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Abstract: The design and analysis of a permanent magnet synchronous generator (PMSG) are
presented. The interior permanent magnet (IPM) rotor was designed asymmetric and with the
consequent pole approach. The basis for the design was a series-produced three-phase induction
motor (IM) and neodymium iron boron (Nd-Fe-B) cuboid magnets were used for the design. For the
partial demagnetization analysis, some of the magnets were extracted and the results are compared
with the finite element analysis (FEA).
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1. Introduction

In the last three decades, the advances in material sciences have brought about higher-energy
density products (BHmax) in rare-earth permanent magnet materials, like neodymium iron boron
(Nd-Fe-B) and samarium-cobalt (Sm-Co) [1,2]. This characteristic allowed electrical machines to have
higher efficiency and to be more compact [3]. Nonetheless, special attention must be taken in the design
of electrical machines with Nd-Fe-B magnets since they have temperature-dependent magnetization
curves with lower coercivity than other materials [4]. Further, some novel applications like magnetic
refrigeration or refrigeration by the magnetocaloric effect require the magnetic material to work at
extreme temperatures, as stated in [5]. For that reason, Nd-Fe-B magnets can suffer irreversible
demagnetization or partial demagnetization at high temperatures (>80 ◦C), and this is even below the
Curie temperature, which is much higher, as explained in [6].

In Figure 1, three operating points over the 80 ◦C curve are shown. The difference between these
depends on the magnet shape. Notice that the slope of the line crossing the B-H curve (load line) is
calculated as

µL =
Bd(

Hd −
NI
lPM

) = Psys
lPM

aPM
(1)

where µL is the permeance coefficient, Bd is the operating point’s magnetic flux density, Hd is the
permanent magnet’s field intensity, N is the number of turns in the coil, I is the current in amperes,
lPM is the length of the permanent magnet, Psys is the system’s permeance, and aPM is the permanent
magnet’s area transverse to the magnetic flux. These are important figures of merit when designing
a permanent magnet machine since, as explained before, the volume (mass) of rare earth’s permanent
magnet impacts directly on the machine cost.

Energies 2020, 13, 6371; doi:10.3390/en13236371 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-8265-3977
http://dx.doi.org/10.3390/en13236371
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/23/6371?type=check_update&version=2


Energies 2020, 13, 6371 2 of 13

Energies 2020, 13, x FOR PEER REVIEW 2 of 13 

 

lg). This is a very important relation since the operating point should not lie close to the B-H curve’s 
knee, as this would mean that the magnet is at demagnetization risk because, as shown in Figure 1, 
the load line will move to the left as a response to the armature reaction; in other words, the opposing 
magnetic field produced by the machine coils will move the operating point further to the left perhaps 
after the knee point, causing demagnetization. This is a very similar effect to the one described for 
small ferromagnetic material samples in cylindrical shapes from [7–9]. 

 
Figure 1. Three operating points for three different permeance coefficients. 

 
Figure 2. C-core and load line when I = 0 A. 

This paper shows the design and measurements of an interior permanent magnet (IPM) rotor 
for a permanent magnet synchronous generator (PMSG). The finite element analysis (FEA) is 
conducted based on the designed geometry and then validated with measurements performed in the 
laboratory. Finally, some results from the FEA with a partially demagnetized rotor are presented and 
discussed. 
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The design of the PMSG was based on the series-produced three-phase induction motor (IM) of 
1.5 kW, the Sh90-L4 [10]. The housing, stator geometry, and windings are the same as the IM. The 
parameters of the IM are presented in Table 1. The air gap of the PMSG is 0.5 mm and therefore the 
rotor has 81 mm diameter with the same 30 mm diameter shaft. The Sh90L-4 IM has a 0.3 mm air gap 
but it is common for permanent magnet machines to have a bigger air gap. 

