consumption is close enough to the bound,
there is no scope for the search of further improvements. Along this direction, in the following section,
the X-OCL solver is used to derive a greedy OCS algorithm, whose performance is then assessed
against the R-OCS bound.

4.2. X-OCS, a Greedy Approach to OCS

X-OCS is a greedy algorithm that reduces OCS to a sequence of OCL problems, solvable through
X-OCL. The approach is greedy because at each time step, future constraints are ignored, and the
optimal OCL solution, compatible with the current minimum up/down time constraint, is searched
for. In the mathematical form, the greedy OCS problem can be written as a mixed-integer quadratic
problem with linear constraints:
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Problem 3. greedy OCS

PLR∗(t) := arg min
PLR

n

∑
i=1

Pi(PLRi(t), Ti(t)) (19a)

subject to
n

∑
i=1

PLRi(t) ·Q100%,i = Qload(t) (19b)

PLRi(t) = δi(t) · xi(t) (19c)

PLRmin ≤ xi(t) ≤ 1 (19d)

(TON
i (t− 1)−MUTi)(δi(t)− δi(t− 1)) ≤ 0 (19e)

(TOFF
i (t− 1)−MDTi)(δi(t)− δi(t− 1)) ≥ 0 (19f)

δi ∈ {0, 1} (19g)

where MUTi and MDTi are the i-th chiller’s minimum up-time and minimum down-time limits,
expressed in number of time steps. The time counters TON

i (t) and TOFF
i (t) are expressed as:

TON
i (t) = (1 + TON

i (t− 1))δi(t) (20)

TOFF
i (t) = (1 + TOFF

i (t− 1))(1− δi(t)) (21)

It is easy to observe that the greedy OCS problem is an OCL problem with the two additional
constraints (19e–f) which force some chillers to be online/offline depending on their previous states
δ(τ), τ = t− 1, t− 2, . . ..

At each time step t, two situations can occur:

- all the chillers’ states δi(t) are free, i.e., all the chillers have been online/offline for more time steps
than those prescribed by MUT/MDT;

- there is at least one chiller, say the i-th one, whose state δi(t) is constrained to be online or offline
(δi(t) = 1 or δi(t) = 0) by the MUT or MDT.

Concerning the first case, the minimum up/down-time constraints are not active, therefore the
step of the greedy OCS boils down to an OCL problem and its optimal solution can be found by the
X-OCL algorithm. In the second case, instead, at each time t, the optimal solution is found by applying
the X-OCL algorithm to a suitable subset of the OCL solution space S . At each time step t, the solution
space of the greedy OCS is therefore given by:

P(t) = {j ∈ {1, . . . , 4n} | sj,i 6= 0, ∀i ∈ BON(t), sj,i = 0, ∀i ∈ BOFF(t)}

where

BON(t) = {i ∈ {1, . . . , n} | (TON
i (t− 1)−MUTi) < 0}

BOFF(t) = {i ∈ {1, . . . , n} | (TOFF
i (t− 1)−MDTi) < 0}

are the sets of chillers which must be on and off, respectively.
The idea is to exploit the partitions of the solution space Pj by the typical two-step procedure

of X-OCL:

1. Solve QP(j), obtaining PLR∗(j) and P∗tot(j) for j ∈ A(t) ∩ P(t);
2. Letting

j∗ = arg min
j∈A(t)∩P(t)

P∗tot(j)

obtain the globally optimal part load vector as PLR∗ = PLR∗(j∗).

Herein, A(t), which denotes that the set of integers j s.t. PLR∗(j) exists, is a function of t because
the load changes with time.
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4.3. OCS Simulated Example

In this section, the performance of the X-OCS method is assessed on two case studies taken
from the literature [23]. Case study 1 involves a hotel in Taipei with two 450 refrigeration tons (RT)
chillers and two 1000 RT chillers, while case study 2, again from the Hsinchu Science Industrial District,
features nine 1250 RT chillers. In both cases, chillers are described by their COP-PLR curves, expressed
by a second-order polynomial model:

COPi = αi + βiPLRi + γiPLR2
i (22)

where αi, βi and γi are the chiller’s coefficients, reported in Table A1.
The first step was the identification of quadratic power consumption models (3) using data

sampled from the COP-PLR curves. Further details regarding the identification procedure are reported
in Appendix A. The coefficients of the quadratic P-PLR curves in Figure 2 are reported in Table A2.
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Figure 2. Estimated chillers’ P-PLR curves on case study 1 (left) and case study 2 (right).

The aim of both benchmarks is to compute the sequence of chillers’ partializations over one day,
assuming 20-min stages, so as to minimize the cumulative power consumption, while satisfying the
cooling demand constraint at each stage. The load demand profiles are displayed in Figure 3.

The parameters’ settings were as follows:

- PLRmin = 0.5;
- MUTi = 3 ∀i;
- MDTi = 1 ∀i.

Recall that MUTi = 3 means that the i-th chiller must be on at least 3 consecutive steps before
being turned off. Likewise, MDTi = 1 indicates that the i-th chiller, once turned off, must remain off at
least 1 step.

The results obtained via X-OCS were compared with those obtained by dynamic programming,
as reported in [23]. Where optimization was carried out under the ideal condition that all future loads
are known in advance.

For sake of comparability with DP, the chillers power consumption associated with X-OCS was
evaluated by plugging the PLRs computed by X-OCS into the original benchmark’s COP model [23]
and not via the approximate quadratic power consumption curves used by X-OCS.
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Figure 3. Cooling load demand profile for case study 1 (left) and case study 2 (right).

4.4. OCS Benchmark: Results

The results are shown in Tables 4 and 5. In case study 1, the power consumption obtained by the
X-OCS method was, at each stage, lower than or equal to that obtained by the DP method. From stage 1
to stage 29, the DP and X-OCS methods selected the same chillers. Since the MUT and MDT constraints
were not active, the solutions coincided with the R-OCS ones. At stage 30, the R-OCS solution had
chillers 4 and 3 switched on. However, the MUT constraint forced the DP and X-OCS to leave chillers 1
and 2 switched on. The same goes for stage 31. At stage 32, 44 and 59 the X-OCS method performed
better than the DP one. Although the chillers were not constrained by minimum up/down time limits,
apparently the DP method, as implemented in [23], could not find the global minimum. Notably,
the greedy X-OCS method achieves a total electric power consumption (46,495.91 [kW]) which is less
than 0.1 % greater than the minimum achievable bound R-OCS (64,432.56 [kW]), meaning that there is
no practical margin of improvement left).

In the second case study, the cooling load demand varied slowly over time, so that the MUT
and MDT constraints were never active. Therefore, the X-OCS, notwithstanding its greedy nature,
attains the best achievable performance bound R-OCS. For the majority of the cooling loads, DP and
X-OCS gave the same results, the only exceptions being at stages 22, 48–62, 68–72, where X-OCS
performed slightly better. For both the case studies, the cumulative daily power consumptions
obtained by DP (marked by asterisks) had been reported incorrectly in [23]:

- Case study 1: Pday = 645,220.08 [kW] instead of 64,883.84 [kW]
- Case study 2: Pday = 298,425.69 [kW] instead of 289,525.25 [kW]

As a matter of fact, the daily power consumption values reported in the paper did not match with
the sums of the power consumptions at each step, which we used for the correction.

So far, the performances of alternative methods have been compared on OCL and OCS benchmark
problems whose quadratic consumption models were taken from the literature. Moreover, a limited
number of loads were considered.

In this section, the feasibility of HVAC efficient management based on the exact solution of the
OCL problem is validated against a real-world scenario that includes the estimation of the chillers’
consumption models from the field data.
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Table 4. Case study 1.

Stage Load
R-OCS DP X-OCS

kW Chiller kW Chiller kW Chiller [PLR1, PLR2, PLR3, PLR4]

1 700 441.13 4 441.15 4 441.13 4 [0.00, 0.00, 0.00, 0.70]
...