The magnets available for the design exploration were 18 by 4 by 30 mm rectangular cuboid 
N38SH Nd-Fe-B magnets, where the rating SH refers to a suggested maximum operating temperature 
of 150 °C (see [11]). This is due to the magnetic material powder’s content of dysprosium (Dy) which 

Figure 1. Three operating points for three different permeance coefficients.

In Figure 2, a simplified magnetic circuit C1 is shown. Note that the slope of the load line when
the current I = 0 depends on the geometry of the magnet (aPM, lPM) and the geometry of the air gap
(ag, lg). This is a very important relation since the operating point should not lie close to the B-H curve’s
knee, as this would mean that the magnet is at demagnetization risk because, as shown in Figure 1,
the load line will move to the left as a response to the armature reaction; in other words, the opposing
magnetic field produced by the machine coils will move the operating point further to the left perhaps
after the knee point, causing demagnetization. This is a very similar effect to the one described for
small ferromagnetic material samples in cylindrical shapes from [7–9].
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Figure 2. C-core and load line when I = 0 A.

This paper shows the design and measurements of an interior permanent magnet (IPM) rotor for
a permanent magnet synchronous generator (PMSG). The finite element analysis (FEA) is conducted
based on the designed geometry and then validated with measurements performed in the laboratory.
Finally, some results from the FEA with a partially demagnetized rotor are presented and discussed.

2. Design of the PMSG

The design of the PMSG was based on the series-produced three-phase induction motor (IM)
of 1.5 kW, the Sh90-L4 [10]. The housing, stator geometry, and windings are the same as the IM.
The parameters of the IM are presented in Table 1. The air gap of the PMSG is 0.5 mm and therefore
the rotor has 81 mm diameter with the same 30 mm diameter shaft. The Sh90L-4 IM has a 0.3 mm air
gap but it is common for permanent magnet machines to have a bigger air gap.
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Table 1. Parameters of the induction motor (IM), which the permanent magnet synchronous generator
(PMSG) is based on.

Phases 3

Nominal power 1.5 kW

Nominal speed 1410 rpm

Nominal frequency 50 Hz

Nominal current 3.5 A

Nominal torque 10.16 Nm

Number of poles 4

Stator Slots 36

Shaft diameter 30 mm

The magnets available for the design exploration were 18 by 4 by 30 mm rectangular cuboid
N38SH Nd-Fe-B magnets, where the rating SH refers to a suggested maximum operating temperature
of 150 ◦C (see [11]). This is due to the magnetic material powder’s content of dysprosium (Dy) which
makes the magnet more resistant to demagnetization but at the same time more expensive, since Dy is
even more expensive than neodymium.

In Figure 3, the W shape of the consequent poles is shown. The W shape was selected due to its
field-focusing abilities and low total harmonic distortion (THD) of the back EMF, as studied in [12].
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Notice in Figure 3 that the upper and lower poles are not symmetrical. This was done on purpose
to lower even further the THD of the back EMF and cogging torque. Further, notice that the rotor has
4 poles but only two W shapes are visible. This is because of the “consequent pole” approach [13],
sometimes also called induced pole in the literature [14], that was used in the design.
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A detailed explanation of the design process and optimization of the W shape’s angles was
published in [15]. One of the most important issues of the process was the design space delimited by
the shaft (inner circle) and the dotted line (Figure 4). This limit is given by the rotor diameter of 81 mm
(outer circle) minus a bridge or small part of the steel sheet lamination that will hold the magnets
inside the rotor. The minimum size for this bridge is given by the mechanical strength of the steel sheet
from which the rotor laminations are cut, but also from the saturation due to the magnetic flux density
since the flux should go through the stator and not through the bridge. For this project, a 0.5 mm
bridge was chosen as the constraint for the design space, but also because the rotor laminations were
cut by laser on a computer numerical controlled (CNC) machine whose precision is about ±0.1 mm.
This distance is later analyzed by stress calculation in the FEA software to ensure a proper safety factor.Energies 2020, 13, x FOR PEER REVIEW 4 of 13 
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Moreover, in Figure 4, a relation between angle and angle is shown. These are angles between the
magnets which form the W shape. In order to obtain the maximum flux density through the stator,
the tip of the outer magnets in the W shape should be coincident with the dotted line.