...
...

...
...

...
...

...
...

20 890 556.53 4 556.55 4 556.53 4 [0.00, 0.00, 0.00, 0.89]
21 1100 695.32 4 2 695.56 4 2 695.32 4 2 [0.00, 0.63, 0.00, 0.82]
22 1250 801.66 4 2 801.78 4 2 801.66 4 2 [0.00, 0.73, 0.00, 0.92]
23 1100 695.32 4 2 695.56 4 2 695.32 4 2 [0.00, 0.63, 0,00, 0.82]
24 1000 634.42 4 2 636.73 4 2 634.42 4 2 [0.00, 0.50, 0,00, 0.77]
...

...
...

...
...

...
...

...
...

28 920 579.96 4 579.98 4 579.96 4 [0.00, 0.00, 0.00, 0.92]
29 1610 1048.59 4 2 1 1048.43 4 2 1 1048.59 4 2 1 [0.75, 0.75, 0.00, 0.94]
30 1650 1081.63 4 3 1082.07 4 2 1 1082.07 4 2 1 [0.76, 0.77, 0.00, 0.96]
31 1670 1096.43 4 3 1099.69 4 2 1 1099.43 4 2 1 [0.77, 0.78, 0.00, 0.97]
32 1700 1118.96 4 3 1122.12 4 2 3 1118.96 4 3 [0.00, 0.00, 0.78, 0.91]
...

...
...

...
...

...
...

...
...

36 1900 1246.74 4 3 2 1247.61 4 2 3 1246.74 4 3 2 [0.00, 0.67, 0.74, 0.86]
...

...
...

...
...

...
...

...
...

43 1750 1150.68 4 3 2 1151.60 4 2 3 1150.68 4 2 3 [0.00, 0.61, 0.69, 0.79]
44 1575 1020.82 4 2 1 1030.56 4 3 1020.82 4 2 1 [0.74, 0.73, 0.00, 0.92]
45 1900 1246.81 4 3 2 1250.32 4 3 1 1249.42 4 3 1 [0.70, 0.00, 0.73, 0.85]
46 1790 1175.08 4 3 2 1180.75 4 3 1 1179.56 4 3 1 [0.67, 0.00, 0.69, 0.79]
47 1725 1135.32 4 3 2 1142.76 4 3 1 1135.32 4 3 2 [0.00, 0.50, 0.70, 0.80]
48 1775 1165.89 4 3 2 1166.78 4 3 2 1165.89 4 3 2 [0.00, 0.62, 0.69, 0.80]
...

...
...

...
...

...
...

...
...

57 1900 1246.75 4 3 2 1247.61 4 3 2 1246.75 4 3 2 [0.00, 0.67, 0.74, 0.86]
58 2100 1385.03 4 3 2 1 1386.08 4 3 2 1 1385.03 4 3 2 1 [0.68, 0.63, 0.70, 0.81]
59 2000 1319.66 4 3 1 1326.20 4 3 2 1 1319.66 4 3 1 [0.73, 0.00, 0.77, 0.90]
60 2100 1385.03 4 3 2 1 1386.08 4 3 2 1 1385.03 4 3 2 1 [0.68, 0.63, 0.70, 0.81]
61 1900 1246.75 4 3 2 1247.61 4 3 2 1246.75 4 3 2 [0.00, 0.67, 0.74, 0.86]
...

...
...

...
...

...
...

...
...

67 1750 1150.68 4 3 2 1151.60 4 3 2 1150.68 4 3 2 [0.00, 0.61, 0.69, 0.79]
68 1475 948.04 4 2 1 948.08 4 2 1 948.04 4 2 1 [0.71, 0.67, 0.00, 0.85]
69 1200 763.59 4 2 765.20 4 1 765.45 4 1 [0.72, 0.00, 0.00, 0.88]
70 1050 664.47 4 2 671.50 4 1 670.46 4 1 [0.65, 0.00, 0.00, 0.76]
71 1100 695.32 4 2 700.10 4 1 695.32 4 2 [0.00, 0.63, 0.00, 0.82]
72 800 495.80 4 495.82 4 539.23 4 2 [0.00, 0.50, 0.00, 0.57]

Pday 64,432.56 kW 64,883.84 * kW 64,495.91 kW
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Table 5. Case study 3.

Stage Load X-OCL DP X-OCS
kW chiller kW Chiller kW Chiller [PLR1, PLR2, PLR3, PLR4, PLR5, PLR6, PLR7, PLR8, PLR9]

1 6210 2899.68 8 6 3 2 1 2899.69 8 6 3 2 1 2899.68 8 6 3 2 1 [1.00 1.00 0.97 0.00 0.00 1.00 0.00 1.00 0.00]
...

...
...

...
...

...
...

...
...

21 6150 2848.50 8 6 3 2 1 2852.34 8 6 3 2 1 2848.50 8 6 3 2 1 [1.00 1.00 0.92 0.00 0.00 1.00 0.00 1.00 0.00]
22 6280 2974.84 8 6 3 2 1 9 3039.86 8 6 3 2 1 7 2974.84 8 6 3 2 1 9 [1.00 1.00 0.72 0.00 0.00 0.80 0.00 1.00 0.50]
...

...
...

...
...

...
...

...
...

27 7355 3658.93 8 6 3 2 1 7 3672.69 8 6 3 2 1 7 3658.93 8 6 3 2 1 7 [1.00 1.00 0.93 0.00 0.00 1.00 0.95 1.00 0.00]
28 7520 3768.28 8 6 3 2 1 7 9 3847.81 8 6 3 2 1 7 9 3768.28 8 6 3 2 1 7 9 [1.00 1.00 0.79 0.00 0.00 1.00 0.73 1.00 0.50]
...

...
...

...
...

...
...

...
...

34 8720 4659.67 8 6 3 2 1 7 9 4659.65 8 6 3 2 1 7 9 4659.67 8 6 3 2 1 7 9 [1.00 1.00 0.98 0.00 0.00 1.00 1.00 1.00 1.00]
35 8910 4791.00 8 6 3 2 1 7 9 4 4891.13 8 6 3 2 1 7 9 4 4791.00 8 6 3 2 1 7 9 4 [1.00 1.00 0.85 0.74 0.00 1.00 0.83 1.00 0.70]
36 9090 4917.89 8 6 3 2 1 7 9 4 5015.07 8 6 3 2 1 7 9 4 4917.89 8 6 3 2 1 7 9 4 [1.00 1.00 0.88 0.77 0.00 1.00 0.87 1.00 0.74]
37 9245 5032.60 8 6 3 2 1 7 9 4 5125.26 8 6 3 2 1 7 9 4 5032.60 8 6 3 2 1 7 9 4 [1.00 1.00 0.91 0.80 0.00 1.00 0.91 1.00 0.78]
...

...
...

...
...

...
...

...
...

47 9820 5511.19 8 6 3 2 1 7 9 4 5552.25 8 6 3 2 1 7 9 4 5511.19 8 6 3 2 1 7 9 4 [1.00 1.00 1.00 0.90 0.00 1.00 1.00 1.00 0.96]
48 9870 5552.25 8 6 3 2 1 7 9 4 5 5582.17 8 6 3 2 1 7 9 4 5552.25 8 6 3 2 1 7 9 4 5 [1.00 1.00 0.87 0.76 0.67 1.00 0.86 1.00 0.73]
...

...
...

...
...

...
...

...
...

63 8780 4703.10 8 6 3 2 1 7 9 4 4804.11 8 6 3 2 1 7 9 4 4703.10 8 6 3 2 1 7 9 4 [1.00 1.00 0.83 0.73 0.00 1.00 0.80 1.00 0.66]
64 8555 4511.80 8 6 3 2 1 7 9 4543.81 8 6 3 2 1 7 9 4511.80 8 6 3 2 1 7 9 [1.00 1.00 0.96 0.00 0.00 1.00 1.00 1.00 0.88]
...