The rotor was built and tested in the laboratory in order to validate the FEA results. In Figure 5,
the isometric view of the rotor is shown. Notice that it uses 4 threaded rods with hex nuts at both
ends. Two of these rods are for holding the steel sheets together, and the other two are for holding
the end plates at each end of the rotor stack. The space between the tip of the outer magnets and the
air gap is determined by two factors. The first one is the precision of the laser cutter with which the
prototype was manufactured. The second is the mechanical strength at high-speed rotation at which
the generator may operate (1.2 times the maximum speed of 3000 rpm according to the norm IEC 60034
part 1). The stress on that space of the steel lamination, called the bridge, must be calculated to ensure
a proper safety factor.
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Figure 5. Isometric view of: (a) the designed rotor and (b) the built rotor without magnets.

In Figure 6, the results of mechanical stress analyses are shown. During the first analysis, the rotor
speed was 1.2 times the maximum speed (nmax = 3000 rpm) without any torque on the rotor shaft.
During the second analysis, the rotor speed was equal to the rated speed and the shaft torque was
2 times the rated shaft torque (tn = 16 Nm). The maximum yield strength of M400-50A steel is 325 MPa.
A safety factor equal to 2 allows a maximum strength of 162.5 MPa. The maximum mechanical stress
during the analyses was about 43 MPa. This clearly demonstrates that the bridge will withstand the
centrifugal forces of the generator spinning inside the nominal speed range and shaft torque even two
times greater than the nominal one.
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In Figure 7, the test setup is presented. The measurements were conducted in the Laboratory of
Electric Machines at Wroclaw University of Science and Technology in Poland. The generator was
driven by the servomotor which can work both as a motor or as a brake.
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In Figure 8, the back EMF of the PMSG is shown. Notice the similarities between the FEA (dotted lines)
and the measurements conducted at nominal speed.
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In Figure 10, the calculated efficiency map of the generator is shown. Notice that the calculated
maximum efficiency is about 90%. This was corroborated by laboratory measurements also shown in
Table 2. These measurements were conducted only with a three-phase resistor (56 ohm). The FEA
results appear to be in good agreement with the measurements conducted in the laboratory. Once again,
the similarities between the measurements and FEA transient results are evident.
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Table 2. Results of the investigated generator at 1500 rpm and 56 ohm load.

Pmech [W] Line Voltage
[Vrms]

Current per
Phase [Arms] Pelectrical [W] Efficiency [%]

FEA 2530 320 3.603 2275 89.0

Measurements 2530 316 3.661 2250 88.9

In Figure 11, the PMSG was loaded with a resistive load of 45 Ω per phase, providing 291 Vrms

line voltage and 4.16 A phase current with an output power of 2.35 kW.
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Once the validation was conducted, the PMSG FEA was used for the analysis of partial
demagnetization’s effects. First, an experiment (transient simulation) was designed in order to demagnetize
the PMSG in the time-stepping FEA.

3. Demagnetization Analysis

Once the validation was conducted, the PMSG FEA was used for the analysis of partial
demagnetization’s effects. First, an experiment (transient simulation) was designed in order to
demagnetize the PMSG in the time-stepping FEA. The results are analyzed and presented. Then,
some validation of the demagnetization was conducted. The demagnetization model embedded in the
FEA software was first presented in [16], where it is explained as a formulation of the Newton–Raphson
method using the true Jacobian matrix.