...
...

...
...

...
...

...
...

67 7740 3907.96 8 6 3 2 1 7 9 3985.58 8 6 3 2 1 7 9 3907.96 8 6 3 2 1 7 9 [1.00 1.00 0.81 0.00 0.00 1.00 0.76 1.00 0.62]
68 7455 3728.52 8 6 3 2 1 7 9 3745.20 8 6 3 2 1 7 3728.52 8 6 3 2 1 7 9 [1.00 1.00 0.77 0.00 0.00 0.98 0.71 1.00 0.50]
...

...
...

...
...

...
...

...
...

72 6425 3055.91 8 6 3 2 1 9 3115.53 8 6 3 2 1 7 3055.91 8 6 3 2 1 9 [1.00 1.00 0.74 0.00 0.00 0.89 0.00 1.00 0.50]

Pday 296,440.08 kW 289,525.25 * kW 295,605.88 kW
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4.5. Field Data

The study was based on experimental data from a large HVAC system installed in a semiconductor
fab located in Austria. The chiller unit is composed by five water-cooled centrifugal chillers, see Table 6,
connected in parallel, in a constant primary flow chilled water system. Quarter-hourly data were
recorded at different working conditions over a period of almost two years, from February 2017 to
January 2019. Collected data include: temperatures, PLR, power consumption.

The time series of the cooling load demand is shown in Figure 4.
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Figure 4. Cooling load demand time series.

The chillers were subject to the following operating constraints:

- PLRmin = 0.2;
- MUTi = 4 (one hour), ∀i;
- MDTi = 2 (half an hour), ∀i.

4.6. Chiller Energy Consumption Models

The chillers’ power consumption models were estimated using the evaporator cooling capacity
Qevap [kW] and the condenser inlet water temperature T [◦C], as covariates, and the compressor power
consumption data P [kW], as target.

For each chiller, the dataset was randomly partitioned in two subsets: 70% for training and
30% for testing, respectively. The parameters βp,i of the model (2) were estimated via least squares
fitting of the training data, discarding data with PLR < PLRmin = 0.2. The values of the
estimated parameters βp,i are reported in Table 6, together with the percentage coefficient of variation,
defined as CV% = 100× SE(βp,i)/|βp,i|. The cooling capacity Qnom are the nominal values provided
by the manufacturer.

In Figure 5, the fitted surfaces P(PLR, T) are displayed against the validation data for each of the
five chillers. It is seen that the the quadratic model, in spite of a few outliers that are not uncommon
when data are collected in industrial frameworks, predicts the consumptions at different operating
conditions well, as also confirmed by the goodness-of-fit (GOF) plots in Figure 6.
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Table 6. Estimated parameters of the quadratic power consumption model (2) and corresponding CV%.

Chiller β0,i β1,i β2,i β3,i Qnom
(CV%) (CV%) (CV%) (CV%) [kW]

1 49.6367 124.7681 269.5769 3.1950 2700(5.24) (2.50) (0.82) (3.21)

2 56.2047 154.9900 278.0211 2.2997 2700(11.97) (7.98) (2.95) (8.32)

3 −10.9883 520.3125 −45.1983 −0.3309 2700(22.49) (0.85) (6.98) (24.57)

4 −159.0637 112.2988 15.7524 14.1461 2700(6.15) (19.80) (8.21) (0.74)

5 46.7748 461.7221 −8.3474 −1.1835 2700(27.74) (1.84) (79.87) (47.23)

Figure 5. Three-dimensional representation of power consumption models. Red dots represent the
experimental data.
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Figure 6. Goodness-of-Fit (GOF) plots of the quadratic power consumption models. Blue dots are the
validation data.

The 3-D histogram of the covariates (Qevap, T) sketched in Figure 7 shows that T, i.e., the condenser
inlet water temperature depicted in Figure 8, is mainly concentrated in a narrow range centered
around the setpoint, namely 21.5 ◦C. Following what is usually done in the literature benchmarks,
one could neglect temperature variations around the set point and solve the OCL and OCS problems
using the chillers consumption curves at 21.5 ◦C, displayed in Figure 9. However, the inspection of
Figure 5 shows that for chiller 4, the power consumption is significantly affected by the temperature,
especially in summer. Therefore, differently from other literature studies, OCL and OCS solutions,
we computed this based on the complete model P(PLR, T).
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Figure 7. 3-D histogram of the pairs (Qload, T) recorded from February 2017 to January 2019.
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Figure 8. Condenser inlet water temperature time series.
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Figure 9. P-PLR curves of Field data benchmark at T = 21.5 ◦C.

4.7. Real HVAC System: Assessment of Potential Savings

The field data were used to perform a retrospective analysis of the efficiency of the HVAC system
management. More precisely, starting from the historical decisions and the associated cumulative
power consumption, two comparisons were performed for the 2-year OCS problem. First of all,
the lower bound R-OCS on the best achievable consumption was computed in order to quantitatively
assess the potential improvement margin. Being a lower bound, R-OCS may be overly optimistic,
so that it is important to evaluate the performance that can be obtained in practice. This was done by
running the X-OCS solver, whose energy consumption could then be compared with the (ideal) R-OCS
bound and the historically recorded power consumption.

The cumulative energy consumption recorded during the 2-year monitoring was
1.758× 106 [kWh]. This figure can be compared with the R-OCS lower bound, equal to
1.600× 106 [kWh]. This means that the potential margin of improvement is not larger than 8.97%.

When the X-OCS algorithm was applied, the cumulative energy power consumption was
1.601× 106 [kWh]. As a matter of fact, for this HVAC system, the loss of performance due to the
suboptimality of the greedy algorithm is definitely negligible (it is less than 0.1%). On average,
the power saving is 0.157× 106/(2× 365× 24) = 8.96 [kW]. In Figure 10, the difference between the
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consumption achieved by X-OCS and the lower bound is plotted on a weekly basis. The black and
blue lines overlap almost perfectly, so that they cannot be distinguishable.
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Figure 10. Weekly power consumption time series: comparison bewteen actual recorded data (red),
the lower bound R-OCL (black) and the consumption associated with X-OCS (blue).

5. Execution Time

The X-OCL and X-OCS algorithms, coded in Matlab R©, were executed on a standard laptop
(Intel(R) i7-7500U dual-core with hyperthreading, RAM 16GB, 2.7 GHz). While no explicit
parallelization of the algorithm was implemented, the solution of the 4n QP problems was formulated
as a unique algebraic computation using sparse matrices. This means that the algorithm may have
benefited from some optimization automatically enforced by the Matlab R© compiler. In order to
compare the numerical efficiency, the Hsinchu benchmark was also solved using the CPLEX solver for
costrained mixed integer problems as implemented in the GAMS environment, used by [6]. The results
concerning the computational times are summarized in Table 7.

Concerning the Hsinchu OCL benchmark, the computational cost of X-OCL was negligible (0.11 s)
and, more importantly, definitely lower than the time (1.991 s) spent by GAMS.

Concerning the three OCS benchmarks, in all cases, the X-OCS computation time was larger than
that for R-OCS, because the greedy algorithm performs the additional task of looking for solutions
that satisfy the up-/down-time constraints.

In the OCS examples, the larger number of loads makes it possible to assess the average
computation time per load. For a small number of chillers, the average computation time per
load of X-OCS is remarkably small: 0.368/72 = 5× 10−3 s for OCS benchmark 1 (4 chillers) and
573.96/68, 110 = 8.4× 10−3 s for the OCS on field data (5 chillers). In the latter case, X-OCS took less
than 6 min to solve the OCS problem over 2-year data with quarter-hour sampling.

As expected, in view of the exponential growth of the number of QP problems, the maximal
average computation time per load is found in correspondence with the OCS benchmark 2,
where 9 chillers are present. Nevertheless, the average time per load amounts to 228.29/72 = 3.17 s,
which is totally affordable.