3.1. Recoil Line

The phenomenon of demagnetization can be explained better with Figure 12. In Figure 12,
the recoil line is shown in red. First, the magnet is at the operating point A, then a demagnetizing
current moves the operating point to B; notice that the load line moves parallel to the original but
further to the left thanks to the armature reactance (NI/lPM). Now, the operating point is below the knee
of the B-H curve for 80 ◦C. When the opposing magnetic field is turned off, the magnet’s operating
point returns to C. This means that the magnet has lost its original BHmax. Note that the recoil line is
parallel to the linear part of the B-H curves.
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Another failure mechanism that will obtain the same results (operating point C) is to augment the
temperature from 80 to 160 ◦C. This is clear in Figure 12 because the operating point C coincides with
the 160 ◦C B-H curve.

In Figure 13, a qualitative depiction of the hysteresis curves (B-H curves) for two different
temperatures is shown. Notice the change in the remanence Br and coercivity Hc when the temperature
rises. In the magnet’s data sheet, this rate of change (reversible temperature coefficients) is expressed
as ∆Br and ∆Hc, both expressed in %/◦C. These figures of merit are useful for the non-linear model
of the magnetic material in the FEA since they are used to calculate the new B-H curve when the
temperature changes.Energies 2020, 13, x FOR PEER REVIEW 8 of 13 
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3.2. Three-Phase Short-Circuit Demagnetization

The FEA was connected to the circuit shown in Figure 14, in order to simulate a three-phase
short-circuit fault that would generate the currents necessary to drive the PMSG magnets’ operating
point below the knee point of the magnetization curves. This was first studied by Professor Jahns in [17]
and more recently in [18]. In this last reference, the authors used the non-linear B-H characteristics of
the magnets as a data for the FE simulation to improve the accuracy of the demagnetization analysis.
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Figure 14. Maxwell’s Circuit Editor schematic; red rectangle shows the short circuit position.

In this paper, a temperature-dependent demagnetization model of permanent magnets for FEA
(first used in [19]) was used in the transient simulation, although the temperature was kept constant
for each experiment, as shown in Table 3.

Table 3. Back EMF at 1500 rpm before and after the three-phase short circuit.

Before After

60 ◦C 416 Vrms 415 Vrms
70 ◦C 413 Vrms 412 Vrms
80 ◦C 410 Vrms 408 Vrms
90 ◦C 407 Vrms 404 Vrms

100 ◦C 403 Vrms 399 Vrms
110 ◦C 400 Vrms 392 Vrms
120 ◦C 396 Vrms 382 Vrms
130 ◦C 392 Vrms 367 Vrms
140 ◦C 387 Vrms 329 Vrms
150 ◦C 382 Vrms 272 Vrms
160 ◦C 376 Vrms 206 Vrms

For each temperature shown in Table 3, a transient simulation was performed and the back
EMF value in Vrms was calculated before the short circuit and after the short circuit. In Figure 15,
the amplitude of the back EMF before and after the short circuit is shown. The difference is bigger at
150 ◦C because the knee point in the demagnetization curve is closer to the operating point, as shown
in Figure 1. Further, notice the difference between the initial back EMF (before the short circuit) with
magnets at 60 ◦C in Figure 15a and at 150 ◦C in Figure 15b. This difference is due to the different
magnetization curves calculated by the model for each temperature.
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Figure 15. Back EMF before, during, and after the three-phase short circuit for (a) 60 ◦C and (b) 150 ◦C.

In Figure 16, the results of the first test at 60 ◦C are shown. Note that the tests were made with
a constant speed input. This means that before the short circuit, during the short circuit, and after
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the short circuit, the speed is kept constant at 1500 rpm. In Figure 16b, the torque at the shaft
is presented, and the PMSG behaves as an electromagnetic brake during the three-phase-to-ground
fault, opposing the input torque with about a 5 Nm average.
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In Figure 17, the results of the same test (open circuit–short circuit–open circuit) for a higher
temperature of 150 ◦C are presented. Here, the opposing torque is only of about 2 Nm in the steady
state (between 150 and 230 ms).Energies 2020, 13, x FOR PEER REVIEW 10 of 13 
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Further, in Figure 19, the other lines corresponding to the same analysis but for a different 
constant speed indicate that the speed of operation of the PMSG, before and during the fault, also has 
an impact on the level of demagnetization that the IPM machine will get. A bigger ΔVrms is worse. 
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Figure 17. Open circuit–short circuit–open circuit test at 150 ◦C: (a) currents and (b) torque.

In Figure 18, the magnetic flux density distribution inside the magnets at 150 ◦C is shown.
Notice in Figure 17b that the red circles indicate where the highest demagnetization has happened.
If we take into account that the direction of rotation is counter-clockwise, then the results are in good
agreement with the ones reported in [20,21]; this means the trailing edge of the magnets is the one that
gets partially demagnetized first.
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In Figure 19, the results for three analyses are summarized. This means two other similar tables
to Table 3 were produced for 500 and 2500 rpm. Notice how after 130 ◦C, the difference in the back
EMF before and after the short circuit becomes bigger than 50 Vrms, all the way to 170 Vrms at 160 ◦C.
This indicates a very high demagnetization rate.Energies 2020, 13, x FOR PEER REVIEW 11 of 13 
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Figure 19. Back EMF difference (before and after the fault) at 3 different speeds.

Further, in Figure 19, the other lines corresponding to the same analysis but for a different
constant speed indicate that the speed of operation of the PMSG, before and during the fault, also has
an impact on the level of demagnetization that the IPM machine will get. A bigger ∆Vrms is worse.
From Figure 19, it can be concluded that the PMSG can be operated up to 120 ◦C without the risk of
high demagnetization in case of a fault, or even at higher temperatures but at low speed. Keep in
mind that all the tests shown in this section were conducted at constant speed, namely no acceleration
occurring during the fault.

In order to analyze the partial demagnetization of the W-shape PMSG, an experiment was
conducted in the laboratory by taking out two of the cuboid magnets from the rotor. This is a common
procedure widely used in the literature, e.g., [22–24]. The magnets that were taken out are shown in
Figure 20. As mentioned in Section 2, the cuboid magnets are only 30 mm long; therefore, to fill the
90 mm rotor stack, three of them must be inserted in each hole of the W shape. The difference between
those two measured cases is small. The difference becomes more evident when the Vrms is analyzed.
For the healthy case, 394 Vrms back EMF is obtained. For the demagnetized rotor, only 382 Vrms

is obtained.
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Figure 20. Back EMF measurements with: (a) healthy magnets and (b) partially demagnetized magnets.
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4. Conclusions

The authors developed a novel PMSG on the basis of an IM (Sh90-L4). The PMSG was designed
as an IPM with the same stator of the IM (overlapping, distributed three-phase windings). In order to
save costs, an approach in the literature called “consequent pole” was adopted. Specifically, this means
the usage of both sides of the magnets to avoid using double the number of magnets.

Analyses of the effects of the partial demagnetization of the W-shape PMSG are presented.
By virtue of the FEA material’s non-linear properties, the demagnetization by short-circuit currents
is studied. It was found that the demagnetization risk is higher when operating at speeds higher
than nominal.

The magnet thickness was chosen not only to produce the necessary magnetic flux density in
the air gap but also to avoid possible demagnetization, by having operating points close to the B-H
curve’s knee. As was shown in the article, the selection of the N38SH material for the Nd-Fe-B magnets
allowed for a continuous operation with magnet temperatures up to 100 ◦C with almost no risk
of demagnetization.

These results demonstrate the need to simulate possible failure modes when designing a PMSG,
especially one with Nd-Fe-B.

This work was part of the PhD thesis by the first author, were demagnetization effects of the
PMSG with a voltage-source converter (VSC) was analysed [25].

Future work should include more experimental verifications of the demagnetization and
measurements of the demagnetized rotor in order to better detect and assess this kind of fault.
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