Finally, a simulated benchmark was set up in order to better assess the average computation
time per load as a function of the number of chillers. In particular, nine OCL simulated experiments,
characterized by a variable number of chillers, ranging from two to ten, were considered. The ten-chiller
system was composed by the six Hsinchu chillers, whose models are reported in [7] (Table 3), with the
first four replicated. For each experiment, the OCL problem was solved for five different cooling loads
ranging from 70% to 90% of the chiller’s total cooling capacity. In Figure 11, the average computation



Energies 2020, 13, 6372 25 of 29

time per load is displayed as a function of the number of chillers. The plot highlights the exponential
growth but, at the same time, it shows that, even for a large HVAC system made of 10 chillers,
the computation time per load (10 s) is all but prohibitive.

Table 7. Execution times for OCL and OSC benchmarks.

N◦ Chillers N◦ Loads X-OCL [s] R-OCS [s] X-OCS [s] GAMS [s]

OCL Hsinchu benchmark 6 5 0.110 - - 1.991

OCS benchmark 1 4 72 - 0.302 0.368 -

OCS benchmark 2 9 72 - 226.77 228.29 -

OCS Field data 5 68,110 - 354.03 573.96 -
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Figure 11. Simulated X-OCL experiment: average computation time per load.

6. Discussion

The main purpose of the paper was the derivation of an exact algorithm for the solution to the OCL
problem. This goal was successfully completed by a decomposition approach that exploits a suitable
partition of the solution space. The availability of an exact method has been immediately exploited
along two directions. First, it has become possible to give a definitive assessment on the performances
of different literature methods that had been applied to some consolidated benchmark problems. By the
way, the comparison with the exact solution revealed that some unrealistic performances had been
declared in the literature, due to erroneous extrapolations of the power consumption curve. The exact
method has been exploited also in relation with the optimal chiller sequencing problem. For a given
cooling demand profile, if the dynamic up/down-time constraints are neglected, a sequence of OCL
problems can be exactly solved to yield a lower bound limit, called R-OCS, to the performance of any
feasible solution.

Concerning the practical applicability of the exact solution in place of heuristic approaches discuss
in the literature, two main objections may be raised: (i) the explosion of the computational cost with
the number of chillers, (ii) the need to make overly restrictive assumptions on the shape of the power
consumption curves.

On the first side, it is indeed true that the OCL problem as formulated in (4) is NP-hard,
as confirmed by Figure 11, where the exponential growth of the computations time is apparent. At the
same time, the figure shows that, even for a medium/large-sized chiller system, e.g., 6–10 chillers,
the computation time per load is less than 2 s. This suggests that, even for chiller systems used in
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large semiconductor factories, the cost of the exact solution is all but prohibitive. The numerical
efficiency is a direct consequence of the tiny number of computations required to solve the elementary
EQP problems, see (12). Moreover, the partition strategy underlying X-OCL implies that it is totally
parallelizable into 4n threads, a feature that has not been explicitly exploited and that could further
speed up the solution.

The second objection to the general applicability of the exact solution has to do with the quadratic
assumption made on the power consumption curve. Even if the majority of benchmarks satisfy
this assumption, there is no stringent reason to rule out other functional descriptions. Nevertheless,
when confronted with real data (see the field data benchmark), we found that a quadratic power
consumption fitted well the recorded data, see Figure 6. Moreover, even when a single quadratic
function is not adequate, it is still possible to switch to a piece-wise quadratic description. In that case,
it would be immediate to generalize the exact algorithm by just increasing the number of partitions Sj,
in such a way that the problem still boils down to a set of easy-to-solve EQP problems.

In view of its numerical efficiency, the application of X-OCS to the solution of the OCS problem
also appears very promising. Indeed, in the OCS benchmarks taken from the literature and in the field
data OCS benchmark, the performance of X-OCS is very close to the lower bound, implying that there
is no scope for the use of more sophisticated algorithms.
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Acronyms

Pi Electric power consumption of the i-th chiller [kW]
Ptot Multi-chiller system total power consumption [kW]
Qi Cooling power delivered by the i-th chiller [kW]
Q100%,i Maximum cooling power supplied under full capacity by the i-th chiller [kW]
Qload Cooling load demand [kW]
PLRi Part load ratio of the i-th chiller
PLRmin,i Minimum part load ratio of the i-th chiller
Ti Condenser inlet water temperature on the i-th chiller [◦C]
OCL Optimal Chiller Loading problem
OCS Optimal Chiller Sequencing problem
X-OCS Exact Optimal Chiller Sequencing algorithm
X-OCL Exact Optimal Chiller Loading algorithm
R-OCS Relaxed Optimal Chiller Sequencing problem
HVAC Heating, Ventilation and Air-Conditioning

Appendix A. Derivation of Power Consumption Models from the COP Ones

Assuming that the available COP-PLR curves represent the true model of chillers’ efficiency,
quadratic approximated power consumption models can be easily derived as follows:

1. Sample N data points from the COP-PLR curve of the i-th chiller, uniformly in the range
[PLRmin,i,1] obtaining the pairs {PLRi(k), COPi(k)}, k = 1, . . . N;
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2. Compute the chiller’s power consumptions as

Pi(k) =
PLRi(k) ·Q100%,i

COPi(k)
, k = 1, . . . N;

3. Using the training set made of input-output paired samples {PLRi(k), Pi(k)}, k = 1, . . . N
estimate the parameters of the quadratic model via ordinary least squares (OLS).

The above procedure was applied to the case studies presented in Section 4.3. For both the
case studies, 50 data points were randomly sampled (uniformly in [0.5,1]) from the COP-PLR curves
reported in Table A1 to obtain the training datasets represented in the left panels of Figures A1 and A2
as red dots. The estimated P-kW curves are shown in the right panels of Figures A1 and A2, and their
parameters are reported in Table A2.

Table A1. Coefficients of chillers’ COP-PLR curves.

Systems Chiller αi βi γi Qnom

Case 1

1 0.1561 3.9023 −2.5909 450
2 0.9000 1.8432 −1.4188 450
3 0.2932 3.0419 −2.0054 1000
4 0.1415 3.6376 −2.2469 1000

Case 2

1 1.5652 1.8094 −0.9803 1250
2 1.0519 4.1471 −2.4173 1250
3 0.5703 3.1602 −2.0912 1250
4 0.3257 2.3513 −1.4265 1250
5 0.5438 1.8668 −1.2361 1250
6 1.5271 1.0634 −0.7238 1250
7 0.7865 1.8473 −1.1633 1250
8 0.8499 3.7768 −2.2859 1250
9 1.1191 1.0228 −0.7542 1250

Table A2. Estimated parameters of chillers’ P-PLR curves.

Systems Chiller ai ci qi Qnom

Case 1

1 243.58 −398.01 504.00 450
2 130.81 −103.53 309.65 450
3 417.51 −444.57 771.99 1000
4 383.79 −347.84 611.64 1000

Case 2

1 95.54 321.92 103.60 1250
2 170.68 41.43 235.46 1250
3 371.09 −307.99 693.76 1250
4 477.85 −217.09 733.35 1250
5 433.17 −186–20 810.89 1250
6 104.21 358.47 205.50 1250
7 272.33 116.22 457.96 1250
8 218.68 −20–94 333.72 1250
9 191.69 276.56 429.51 1250
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Figure A1. (Left): COP-PLR curves of chillers in case study 1. Red dots are the 50 samples used to
identify the quadratic approximate power consumption model. (Right): Identified quadratic P-PLR
curves of chillers in case study 1. Red dots are the energy consumption data used for the training.
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Figure A2. (Left): COP-PLR curves of chillers in case study 2. Red dots are the efficiency sampled data.
(Right): P-PLR curves of chillers in case study 2. Red dots are the energy consumption data used for
the training.
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